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Abstract

Non-uniform grids and mesh adaptation have become an important part of numerical approx-
imations of differential equations over the past decades. It has been experimentally noted that
mesh adaptation leads not only to locally improved solution but also to numerical stability of the
underlying method.

In this paper we consider nonlinear conservation laws and provide a method to perform the
analysis of the moving mesh adaptation method, including both the mesh reconstruction and
evolution of the solution. We moreover employ this method to extract sufficient conditions -
on the adaptation of the mesh- that stabilize a numerical scheme in the sense of the entropy
dissipation.

1 Introduction

Hyperbolic conservation laws appear in various applications. For example, fundamental physical laws,
the conservation of mass momentum and energy, lead to the Euler equations of gas dynamics. Further
examples arise in traffic flows, shallow water flows, magnetohydrodynamics and biology, see, e.g.
[LeV02, Tor01, GR90, FSS11].

Let us consider a scalar conservation law in one space dimension,

ut + f(u)x = 0, x ∈ [a, b], t ∈ [0, T ], (1)

with initial data u0 ∈ L∞([a, b]). In order to simplify the presentation we assume e.g. periodic
boundary conditions or Cauchy problem.

Adaptivity is a main theme in modern computational simulations of complex physical phenomena.
It is important to investigate the behavior of adaptive schemes for hyperbolic problems, such as (1),
which exhibit several interesting and not trivial characteristics. In literature we can find different
mesh adaptation approaches see e.g. [HH02, Ohl09, AMS06, PS11, Sfa11, TW06, KO00, GS02], and
the references therein.

In this work we study the behaviour of certain geometrically driven adaptive algorithms when
combined with the important class of entropy conservative schemes introduced in [Tad87, Tad03].

In every time step t = tn we consider the following spatial mesh:

Mn
x = {a = xn1 < · · · < xnN = b}

with variable space step sizes hni = xni+1 − xni , i = 1, . . . , N − 1. The mesh will be reconstructed in
every time step tn. Further, we consider a numerical approximation Un of the exact solution u over
the mesh Mn

x at time t = tn given as a

Un = {un1 , . . . , unN} .
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For both the analysis and the numerical studies of this paper we have used a specific kind of
mesh adaption techniques that we shortly describe here and in more details in Section 2. Both, the
construction and evolution of our non-uniform meshes and the time evolution of the approximate
solutions, are dictated by the Main Adaptive Scheme (MAS) :

- in every time step construct new mesh according to the prescribed adaptivity criterion,

- reconstruct the numerical solution over the new mesh,

- evolve the numerical solution in time using the numerical scheme.

MAS will be discussed in details in Section 2; we note here that the number of spatial nodes is fixed
and that the reconstruction of the mesh is realized by moving its points according to the geometry of
the numerical solution.

The use of non-uniform adaptively redefined meshes, in the context of finite differences, was first
studied, among others, in [HH83], [DD87], and [TT03]. The approach that we follow, for the mesh
reconstruction step of MAS (Step 1) was first introduced in [AKM01, Arv02]. Applications of MAS on
several problems, point out a strong stabilisation property emanating from the mesh reconstruction see
e.g. [AMT04, AD06, AMS06, Sfa11, Sfa09]. These stabilization properties led in [AMS06] to combine
MAS with the marginal class of entropy conservative schemes. The later were first introduced by
[Tad87] and further studied by [LR00, Tad03, LMT09]. These are semi-discrete numerical schemes
which satisfy an exact entropy equality. On one hand entropy conservative schemes are interesting on
their own right, since they appear in the context of zero dispersion limits, complete integrable systems
and computation of non-classical shocks. On the other hand they are important as building blocks
for the construction of entropy stable schemes [Tad87, Tad03, LMT09].

We note that classical techniques for the analysis of numerical schemes using moving meshes, only
include the time evolution step of the procedure. In order though to have a complete picture of the
quality of the numerical solution under a mesh adaptation procedure a broader analysis is needed. In
this direction the work done in [Sfa09] has provided some constructive analysis tools.

In the present paper we are able to combine in one relation, the effect of both the time evolution
and the mesh adaptation used in the moving mesh approach. Let us point out that our approach
allows us to represent the effects of both the adaptive mesh reconstruction as well as finite volume
scheme in one conservative update relation over a reference uniform mesh (22). This approach allows
to apply the entropy stability analysis and derive a sufficient mesh adaptation criterion to control
entropy production.

2 Main Adaptive Scheme (MAS)

Using non-adaptive meshes -both uniform and non-uniform- the evolution of the numerical solution
is dictated solely by the solution update. On the contrary, in the adaptive mesh case, two more
phenomena need to be taken into account; the construction of the new mesh and the solution update.
These steps comprise the Main Adaptive Scheme (MAS):

Definition 2.1 (MAS). Given mesh Mn
x and approximations Un,

1. (Mesh Reconstruction). Construct new mesh Mn+1
x

2. (Solution Update). Reconstruct Un over Mn+1
x to obtain Ûn.

