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Abstract. In this paper the coupled fluid-structure interaction problem
for incompressible non-Newtonian shear-dependent fluid flow in two-
dimensional time-dependent domain is studied. One part of the domain
boundary consists of an elastic wall. Its temporal evolution is governed
by the generalized string equation with action of the fluid forces by
means of the Neumann type boundary condition. The aim of this work
is to present the limiting process for the auxiliary (κ, ε, k) - problem.
The weak solution of this auxiliary problem has been studied in our
recent work [9].
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1. Problem Definition

The problem of a fluid interaction with a moving or deformable structure
is important in many applications like biomechanics, hydroelasticity, aeroe-
lasticity, sedimantation, modeling of blood flow, etc. We consider a two-
dimensional fluid motion governed by the momentum and the continuity
equation

ρ∂tv + ρ (v · ∇) v − divτ + ∇π = 0, divv = 0, (1.1)

with ρ denoting the constant density of fluid, v = (v1, v2) the velocity vector,
π the pressure and τ the shear stress tensor.
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Let us first specify the shear-dependent fluids that will be considered in
this paper. We assume that

τ = τ (e(v)) = 2µ(|e(v)|)e(v), where e(v) =
1

2
(∇v + ∇vT )

is the symmetric deformation tensor. Moreover we assume that there exists
a potential U ∈ C2(R2×2) of the stress tensor τ , such that for some 1 < p <
∞, C1, C2 > 0 we have for all η, ξ ∈ R

2×2
sym and i, j, k, l ∈ {1, 2}, cf. [11]

∂U(η)

∂ηij
= τ ij(η), U(0) =

∂U(0)

∂ηij
= 0, (1.2)

∂2U(η)

∂ηmn∂ηrs
ξmnξrs ≥ C1 (1 + |η|)p−2|ξ|2, (1.3)

∣
∣
∣
∣

∂2U(η)

∂ηij∂ηkl

∣
∣
∣
∣

≤ C2(1 + |η|)p−2. (1.4)

One particular example satisfying the above properties is a stress tensor,
which contains shear-dependent viscosity obeying the power-law model, cf.
[8, 11, 12, 16]

µ(|e(v)|) = µ(1 + |e(v)|2) p−2
2 p > 1. (1.5)

For p < 2 the viscosity is a decreasing function of the shear rate, i.e., shear-
thinning. For p > 2 we have shear-thickening property and this model is
an analogy of the so-called Ladyzhenskaja’s fluid; for p = 3 it yields the
Smagorinskij model of turbulence. In numerical simulations presented in our
recent papers [10], [8] the shear-thinning model of Carreau has been used in
order to model blood flow in compliant vessels. For the simplicity of presenta-
tion we will consider here only the case of shear-thickening fluids, i.e. p ≥ 2.
The generalization for shear-thinning fluids may be done in an analogous way
as here, using an appropriate techniques for shear-thinning fluids, see results
of Diening, Růžička and Wolf [5, 15].

The two-dimensional deformable computational domain

Ω(η(t)) ≡ {(x1, x2); 0 < x1 < L, 0 < x2 < R0(x1) + η(x1, t)} , 0 < t < T

is given by a reference radius function R0(x1) and the unknown free bound-
ary function η(x1, t) describing the domain deformation. The fluid and the
geometry of the computational domain are coupled through the following
Dirichlet boundary condition on the deformable part of the boundary Γw(t)

v(x1, R0(x1) + η(x1, t), t) =

(

0,
∂η(x1, t)

∂t

)

, (1.6)

where Γw(t) = {(x1, x2); x2 = R0(x1) + η(x1, t), x1 ∈ (0, L)}. The normal
component of the fluid stress tensor Tfn and the outside pressure Pw provide
the forcing terms for the boundary displacement η, that is modeled by the
generalized string equation:

∂2η

∂t2
− a

∂2η

∂x2
1

+ bη + c
∂5η

∂t∂x4
1

− a
∂2R0

∂x2
1

=
−g

Ẽρ

[

T̃f + P̃wI

]

ñ · e2 on Γ0
w. (1.7)
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Here Γ0
w := Γw(t)|t=0, [(T̃f + P̃wI)ñ](x̃) = [(Tf +PwI)n](x), x ∈ Γw(t), x̃ ∈

Γ0
w and Tf = τ − πI. Moreover, n, ñ denote the unit outward normals

on Γw(t),Γ0
w, respectively and n|n| = (−∂x1

(R0 + η), 1)
T
. The coefficient

g =
(R0+η)

√
1+(∂x1

(R0+η))2

R0

√
1+(∂x1

R0)2
arrises from the transformation from the Eulerian

frame of the fluid forces into the Lagrangian formulation of the string.