3. (Time Evolution). Evolve Ûn in time to compute Un+1 over Mn+1
x .
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It is important to note that in the case of a fixed mesh, uniform or non-uniform, there is no need
for mesh reconstruction (Step 1.) and effectively no need for step 2. In such case MAS reduces to
just the time evolution step (Step 3.) which is what is usually considered as a numerical scheme.
The extra steps of the adaptive MAS, on one hand, change significantly both the computation and
the analysis of the numerical approximations, and on the other hand are responsible for stabilization
properties of the MAS.

The crucial property of the mesh adaptation that is analysed in this paper is the following: In the
mesh reconstruction step (Step 1.) the nodes of the mesh are relocated according to the geometric
information contained in the discrete numerical solution:

in areas where the numerical solution is more smooth and flat the density of the nodes is low, in
areas where the numerical solution is less smooth or flat the density of the nodes should be higher.

In fact, the mesh reconstruction process can be chosen in any suitable way. One possibility is to
use the monitor function which reflects the curvature of the numerical solution. For details we refer
[Sfa09, AD06].

Further, we consider the solution update procedure (Step 2. of MAS). The numerical solution Un

is given on the old mesh Mn
x and is recomputed as Ûn on the new mesh Mn+1

x . There are many ways
for the reconstruction. In this work we use conservative piecewise constant reconstructions.

Finally, for the time evolution step (Step 3. of MAS) we use any suitable numerical scheme for
non-uniform meshes. Denoting the mesh-solution pair by

Un = {uni , i = 1, . . . , N} (2)

Mn
x = {Cni , |Cni | = hni , i = 1, . . . , N} (3)

we obtain in the case of finite volume scheme

un+1
i = ûni −

∆tn

hn+1
i

(
F̂ni+1/2 − F̂

n
i−1/2

)
. (4)

Here Ûn = {ûni , i = 1, . . . , N} is a reconstructed Un over Mn+1
x and the numerical flux F is decorated

with ˆ since it is computed over the updated values Û . The numerical flux itself can be any numerical
flux valid for non-uniform grids. We refer to [Sfa09, AD06] for more details regarding both the
implementation of numerical schemes over non-uniform meshes and their properties.

2.1 Reference uniform mesh

A schematic representation of MAS (2.1) in the form of mesh-solution pairs is the following{
Mn
x , U

n
} mesh adapt.−−−−−−−−→

{
Mn+1
x , Ûn

} num. scheme−−−−−−−−→
{
Mn+1
x , Un+1

}
, (5)

where in the first part we have considered the steps 1 and 2 of MAS and in the second part the step
3.

In parallel to MAS and (5) we define a new set of mesh-solution pairs where the meshes are uniform,
constant in time, of the same cardinallity as Mn

x and discretizing the same physical domain.

Definition 2.2 (Reference uniform mesh-solution pair). Let {Mx, U} and {M̄, V } be two mesh-
solution pairs with Mx = {Ci, |Ci| = hi, i = 1, . . . , N}, M̄ = {C̄i, |C̄i| = ∆x, i = 1, . . . , N},
U = {ui, i = i, . . . , N}, and V = {vi, i = 1, . . . , N}. We call {M̄, V } the reference uniform mesh-
solution pair to {Mx, U} if

- the meshes Mx and M̄ discretize the same physical domain, and
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- the following per-cell mass conservation is satisfied for every i = 1, . . . , N

∆x vi = hi ui. (6)

We prove in Lemma 2.1 that the per-cell conservation property (6) is a result of a geometric
conservation law.

Geometric conservation law

Let us consider a a time dependent cell C(τ) = (x1(τ), x2(τ)). We look for an appropriate conservation
law

ut(x, t) + ξ(u(x, t), x)x = 0, (7)

that expresses the mass conservation of a quantity u using an appropriate ξ(u, x) function over the
moving cell C(τ). Thus, by the Leibniz rule

d

dτ

∫ x2(τ)

x1(τ)

u(x, τ)dx = u(x2(τ), τ)x′2(τ)− u(x1(τ), τ)x′1(τ) +

∫ x2(τ)

x1(τ)

ut(x, τ)dx. (8)

If the mass of u over C(τ) remains constant with respect to τ , the following condition holds∫ x2(τ)

x1(τ)

ut(x, τ)dx = −u(x2(τ), τ)x′2(τ) + u(x1(τ), τ)x′1(τ). (9)

Integrating (7) over C(τ) we obtain∫ x2(τ)

x1(τ)

ut(x, τ)dx+

∫ x2(τ)

x1(τ)

ξ(u(x, τ), x)xdx = 0.

Now, using (9) we get

ξ(u(x2(τ), τ), x2(τ))− ξ(u(x1(τ), τ), x1(τ)) = u(x2(τ), τ)x′2(τ)− u(x1(τ), τ)x′1(τ).

A suitable flux function ξ hence is

ξ(u(x(τ), τ), x(τ)) = u(x(τ), τ)x′(τ). (10)

Therefore, the strong formulation of (7) reads

ut(x, τ) + (u(x, τ)xt)x = 0, (11)

which is referred in the literature as the Geometric Conservation Law (GCL), see e.g. [TT61, TL79,
CHR02].

As previously announced we can attain the per-cell mass conservation property (6) by discretizing
the corresponding GCL.

Lemma 2.1. The per-cell mass conservation label (6) is a consequence of the geometric conservation
law (11).

Proof. For every given cell-value pair Ci, ui and the respective reference pair C̄i, vi –as provided in the
Definition 2.2– we set the moving cell C(τ) = (x1(τ), x2(τ)) for τ ∈ [τ1, τ2] to be a linear interpolation
of Ci and C̄i

C(τ) =
τ − τ1
τ2 − τ1

C̄i +
τ2 − τ
τ2 − τ1

Ci.
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Now, to attain a discrete version of (11) we integrate it over C(τ)∫ x2(τ)

x1(τ)

ut(x, τ)dx+

∫ x2(τ)

x1(τ)

(u(x(τ), τ)xt(x, τ))x dx = 0,

and invoke (8) to get

d

dτ

∫ x2(τ)

x1(τ)

u(x, τ)dx− u(x2(τ), τ)x′2(τ) + u(x1(τ), τ)x′1(τ) +

∫ x2(τ)

x1(τ)

(u(x(τ), τ)xt(x, τ))x dx = 0.

We discretize explicitly in [τ1, τ2] after noting that u = ui at τ = τ1 and u = vi at τ = τ2, set
∆τ = τ2 − τ1, and recall that |Ci| = hi, and |C̄i| = ∆x to get

1

∆τ
(∆xvi−hiui)−ui

x2(τ2)− x2(τ1)

∆τ
+ui

x1(τ2)− x1(τ1)

∆τ
+ui

x2(τ2)− x2(τ1)

∆τ
−ui

x1(τ2)− x1(τ1)

∆τ
= 0

or simply
∆x vi = hi ui.

Remark 2.1. The time variable τ used in the previous proof refers to ficticious time; it does not
correspond to the physically relevant time.

We point out that in the analysis we will use the reference uniform mesh-solution pair to combine
the effects of mesh adaptivity and the numerical update.

In view of the Definition 2.2, and after applying the per-cell mass conservation (6) on the schematic
representation (5) of MAS, we get for i = 1, . . . , N :

hni u
n
i = ∆x vni

mesh adapt.−−−−−−−−→ hn+1
i ûni = ∆x v̂ni

num. scheme−−−−−−−−→ hn+1
i un+1

i = ∆x vn+1
i . (12)

Now, by invoking (12) after multiplying with hn+1
i , we can rewrite the scheme (4) over the uniform

reference mesh

vn+1
i = v̂ni −

∆tn

∆x

(
F̂ni+1/2 − F̂

n
i−1/2

)
, (13)

where F̂ is the numerical flux function from (4) written in variables v̂; and we once again note that
this schemes describes only the time update step of the overall scheme.

We refer to Figure 1 for a graphical explanation of the projection between the non-uniform and
the uniform reference mesh.

3 Entropy stability

It is a well-known fact that for hyperbolic conservation laws we look for the so called weak entropy
solution; i.e. a weak solution that satisfies an entropy inequality. In numerical approximations of (1)
a goal is to look for a scheme that automatically produces solutions satisfying a discrete version of
entropy inequality. The concept of the so-called entropy stable schemes has been first introduced in
[Tad87, Tad03] and the corresponding numerical solution then satisfies the per-cell entropy inequality.
If for every cell just discrete entropy equality is satisfied, such scheme is named entropy stable scheme.
We refer to [Tad87, Tad03] for further details.
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Figure 1: Geometric conservation law projection. The numerical solution over the non-uniform adap-
tive grid (upper graph) along side with the solution over the reference uniform grid (lower graph).
The arrows depict the projection via the corresponding geometric conservation law that results to the
per-cell mass conservation. The duration of this projection is described by the fictitious time variable
τ .