Equation (1.7) is equipped with the following boundary and initial con-
ditions

η(0, t) = ηx1
(0, t) = η(L, t) = ηx1

(L, t) = η(x1, 0) =
∂η

∂t
(x1, 0) = 0. (1.8)

Positive coefficients Ẽ, a, b, c appearing in (1.7) are given as follows [8],

Ẽ = ρw~, a =
|σz|

(

1 +
(

∂R0

∂x1

)2
)2 , b =

E
(R0 + η)R0

, c > 0,

where E is the Young modulus, ~ the wall thickness, ρw the density of the
vessel wall tissue, the coefficient c = γ/(ρw~), γ positive constant. |σz| = Gκ
is the longitudinal stress, κ = 1 is the Timoshenko’s shear correction factor
and G is the shear modulus, equal to G = E/2(1 + σ) with σ = 1/2 for
incompressible materials. Note that the coefficients a, b are non-constant,
however, according to the assumption (2.1) below they are upper- and down-
bounded. In what follows, we linearize the term b = E

(R0+η)R0
by E

ρwR2
0

and

for the sake of simplicity we work with constant coefficients a, b, c.

The equation (1.7) can be transformed as follows.

Eρ

[
∂2η

∂t2
− a

∂2η

∂x2
1

+ bη + c
∂5η

∂t∂x4
1

− a
∂2R0

∂x2
1

]

(x1, t) =

[

− Tfn|n| · e2 − Pw

]

(x1, R0(x1) + η(x1, t), t), (1.9)

x1 ∈ (0, L). Here E = Ẽ
√

1 + (∂x1
R0)2. We assume that E is bounded.

We complete the system (1.1) with the following boundary and initial
conditions: on the inflow part of the boundary, which we denote Γin, we set

v2(0, x2, t) = 0,

(

2µ(|e(v)|) ∂v1

∂x1
− π + Pin − ρ

2
|v1|2

)

(0, x2, t) = 0 (1.10)

for any 0 < x2 < R0(0), 0 < t < T and for a given function Pin = Pin(x2, t).
On the opposite, outflow part of the boundary Γout, we set

v2(L, x2, t) = 0,

(

2µ(|e(v)|) ∂v1

∂x1
− π + Pout −

ρ

2
|v1|2

)

(L, x2, t) = 0 (1.11)

for any 0 < x2 < R0(L), 0 < t < T and for a given function Pout = Pout(x2, t).
Note that we require that the so-called kinematic pressure is prescribed on the
inflow and outflow boundary. This implies that the fluxes of kinetic energy on
inflow and outflow boundary will disappear in the weak formulation. Finally,
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on the remaining part of the boundary, Γc, we set the flow symmetry condition

v2(x1, 0, t) = 0 , µ(|e(v)|) ∂v1

∂x2
(x1, 0, t) = 0 (1.12)

for any 0 < x1 < L, 0 < t < T . The initial conditions read

v(x1, x2, 0) = 0 for any 0 < x1 < L, 0 < x2 < R0(x1). (1.13)

The problem defined in (1.1)–(1.13) is a generalization of the problem
for Newtonian fluid previously studied by Filo and Hundertmark in [6, 17].
Here the original generalized string model of Quarteroni [13, 14] with a regu-
larization term ηtxx has been used. The iterative process with respect to the
domain deformation, cf. item 3 below and Section 4, has been be completed
only for the (κ, ε) - approximation of the original problem and the convergence
with respect to domain deformation was an open problem. In the present pa-
per, similarly as in [4], we use a modified model for the structure equation
having a viscoelastic term ηtxxxx. For this model we show global existence
in time of weak solution of unsteady, fully coupled fluid-structure problem.
The existence result holds until a contact of the elastic boundary with a fixed
boundary part. The question of existence of weak solution of fully coupled
fluid-structure interaction problem with the original Quarteroni’s generalized
string model for generalized Newtonian fluids is still an open problem.

The main result of this paper is formulated in Theorem 1.2. For the
existence proof a suitable approximation of the problem (1.1)–(1.13), see
Section 2, is constructed.

1. ε - approximation (2.7): the space of solenoidal functions on a moving
domain is approximated by the artificial compressibility approach,

2. κ - approximation (2.5), (2.6): the boundary conditions (1.6)–(1.7) has
been splitted and the deformable boundary becomes semi-pervious for
κ < ∞,

3. h - approximation: the domain deformation is assume to be given by
a sufficiently smooth function δ(x1, t); the weak formulation on a de-
formable domain Ω(δ(t)) =: Ω(h(t)) is transformed to a reference do-
main D = (0, L) × (0, 1) using the known radius h := R0 + δ, see (2.8).

Letting ε → 0, κ → ∞ and finally the fixed point procedure for the domain
deformation complete the proof. In [9] the above fluid-structure interaction
problem has been studied and the existence of weak solution for fixed param-
eters κ, ε and given deformation δ, such that h = R0 + δ, i.e., to the (κ, ε, h)
- approximation of the problem (1.1)–(1.13) has been proven in details. In
this work we only present the limiting processes for ε → 0, κ → ∞ and the
fixed point procedure with respect to the domain deformation regarding the
geometric nonlinearity of our problem.

1.1. Weak formulation

In this subsection our aim is to present the weak formulation of the problem
(1.1)–(1.13). Assuming that η is enough regular (see below) and taking into
account the results from [4] we can define the functional spaces that gives
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sense to the trace of velocity from W 1,p(Ω(η(t))) and thus to define the weak
solution of the problem. We assume that R0 ∈ C2

0 (0, L).

Definition 1.1 (Weak formulation).
We say that (v, η) is a weak solution of (1.1)–(1.13) on [0, T ) if the following
conditions hold

- v ∈ Lp(0, T ;W 1,p(Ω(η(t)))) ∩ L∞(0, T ;L2(Ω(η(t)))),
- η ∈ W 1,∞(0, T ;L2(0, L)) ∩ H1(0, T ;H2

0 (0, L)),
- divv = 0 a.e. on Ω(η(t)),
- v

∣
∣
Γw(t)

= (0, ηt) for a.e. x ∈ Γw(t), t ∈ (0, T ), v2

∣
∣
Γin∪Γout∪Γc

= 0,

∫ T

0

∫

Ω(η(t))

{

− ρv · ∂ϕ

∂t
+ 2µ(|e(v)|)e(v)e(ϕ) + ρ

2∑

i,j=1

vi
∂vj

∂xi
ϕj

}

dx dt

+

∫ T

0

∫ R0(L)

0

(

Pout −
ρ

2
|v1|2

)

ϕ1(L, x2, t) dx2 dt (1.14)

−
∫ T

0

∫ R0(0)

0

(

Pin − ρ

2
|v1|2

)

ϕ1(0, x2, t) dx2 dt

+

∫ T

0

∫ L

0

Pwϕ2(x1, R0(x1) + η(x1, t), t) − a
∂2R0

∂x2
1

ξ dx1 dt

+

∫ T

0

∫ L

0

−∂η

∂t

∂ξ

∂t
+ c

∂3η

∂x2
1∂t

∂2ξ

∂x2
1

+ a
∂η

∂x1

∂ξ

∂x1
+ bη ξ dx1 dt = 0

for every test functions

ϕ(x1, x2, t) ∈ H1(0, T ;W 1,p(Ω(η(t)))) such that (1.15)

divϕ = 0 a.e on Ω(η(t)),

ϕ2

∣
∣
Γw(t)

∈ H1(0, T ;H2
0 (Γw(t))), ϕ2

∣
∣
Γin∪Γout∪Γc

= ϕ1

∣
∣
Γw(t)

= 0 and

ξ(x1, t) = Eρ ϕ2(x1, R0(x1) + η(x1, t), t).

Theorem 1.2 (Main result: existence of a weak solution).

Let p ≥ 2. Assume that the boundary data fulfill Pin ∈ Lp′

(0, T ;L2(0, R0(0))),

Pout ∈ Lp′

(0, T ;L2(0, R0(L))), Pw ∈ Lp′

(0, T ;L2(0, L)), 1
p + 1

p′
= 1. Further-

more, assume that the properties (1.2)–(1.4) for the viscous stress tensor
hold. Then for T ≤ T ∗, T ∗ depending on the data R0, Pin, Pout, Pw, K, α,
cf. (2.1), and α ≤ min{Rmin, 1

Rmin+Rmax
}, Rmin ≤ R0 ≤ Rmax there exists

a weak solution (v, η) of the problem (1.1)-(1.13) such that
i) v ∈ Lp(0, T ;W 1,p(Ω(η(t)))) ∩ L∞(0, T ;L2(Ω(η(t)))),

η ∈ W 1,∞(0, T ;L2(0, L)) ∩ H1(0, T ;H2
0 (0, L)),

ii) v
∣
∣
Γw(t)

= (0, ηt) for a.e. x ∈ Γw(t), t ∈ (0, T ), v2

∣
∣
Γin∪Γout∪Γc

= 0,

iii) v satisfies the condition divv = 0 a.e on Ω(η(t)) and (1.14) holds.