Before stating the main theoretical result we introduce the following notations:

∆vni+1/2 := vni+1 − vni , (14a)

Bni+1/2 :=
f(vni+1)− f(vni )

∆vni+1/2

, (14b)

Qni+1/2 :=
f(vni+1) + f(vni )− 2F̂ni+1/2

∆vni+1/2

, (14c)

∆x
n+1/2
i+1/2 := xn+1

i+1/2 − x
n
i+1/2, (14d)

Hn
i+1/2 :=


(

∆x
n+1/2
i+1/2

)
−

hni
vni −

(
∆x

n+1/2
i+1/2

)
+

hni+1

vni+1

 , (14e)

Mn
i := ṽni

(
Hn
i−1/2 −H

n
i+1/2

)
. (14f)

Now, we proceed with the main theoretical result.

Theorem 3.1. We use the notations (14a)-(14f) and assume that the following condition holds

Mn
i ≤

∆tn

4∆x

{(
Dn
i−1/2 −K

3 ∆tn

∆x

(
Bi−1/2 +Q∗i−1/2 +Di−1/2

)2
)

(∆vni−1/2)2

+

(
Dn
i+1/2 −K

3 ∆tn

∆x

(
Bi+1/2 −Q∗i+1/2 −Di+1/2

)2
)

(∆vni+1/2)2

}
, (15)
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where ∆x, ∆tn are respectively the space and time steps that correspond to the numerical scheme (4).
Q∗ is the numerical viscosity of an entropy conservative scheme (see also Appendix A and [Tad03]
for the definition and some properties of Q∗). Then the mesh adaptation procedure MAS (5) with the
numerical scheme (4) for the time evolution step is entropy stable.

Proof. The numerical scheme for the uniform variables reads, cf. (13)

vn+1
i = v̂ni −

∆tn

∆x

(
F̂ni+1/2 − F̂

n
i−1/2

)
.

We subtract vni to develop the respective incremental form

vn+1
i − vni = v̂ni − vni −

∆tn

2∆x

(
2F̂ni+1/2 − 2F̂ni−1/2

)
.

Equivalently

vn+1
i − vni = v̂ni − vni −

∆tn

2∆x

(
f(vni+1) + f(vni )−

f(vni+1) + f(vni )− 2F̂ni+1/2

vni+1 − vni
(vni+1 − vni )

− f(vni )− f(vni−1) +
f(vni ) + f(vni−1)− 2F̂ni−1/2

vni − vni−1

(vni − vni−1)

)
(16a)

= v̂ni − vni −
∆tn

2∆x

((
Bni+1/2 −Q

n
i+1/2

)
∆vni+1/2 +

(
Bni−1/2 +Qni−1/2

)
∆vni−1/2

)
. (16b)

We point out that the term v̂ni − vni is new and accounts for the mesh reconstruction and solution
update steps of the MAS (2.1).
We now express v̂ni − vni in a conservative form with respect to

{
vnj
}

. Accordingly the size of Ci
changes as:

hn+1
i = hni + ∆x

n+1/2
i+1/2 −∆x

n+1/2
i−1/2 , (17)

and the mass of u over Ci as:

hn+1
i ûni = hni u

n
i −

(
∆x

n+1/2
i+1/2

)
−
uni +

(
∆x

n+1/2
i+1/2

)
+
uni+1 +

(
∆x

n+1/2
i−1/2

)
−
uni−1 −

(
∆x

n+1/2
i−1/2

)
+
uni . (18)

Now, (18) recasts to:

v̂ni = vni −

(
∆x

n+1/2
i+1/2

)
−

hni
vni +

(
∆x

n+1/2
i+1/2

)
+

hni+1

vni+1 +

(
∆x

n+1/2
i−1/2

)
−

hni−1

vni−1 −

(
∆x

n+1/2
i−1/2

)
+

hni
vni .

This relation can also be written as a conservative difference

v̂ni − vni =


(

∆x
n+1/2
i−1/2

)
−

hni−1

vni−1 −

(
∆x

n+1/2
i−1/2

)
+

hni
vni

−

(

∆x
n+1/2
i+1/2

)
−

hni
vni −

(
∆x

n+1/2
i+1/2

)
+

hni+1

vni+1

 (19)

= Hn
i−1/2 −H

n
i+1/2 (20)

Replacing (20) in (16b) we obtain

vn+1
i − vni =Hn

i−1/2 −H
n
i+1/2

− ∆tn

2∆x

((
Bni+1/2 −Q

n
i+1/2

)
∆vni+1/2 +

(
Bni−1/2 +Qni−1/2

)
∆vni−1/2

)
, (21)
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which can be analogously written as a conservative update over the reference uniform mesh

vn+1
i = vni −

∆tn

∆x

(
∆x

∆tn
Hn
i+1/2 + F̂ni+1/2 −

∆x

∆tn
Hn
i−1/2 − F̂

n
i−1/2

)
. (22)

We note that the conservative difference Hn
i−1/2 −H

n
i+1/2 accounts for the mesh reconstruction and

the solution update step of the MAS.
In order to simplify the presentation of the rest of the proof we assume that the entropy and the
conservative variables (ṽ and v, respectively) coincide, i.e. we choose U(u) = 1

2u
2 for the entropy

function. Now, to recover the entropy-entropy flux representation of (21), we multiply it by the
entropy variables ṽni , yielding

U(vn+1
i )− U(vni ) +

∆tn

∆x

(
Gni+1/2 −G

n
i−1/2

)
= Mn

i −
∆tn

∆x
E(x)
i + E(FE)

i

(
∆vn+1/2

)
(23)

where G is the numerical entropy flux. We have further following [Tad03],

E(x)
i =

1

4

[
Di−1/2∆v2

i−1/2 +Di+1/2∆v2
i+1/2

]
E(FE)
i ≤ K3

4

(
∆tn

∆x

)2 [(
Bi+1/2 −Qi+1/2

)2
∆v2

i+1/2 +
(
Bi−1/2 +Qi−1/2

)2
∆v2

i−1/2

]
,

≤ K3

4

(
∆tn

∆x

)2 [(
Bi+1/2 −Q∗i+1/2 −Di+1/2

)2

∆v2
i+1/2 +

(
Bi−1/2 +Q∗i−1/2 +Di−1/2

)2

∆v2
i−1/2

]
.

For the derivation of the last inequality we refer to Appendix A. Now, (23) reduces to

U(vn+1
i )− U(vni ) +

∆tn

∆x

(
Gni+1/2 −G

n
i−1/2

)
≤Mn

i −
∆tn

4∆x

(
Di−1/2∆v2

i−1/2 +Di+1/2∆v2
i+1/2

)
+
K3

4

(
∆tn

∆x

)2 [(
Bi+1/2 −Q∗i+1/2 −Di+1/2

)2

∆v2
i+1/2 +

(
Bi−1/2 +Q∗i−1/2 +Di−1/2

)2

∆v2
i−1/2

]
,

Hence, the sufficienct condition for entropy stability reads

Mn
i ≤

∆tn

4∆x

{(
Dn
i−1/2 −K

3 ∆tn

∆x

(
Bi−1/2 +Q∗i−1/2 +Di−1/2

)2
)(

∆vni−1/2

)2

+

(
Dn
i+1/2 −K

3 ∆tn

∆x

(
Bi+1/2 −Q∗i+1/2 −Di+1/2

)2
)(

∆vni+1/2

)2
}
.

In view of (22) we point out that we can define a conservative numerical scheme to include and
describe both the time evolution as well as the adaptation of the mesh. Such a formulation was
missing in previous works dealing with the analysis of moving mesh methods. Such a formulation can
be given for both the adaptive -as well as for the underlying uniform- mesh-solution pair.

Definition 3.1 (Effective Conservative Scheme). The conservative numerical scheme for the cell
averages of the adaptive mesh-solution pair

{
Mn
x , U

n
}

un+1
i =

hni
hn+1
i

uni −
∆tn

hn+1
i

(
Fni+1/2 −F

n
i−1/2

)
, (24)
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Figure 2: In the first graph the numerical solution of a Burgers problem with discontinuous initial
condition over a non-uniform adaptively redefined mesh according to the MAS is depicted. In the
second graph we have depicted the corresponding solution over the uniform reference mesh; the relation
between the non-uniform and the uniform solution is the per-cell mass conservation. In the third graph,
both solutions are presented over the non-uniform grid.

where Fni+1/2 = ∆x
∆tnH

n
i+1/2 + F̂ni+1/2 . Here Hn

i+1/2, F̂ni+1/2 are given by (14e) and (13) is defined to

be the Effective Conservative Scheme of the mesh-solution pair {Mn
x , U

n} and the MAS 2.1.
Similarly, the conservative numerical scheme for the reference uniform mesh-solution pair

{
M̄, V n

}
vn+1
i = vni −

∆tn

∆x

(
Fni+1/2 −F

n
i−1/2

)
(25)

is defined as the Reference Conservative Scheme of the reference uniform mesh-solution pair as given
in Definition 2.2 .

We refer to Figure 2 for a graphical comparison between the non-uniform mesh-solution pair and
the corresponding reference uniform mesh-solution pair.

To further explain some of the ingredients of the previous proof we provide and example describing
the changes of the grid due to the adaptation of the mesh.

Remark 3.1. To gain further insight into (17), (20) we refer to Figure 3 and provide three special
examples of special movement and the corresponding computations of v̂ni − vni .