Remark 1.3. Let us point out that T ∗ denotes a time when the elastic bound-
ary reaches the bottom boundary. If T ∗ = ∞ we have an existence of the
global weak solution, otherwise the existence of the weak solution holds until
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the elastic boundary reaches the bottom boundary, see Section 4 for further
details.

2. Auxiliary problem: (κ, ε, h) - approximation

In what follows we will formulate a suitable approximation of the original
problem (1.1)–(1.13).

First of all we approximate the deformable boundary Γw by a given
function h = R0 + δ, δ ∈ H1(0, T ;H2

0 (0, L))∩W 1,∞(0, T ;L2(0, L)), R0(x1) ∈
C2[0, L] satisfying for all x1 ∈ [0, L]

0 < α ≤ h(x1, t) ≤ α−1,

∣
∣
∣
∣

∂h(x1, t)

∂x1

∣
∣
∣
∣
+

∫ T

0

∣
∣
∣
∣

∂h(x1, t)

∂t

∣
∣
∣
∣

2

dt ≤ K< ∞ (2.1)

h(0, t) = R0(0), h(L, t) = R0(L).
We look for a solution (v, π, η) of the following problem

ρ
∂v

∂t
+ ρ(v · ∇)v = div τ −∇π in Ω(h(t)), (2.2)

and for all x1 ∈ (0, L), see (1.9), 0 < t < T

−Eρ

[
∂2η

∂t2
− a

∂2η

∂x2
1

+ bη + c
∂5η

∂t∂x4
1

− a
∂2R0

∂x2
1

]

(x1, t) =

[

µ(|e(v)|)
{

−
(

∂v2

∂x1
+

∂v1

∂x2

)
∂h

∂x1
+ 2

∂v2

∂x2

}

− π + Pw

]

(x̄, t), (2.3)

v(x̄, t) =

(

0,
∂η

∂t
(x1, t)

)

, (2.4)

x̄ = (x1, h(x1, t)).
Furthermore, in the analysis of problem (1.1)–(1.13) the boundary con-

dition (1.6)-(1.7), cf. (2.3)-(2.4), is splitted in the following way, see [6]
[

µ(|e(v)|)
{

−
(

∂v2

∂x1
+

∂v1

∂x2

)
∂h

∂x1
+ 2

∂v2

∂x2

}

− π + Pw

]

(x̄, t)

−ρ

2
v2

(

v2(x̄, t) − ∂h

∂t
(x1, t)

)

= ρκ
[∂η

∂t
(x1, t) − v2(x̄, t)

]

(2.5)

and

−E

[
∂2η

∂t2
− a

∂2η

∂x2
1

+ bη+c
∂5η

∂t∂x4
1

− a
∂2R0

∂x2
1

]

(x1, t) = κ
[∂η

∂t
(x1, t) − v2(x̄, t)

]

with κ ≫ 1. (2.6)

We will show later, that the approximation with κ is reasonable. One
of the possible physical interpretations for introducing finite κ comes from
the mathematical modeling of semi-pervious boundary, where this type of
boundary condition occurs. In our case, the boundary Γw seems to be partly
permeable for finite κ, but letting κ → ∞ it becomes impervious. In fact,
we prove the existence of solution if κ → ∞ and thus we get the original
boundary condition (2.3)-(2.4).
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Furthermore, we overcome the difficulties with solenoidal spaces by
means of the artificial compressibility. We approximate the continuity equa-
tion similarly as in [6] with

ε

(
∂πε

∂t
− ∆πε

)

+ divvε = 0 in Ω(h(t)), t ∈ (0, T )

∂πε

∂n
= 0, on ∂Ω(h(t)), t ∈ (0, T ), πε(0) = 0 in Ω(h(0)) ε > 0. (2.7)

By letting ε → 0 we show that vε → v, where v is the weak solution of (1.1).
For fixed ε, due to the lack of solenoidal property for velocity, we have the
additional term in momentum equation ρ

2vidivv, which we include into the
convective term, see (2.12).