- Cell moves to the left.
This means that ∆x

n+1/2
i+1/2 = −rni , ∆x

n+1/2
i−1/2 = −rni−1, so hn+1

i = hni − rni + rni−1 = rni−1 + lni . The

mass of u satisfies hn+1
i ûni = rni−1u

n
i−1 + lni u

n
i ; writing in v variables v̂ni =

rni−1

hn
i−1

vni−1 +
lni
hn
i
vni or

v̂ni − vni =
rni−1

hni−1

vni−1 −
rni
hni
vni . (26)
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lni+1 rni+1

(c) The cell i moves to both directions

Figure 3: Three cases of cell movement.

- Cell moves to the right.

This means that ∆x
n+1/2
i+1/2 = lni+1, ∆x

n+1/2
i−1/2 = lni , so hn+1

i = hni + lni+1 − lni = rni + lni+1. In this

case, the mass of u satisfies hn+1
i ûni = rni u

n
i + lni+1u

n
i+1, or in v variables v̂ni =

rni
hn
i
vni +

lni+1

hn
i+1
vni+1,

or

v̂ni − vni = − l
n
i

hni
vni +

lni+1

hni+1

vni+1. (27)

- Cell moves to both directions.
Similarly, ∆x

n+1/2
i+1/2 = lni+1, ∆x

n+1/2
i−1/2 = −rni−1, so hn+1

i = hni + lni+1 + rni−1. Moreover hn+1
i ûni =

rni−1u
n
i−1 + hni u

n
i + lni+1u

n
i+1, or v̂ni =

rni−1

hn
i−1

vni−1 + vni +
lni+1

hn
i+1
vni+1, or

v̂ni − vni =
rni−1

hni−1

vni−1 +
lni+1

hni+1

vni+1. (28)

Let us point that now the conditions (26)-(28) are simple enough in order to be tested for a moving
mesh algorithm.
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4 Numerical experiments

We perform here a series of numerical experiments to analyze the inequality that appears in Theorem
3.1. To this end we first study the “new” term Mn

i and then the full inequality (15).

4.1 Experimental study of the Mn
i term

In this section we study the numerical behavior of the Mn
i term given in (14f) under the influence

of cell movement and the geometry of the numerical solution. To this end we have constructed a
numerical method driving the movement of the cells. The cells move with a prescribed velocity; after
each movement the numerical solution is reconstructed in a mass conservative manner over the new
grid. Time evolution has been suppressed in order to isolate the effect of the cell movement on Mn

i .
We present the results of the numerical experiment in Figure 4, where in the first case we consider

a constant node velocity and an initial solution profile that is comprised of an increasing, a constant,
and a decreasing part. Since the velocity of cells movement is kept constant any changes in the sign
on Mn

i are due to the geometry of the solution itself. In the second case the node velocity is given by
the gradient of the numerical solution. The initial profile used is the same as in the first case.

In both cases we see that Mn
i increases as the cells move towards higher values of the solution

profile and decreases as the cells move towards lower values of the solution profile. This verifies the
discussion from Remark 3.1.

After investigating the dynamics of the term Mn
i our main goal in the next subsection will be to

numerically study the inequality (15).

4.2 Experimental study of inequality (15)

We discretize the domain in cells

Mn
x = {Cni , |Cni | = hni , i = 1, . . . , N} ,

where the numerical solution attains the average values

Un = {uni , i = 1, . . . , N} .

The finite volume scheme we use for the time update (Step 3 of MAS) is written as

un+1
i = ûni −

∆tn

hn+1
i

(
F̂ni+1/2 − F̂

n
i−1/2

)
,

where the numerical flux F is decorated with ˆ since it is computed over Û = {ûni , i = 1, . . . , N}. Ûn
is the mass conservative reconstruction of Un over Mn+1

x according to the MAS:{
Mn
x , U

n
} mesh adapt.−−−−−−−−→

{
Mn+1
x , Ûn

} num. scheme−−−−−−−−→
{
Mn+1
x , Un+1

}
.

The mesh adaptation that we employ follows the steps of MAS; for the mesh adaptation we use
the geometric curvature as estimator function. For further information on the implementation, the
properties, and for a wide range of numerical experiments using MAS we refer to [AKM01, AMT04,
AD06, AMS06, Sfa11, Sfa09].