Our approximated problem is defined on a moving domain depending
on function h = R0 + δ. Now we will reformulate it to a fixed rectangular
domain. Set

u(y1, y2, t)
def
= v(y1, h(y1, t)y2, t)

q(y1, y2, t)
def
= ρ−1π(y1, h(y1, t)y2, t)

σ(y1, t)
def
=

∂η

∂t
(y1, t) (2.8)

for y ∈ D = {(y1, y2); 0 < y1 < L, 0 < y2 < 1}, 0 < t < T .

We define the following space

V ≡
{
w ∈ W 1,p(D) : w1 = 0 on Sw , w2 = 0 on Sin ∪ Sout ∪ Sc

}
,

Sw = {(y1, 1) : 0 < y1 < L}, Sin = {(0, y2) : 0 < y2 < 1},
Sout = {(L, y2) : 0 < y2 < 1}, Sc = {(y1, 0) : 0 < y1 < L}. (2.9)

Let us introduce the following notations

divhu
def
=

∂u1

∂y1
− y2

h

∂h

∂y1

∂u1

∂y2
+

1

h

∂u2

∂y2
,

a1(q, φ) =

∫

D

{[

h

(
∂q

∂y1
− y2

h

∂h

∂y1

∂q

∂y2

)]
∂φ

∂y1

+

[
1

h

∂q

∂y2
− y2

∂h

∂y1

(
∂q

∂y1
− y2

h

∂h

∂y1

∂q

∂y2

)]
∂φ

∂y2

}

dy, (2.10)

viscous term

((u,ψ)) =

∫

D

hτ ij(ê(u))êij(ψ)dy, (2.11)

τ ij(ê(u)) = 2ρ−1µ(|ê(u)|)êij(u), êij(u) =
1

2
(∂̂i(uj) + ∂̂j(ui)),

∂̂1 =

(
∂

∂y1
− y2

h

∂h

∂y1

∂

∂y2

)

, ∂̂2 =
1

h

∂

∂y2
,
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convective term

b(u,z,ψ) =

∫

D

(

hu1

(
∂z

∂y1
− y2

h

∂h

∂y1

∂z

∂y2

)

+ u2
∂z

∂y2

)

· ψ +
h

2
z · ψ divhu dy

−1

2

∫ 1

0

R0u1z1ψ1 (L, y2) dy2 +
1

2

∫ 1

0

R0u1z1ψ1 (0, y2) dy2

−1

2

∫ L

0

u2z2ψ2 (y1, 1) dy1. (2.12)

Remark 2.1. Note, that the transformed stress tensor τ ij = 2ρ−1µ(|ê(u)|)êij(u)
from (2.11) with µ(|ê(u)|) defined in (1.5) also satisfies (1.2)–(1.4).

Remark 2.2. Since the terms defined in (2.10), (2.11) and (2.12) are depen-
dent on the domain deformation h, it will be sometimes useful to denote this
explicitely, e.g., b(u,z,ψ) = bh(u,z,ψ), ê(u) = êh(u).

Definition 2.3 (Weak solution of (κ, ε, h) - approximate problem).
Let u ∈ Lp(0, T ;V )∩L∞(0, T ;L2(D)), q ∈ L2(0, T ;H1(D))∩L∞(0, T ;L2(D))
and σ ∈ L∞(0, T ;L2(0, L)) ∩ L2(0, T ;H2

0 (0, L)). A triple w = (u, q, σ) is
called a weak solution of the regularized problem (1.1)–(1.13) if the following
equation holds

−
∫ T

0

〈
∂(hu)

∂t
,ψ

〉

dt =

∫ T

0

∫

D

(

−∂h

∂t

∂(y2u)

∂y2
· ψ + b(u,u,ψ) − h q divhψ

)

dy + ((u,ψ)) dt

+

∫ T

0

∫ 1

0

h(L, t)qoutψ1 (L, y2, t) − h(0, t)qinψ1 (0, y2, t) dy2dt

+

∫ T

0

∫ L

0

(

qw +
1

2
u2

∂h

∂t
+ κ (u2 − σ)

)

ψ2 (y1, 1, t) dy1dt

+ε

∫ T

0

〈
∂(hq)

∂t
, φ

〉

dt (2.13)

+

∫ T

0

∫

D

(

−ε
∂h

∂t

∂(y2q)

∂y2
φ + εa1(q, φ) + h divhu φ

)

dy dt

+
ε

2

∫ T

0

∫ L

0

∂h

∂t
(y1, t)qφ(y1, 1, t) dy1dt +

+

∫ T

0

∫ L

0

(
∂σ

∂t
ξ + c

∂2σ

∂y2
1

∂2ξ

∂y2
1

+ a
∂

∂y1

∫ t

0

σ(y1, s)ds
∂ξ

∂y1

+b

∫ t

0

σ(y1, s)ds ξ − a
∂2R0

∂y2
1

ξ +
κ

E
(σ − u2) ξ

)

(y1, t) dy1dt

for every (ψ, φ, ξ) ∈ H1
0 (0, T ;V ) × L2(0, T ;H1(D)) × L2(0, T ;H2

0 (0, L)).

Here we remind E = Ẽ
√

1 + (∂y1
R0)2. For simplicity and without lost of

generality we assume in what follows that E, a, b, c are constant, cf. (2.1).
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2.1. Existence of (κ, ε, h) - approximate weak solution

For the proof of weak solution to the auxiliary problem defined in Defini-
tion 2.3 following properties of viscous and convective forms are useful1; for
their proofs see [9, Section 3.1].

Lemma 2.4 (Coercivity of the viscous form).
The viscous form defined in (2.11) satisfies for any 2 ≤ p < ∞ the following

estimates: there exists δ̃ = δ̃(K,α) > 0 such that

1) ((u,u)) ≥ δ̃‖u‖p
1,p + δ̃‖u‖2

1,2,

2) ((u1,u1 − u2)) − ((u2,u1 − u2)),

≥ δ̃

∫

D

|ê(u1) − ê(u2)|2 + |ê(u1) − ê(u2)|p,

3) ((u1,u1 − u2)) − ((u2,u1 − u2)) ≥ 0.

Lemma 2.5 (Boundedness of the viscous form).
Let u, v ∈ V , then for 2 ≤ p < ∞ it holds

((u,v)) ≤ C‖u‖p−1
1,p ‖v‖1,p+C0‖u‖1,p‖v‖1,p, C0 > 0. (2.14)

Lemma 2.6 (Nonlinear convective term b(u,z,ψ)).
For the trilinear form b(u,z,ψ), defined in (2.12) the following properties
hold

b(u,z,ψ) =
1

2
B(u,z,ψ) − 1

2
B(u,ψ,z), (2.15)

where B(u,z,ψ) ≡
∫

D

(

hu1

(
∂z

∂y1
− y2

h

∂h

∂y1

∂z

∂y2

)

+ u2
∂z

∂y2

)

· ψ dy.

Moreover for p ≥ 2 we have

|B(u,z,ψ)| ≤ c‖u‖1,p‖z‖1,p‖ψ‖1,p.

In our recent work [9] the following result has been proved.

Theorem 2.7 (Existence of (κ, ε, h) - approximate weak solution).
Let ε, κ, be fixed. Assume (1.2)–(1.4), a given function h, such that (2.1)

holds, qin , qout ∈ Lp′

(0, T ;L2(0, 1)), qw ∈ Lp′

(0, T ;L2(0, L)). Then there ex-
ists a weak solution of the (κ, ε, h) - approximated problem transformed to the
fixed domain, in the sense of integral identity (2.13). Moreover,

∂(hu)

∂t
∈







Lp′

(0, T ;V ∗) for 2 < p < ∞,

Lp′

(0, T ;V ∗) ⊕ L4/3((0, T ) × D),
for p = 2,

∂(hq)

∂t
∈ L2(0, T ;H−1(D)),

such that ∫ T

0

〈∂(hu)

∂t
,ψ

〉

dt = −
∫ T

0

∫

D

hu · ∂ψ

∂t
dy dt.

Proof. See [9, Section 3 and 4]. ¤

1We use here notations ‖ · ‖p := ‖ · ‖Lp(D), ‖ · ‖1,p := ‖ · ‖W1,p(D).
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3. Problem with ε = 0, κ = ∞
The weak solution from Theorem 2.7 depends on the parameters ε, κ and k.
Keeping k fixed but passing to the limit with ε → 0, κ → ∞ we will obtain

the weak solution of the original problem (1.1)–(1.13) defined on Ω(η(k−1)).
By this procedure we will prove the existence for one iteration with respect
to the domain deformation η(k). We realize the limiting process by passing
to the limit in both parameters at once, taking κ = ε−1 and letting κ → ∞.