In this subsection we will analyse whether (15) holds for various standard numerical schemes for
hyperbolic conservation laws when our moving mesh technique is applied. The schemes that we will
consider are:

11



- the local Lax-Friedrichs (lLxF) scheme:

F̂ni+1/2 =
f(ûni ) + f(ûni+1)

2
− 0.5 max

(
|ûni |, |ûni+1|

) (
ûni − ûni+1

)
, (29)

- the Forward in Time Central in Space (FTCS) scheme:

F̂ni+1/2 =
f(ûni ) + f(ûni+1)

2
, (30)

- the Lax-Wendroff (LxW) scheme:

F̂ni+1/2 = f

(
hni+1 û

n
i+1 + hni û

n
i

hni+1 + hni
− ∆tn

hni+1 + hni

(
f(ûni+1)− f(ûni )

))
. (31)

The results obtained by the adaptive lLxF, FTCS and LxW schemes can bee seen in Figures 5, 6, 7
respectively. Let us rewrite inequality (15) in the following way:

Mn
i −

∆tn

4∆x

{(
Dn
i−1/2 −K

3 ∆tn

∆x

(
Bi−1/2 +Q∗i−1/2 +Di−1/2

)2
)(

∆vni−1/2

)2

+

(
Dn
i+1/2 −K

3 ∆tn

∆x

(
Bi+1/2 −Q∗i+1/2 −Di+1/2

)2
)(

∆vni+1/2

)2
}
≤ 0. (32)

In every (sub-)figure we present the numerical solution obtained over uniform and over adaptive grids;
along side we present the graph of the left-hand side of (32).

In the numerical tests, we examine the sign of the LHS of (32) (negative being the correct one)
and study the way our mesh adaptation technique is affecting it. In more details, we can see that
in the oscillatory scheme cases (FTCS and LxW) the mesh adaptation technique that we use has
completely tamed the oscillations of the solution; see [AKM01, AMT04, AD06, AMS06, Sfa11, Sfa09]
for a thorough numerical (as well as analytical) study of the stabilization properties of the MAS that
we employ in this work. We moreover see that the sign of the inequality in the adaptive case is
the correct one along the discontinuties. The solutions over uniform mesh are oscillatory due to the
anti-diffusive (respectively dispersive) nature of the schemes; the inequality has either oscillatory sign
(uniform FTCS) or the wrong sign (uniform LxW).

5 Conclusions

We study in this paper the entropy dissipation property of the adaptive mesh reconstruction tech-
niques. We consider a projection from the physical domain over an underlying uniform mesh. This
gives us the opportunity to combine in a single conservative formulation (Effective Conservative
Scheme, Definition 3.1) the effect of both time evolution and mesh adaptation. The entropy dis-
sipation of the mesh adaptation appears in Theorem 3.1 in the form of inequality (15) the sign of
which we analyse numerically. We verify numerically, by using oscillatory schemes that violate (15)
when the mesh is uniform, that the mesh adaptation based on the discrete curvature of the numerical
solution and the moving mesh techniques as described in Section 2, cf [Sfa09, AD06], can give the
proper sign in (15) and at the same time tame the oscillatory nature of the scheme.

For future work, our aim is to generalize the above ideas on adaptation of moving for multidimen-
sional problems. On top of the entropy criteria that we have studied in the present work we want
to analyze further desirable properties of the numerical solution, the numerical scheme, and most
notably of the underlying mesh that should be preserved.
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Appendices

A Entropy stable schemes

In this section we present parts -after some modifications- of the analysis conducted in [Tad87, Tad03].
We moreover note that these works are to be viewed in the context of the seminal works on the subject
by [FL71, Moc78].

A finite volume approximation of the one-dimensional conservation law is written in the form

un+1
i = uni −

∆tn

∆x

(
Fi+1/2(Un)− Fi−1/2(Un)

)
.

The corresponding viscosity form reads

un+1
i − uni =

∆tn

2∆x

{
−
(
f(uni+1)− f(unu)

)
+Qni+1/2∆uni+1/2

−
(
f(uni )− f(uni−1)

)
−Qni−1/2∆uni−1/2

}
(33)

with the numerical viscosity given by Qni+1/2 =
f(un

i )+f(un
i+1)−2Fn

i+1/2

∆un
i+1/2

. After denoting Bi+1/2 =

f(un
i+1)−f(un

i )

∆un
i+1/2

the equation (33) can be rewritten as

un+1
i − uni = −∆tn

2∆x

((
Bi+1/2 −Qi+1/2

)
∆uni+1/2 +

(
Bi−1/2 +Qi−1/2

)
∆uni−1/2

)
.

Now, setting Di+1/2 = Qi+1/2 − Q∗i+1/2, with Q∗ the numerical viscosity of an entropy conservative
scheme we obtain

un+1
i − uni = −∆tn

2∆x

((
Bi+1/2 −Q∗i+1/2 −Di+1/2

)
∆vni+1/2 +

(
Bi−1/2 +Q∗i−1/2 +Di−1/2

)
∆uni−1/2

)
.