In what follows we point out the dependence of weak solution on param-
eters ε, κ: uκ, qκ, σκ. Since k is fixed in this section, we omit the notation of
the dependence on k.

In analogy to the estimate [9, Section 4.1, estimate (4.7)] we obtain
the following a priori estimate by testing (2.13) with (uκ, qκ, σκ), using the
lemmas from Section 2.1 and after analogous manupilations as in [9]. Note,
that the right hand side is independent on ε, κ.

max
0≤t≤T

∫

D

h(t)
(
|uκ|2 + ε|qκ|2

)
(t)dy +

E

2

∫ L

0

|σκ(t)|2dy1 (3.1)

+

∫ T

0

∫

D

δ̃|∇uκ|p +
2αε

2 + K2
|∇qκ|2dy + E

∫ L

0

c

∣
∣
∣
∣

∂2σκ

∂y2
1

∣
∣
∣
∣

2

dy1 dt

+

∫ L

0

aE

2

∣
∣
∣
∣

∫ t

0

∂σκ(s)

∂y1
ds

∣
∣
∣
∣

2

+
bE

2

∣
∣
∣
∣

∫ t

0

σκ(s)s

∣
∣
∣
∣

2

dy1

+

∫ T

0

∫ L

0

2κ |σκ − u2κ|2 dy1 dt ≤ M̃

∫ T

0

Pp′

+ c1

∥
∥
∥
∥

∂2R0

∂y2
1

∥
∥
∥
∥

2

L2(0,L)

.dt

Here c1 = c1(p,E, a, c), M̃ = M̃(p,K, α) and P := ‖qin‖L2(0,1)+‖qout‖L2(0,1)+

‖qw‖L2(0,L).

3.1. Limiting process κ = ε−1 → ∞
First of all let us investigate the solenoidal property of the weak solution
in the limiting case, i.e., for κ = ∞. The estimate (3.1) implies the weak
convergence of

(uκ,
√

εqκ, σκ) ⇀ (u, q̃, σ) (3.2)

in Lp(0, T ;V ) × L2(0, T ;H1(D)) × L2(0, T ;H2(0, L))

as κ → ∞. Moreover, after inserting test functions (0, φ, 0) into (2.13) for
sufficiently smooth φ we obtain

∫ T

0

∫

D

hφdivuκ ≤ (3.3)

√
εC‖

√
εqκ‖L2(0,T ;H1(D))(‖φ‖L2(0,T ;H1(D)) + ‖∂tφ‖L2((0,T )×D)),

Using the boundedness of
√

εqκ in L2(0, T ;H1(D)) and letting ε = κ−1 → 0
in (3.3) we get

divhu = 0 a.e. on (0, T ) × D.
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This fact allows us to confine later the space of test functions to the solenoidal
space, i.e. divhψ = 0 a.e. on D.

In the limiting process for κ → ∞ we cannot use the Lions-Aubin lemma
in order to obtain strong convergences in appropriate spaces for (uκ, σκ) →
(u, σ), since the estimates of the time derivatives ∂tuκ, ∂tσκ, depend on κ, see
[9, Section 4.1]. In fact, we have to use another argument to obtain the strong
convergence. We follow the lines of [6, Section 8] and use the equicontinuity
in time as in Alt, Luckhaus cf. [1, Lemma 1.9]. It can be shown that

∫ T−τ

0

∫

D

|(huκ)(t + τ) − (huκ)(t)|2 + ε|(hqκ)(t + τ) − (hqκ)(t)|2dydt

+

∫ T−τ

0

∫ L

0

|(hσκ)(t + τ) − (hσκ)(t)|2dy1dt ≤ C(K,α)τ, (3.4)

where C is a positive constant independent on τ, κ, ε. The proof of (3.4) can
be found in [9, Section 5.1] and we omit its presentation here.

The estimate (3.4) and the compactness argument from [1, Lemma 1.9]
imply the following strong convergences for κ → ∞

uκ → u in L1((0, T ) × D), σκ → σ in L1((0, T ) × (0, L)).

Using the standard interpolations of spaces Lr(QT ) and Ls(ST ), QT =
(0, T )×D, ST = (0, T )× (0, L) and boundedness of u, σ in L4(QT ), L6(ST ),
respectively, we obtain

uκ → u in Lr((0, T ) × D), σκ → σ in Ls((0, T ) × (0, L)),

where 1 ≤ r < 4, 1 ≤ s < 6 for κ → ∞.