Next we multiply the last equation with the entropy variables ṽ. After noting that〈
ṽni , u

n+1
i − uni

〉
= U(un+1

i )− U(uni )− E(FE)
i (ṽ

n+1/2
i ),〈

ṽni , F
n
i+1/2 − F

n
i−1/2

〉
= Gni+1/2 −G

n
i−1/2 + Exi (ṽni ),

where E(FE)
i (ṽ

n+1/2
i ), Exi (ṽni ) are given by

E(FE)
i (ṽ

n+1/2
i ) =

∫ ξ=1/2

ξ=−1/2

(
1

2
+ ξ

)〈
∆ṽ

n+1/2
i , H(ṽ

n+1/2
i )∆ṽ

n+1/2
i

〉
,

Exi (ṽni ) =
1

4

〈
∆ṽni−1/2, D

n
i−1/2∆ṽni−1/2

〉
+

1

4

〈
∆ṽni+1/2, Di+1/2∆ṽni+1/2

〉
,
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we arrive to the entropy-entropy flux pair representation

U(vn+1
i )− U(vni ) +

∆tn

∆x

{
Fni+1/2 − F

n
i−1/2

}
= E(FE)

i (ṽn+1/2)− ∆tn

∆x
Exi (ṽn).

Now, entropy stability implies that:

E(FE)
i (ṽn+1/2)− ∆tn

∆x
Exi (ṽn) ≤ 0. (34)

In order to satisfy (34) the following conditions are sought as sufficient

K3 ∆tn

∆x
(Bi+1/2 −Q∗i+1/2 −Di+1/2)2 ≤ Di+1/2

K3 ∆tn

∆x
(Bi−1/2 +Q∗i−1/2 +Di−1/2)2 ≤ Di−1/2

for every i. Due to conservative symmetry they give

K3 ∆tn

∆x
(Bi+1/2 ±Q∗i+1/2 ±Di+1/2)2 ≤ Di+1/2 (35)

The last relation yields the following results for c = ∆x
K3∆tn :

Di+1/2 ≥ 0

(B ±Q∗ ±Di+1/2)2 ≤ cDi+1/2.

This leads to D2
i+1/2+(2(Q∗±B)−c)Di+1/2+(Q∗±B)2 ≤ 0. By setting k1 = Q∗+B and k2 = Q∗−B

we get two different quadratic inequalities that need to be satisfied for Di+1/2:

D2
i+1/2 + (2k1 − c)Di+1/2 + k2

1 ≤ 0 and D2
i+1/2 + (2k2 − c)Di+1/2 + k2

2 ≤ 0.

The necessary restrictions for the existence of a solution are c ≥ 4k1 and c ≥ 4k2. This mean that
Q∗ ±B ≤ c/4, i.e c ≥ 4Q∗ or

∆tn

∆x
≤ 1

4K3Q∗
.
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Figure 4: The effect that the geometry of the solution and the movement of the nodes have on Mi

18



0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

0.15

0 0.2 0.4 0.6 0.8 1

-0.01

-0.005

0

0.005

0.01

(a) uniform grid

0.49 0.5 0.51 0.52 0.53 0.54

-0.5

0

0.5

1

0.15

0.49 0.5 0.51 0.52 0.53 0.54

-0.01

-0.005

0

0.005

0.01

(b) uniform grid-detail

0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

1

0.15

0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

(c) adaptive grid

0.49 0.5 0.51 0.52 0.53 0.54

-0.5

0

0.5

1

0.15

0.49 0.5 0.51 0.52 0.53 0.54

-0.5

0

0.5

(d) adaptive grid-detail

Figure 5: Numerical experiments with the local LxF scheme (29) with parameters CFL=0.8, N=200,
K=1, pw=0.097, t=0.15. Sub-figures (a) and (b) correspond to the uniform mesh case and sub-figures
(c) and (d) to the adaptive mesh case. In every sub-figure, the first graph is the numerical solution,
and the second the corresponding “inequality”. In this test case both the uniform and the adaptive
versions of the scheme are free of oscillations and the corresponding inequalities carry the proper sign.
It is to note however that the discontinuity is resolved in the adaptive mesh case in over a much
smaller domain.
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Figure 6: Numerical experiments with the FTCS scheme (30) with parameters CFL=0.5, N=200,
K=1, pw=0.097, t=0.15. In parallel depictions of the numerical solution (first graph in every sub-
figure) along side with the inequality (second graph in every sub-figure). The uniform mesh case
exhibits spurious oscillations due to the anti-diffusive nature of the FTCS scheme; the corresponding
inequality oscillates in the sign as well. On the other hand, the adaptive mesh case is free of oscillations
and the sign of the inequality is the correct one along the shock.
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Figure 7: Numerical experiments with the LxW scheme (31) with parameters CFL=0.8, N=200, K=1,
pw=0.097, t=0.15. The oscillations that appear in the uniform mesh case are in this case due to the
dispersive nature of the LxW scheme; the sign of the inequality is the wrong one. At the same time
the adaptive mesh case is clean of oscillations and the sign of the inequality is correct along the
discontinuity of the solution.
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