Now let us consider test functions ψ ∈ Lp(0, T ;X), ψ(T ) = 0,
ξ = Eψ2

∣
∣
Sw

, where

X = {ψ ∈ Vdiv ; ψ2

∣
∣
Sw

∈ H2
0 (0, L)}, (3.5)

Vdiv := {f ∈ V , divhf = 0 a.e. on D}, cf. (2.9)

in (2.13). With this choice of test functions the boundary terms with κ are
canceled.

Now, we can pass to the limit in κ → ∞ in (2.13), where κ = ε−1. We use
the weak convergences of uκ in Lp(0, T ;Vdiv),

√
εqκ in L2(0, T ;H1(D)), σκ

in L2(0, T ;H2(0, L)), see (3.2) and strong convergence of huκ in Lr((0, T )×
D), 0 ≤ r < 4. The convergence of the viscous term follows from the mono-
tonicity of the viscous operator and the Minty-Browder theorem, see also
[9, Section 4.1]. Analogous arguments in order to obtain convergence in the
viscous term when k → ∞ will be presented in Section 4.

The convergence of the convective term for ψ ∈ H1(0, T ;X) can be
obtained for all p > 2 in following way. For case p = 2 see [6, Section 8].

In order to obtain
∫ T

0
b(uκ,uκ,ψ) →

∫ T

0
b(u,u,ψ) one needs to show that
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∫ T

0
|B(uκ − u,uκ,ψ)| → 0,

∫ T

0
|B(u,u − uκ,ψ)| → 0. Indeed, using the

Hölder inequality and imbedding L
2p

p−2 (D) →֒ W 1,p(D) we have

∫ T

0

|B(uκ − u,uκ,ψ)| ≤ C(K,α)

∫ T

0

‖uκ − u‖2‖uκ‖1,p‖ψ‖ 2p

p−2
(3.6)

≤ C(K,α)‖ψ‖H1(0,T ;W 1,p(D))‖uκ − u‖L2((0,T )×D)‖uκ‖Lp(0,T ;W 1,p(D)).

Thus
∫ T

0
|B(uκ − u,uκ,ψ)| → 0. Further

∫ T

0
|B(u,u − uκ,ψ)| → 0 due to

the weak convergence of uκ in Lp(0, T ;Vdiv).

The convergence of the terms containing
√

εqκ can be realized by the

weak convergence in the corresponding spaces. The term
∫ T

0

∫

D
hqκdivhψ is

canceled due to the solenoidal test functions.

Finally, after the limiting process κ → ∞ in (2.13) using above consid-
erations for all ψ ∈ H1

0 (0, T ;X) and ξ = Eψ2

∣
∣
Sw

we arrive at

∫ T

0

∫

D

{

hu · ∂ψ

∂t
+

∂h

∂t

∂(y2u)

∂y2
· ψ

}

dy = (3.7)

∫ T

0

{

((u,ψ))h + bh(u,u,ψ)

+

∫ 1

0

h(L)qout(y2, t)ψ1 (L, y2, t) − h(0)qin(y2, t)ψ1 (0, y2, t) dy2

+

∫ L

0

(

qw +
1

2

∂h

∂t
u2

)

ψ2 (y1, 1, t) dy1

+

∫ L

0

−σ
∂ξ

∂t
+ c

∂2σ

∂y2
1

∂2ξ

∂y2
1

+ a
∂

∂y1

∫ t

0

σ(y1, s)ds
∂ξ

∂y1

− a
∂2R0

∂y2
1

ξ + b

∫ t

0

σ(y1, s)ds ξ(y1, t) dy1

}

dt.

In order to investigate the meaning of the left hand side of the above equality
we define the ALE-type time derivative ∂̄t

∂̄t(hu) :=
∂(hu)

∂t
− ∂h

∂t

1

h

∂(y2hu)

∂y2
. (3.8)

Note that ∂̄t(hu) = h∂y
t u, where ∂y

t :=
(

∂
∂t − ∂h

∂t
y2

h
∂

∂y2

)

denotes in fact the

time derivative transformed to the rectangle domain D, i.e., in coordinates
(y1, y2).

The right hand side of (3.7) is bounded for every ψ ∈ M,

M = {ω ∈ Lp(0, T ;X) for p > 2; (3.9)

ω ∈ Lp(0, T ;X) ∩ L4((0, T ) × D) for p = 2}.

Thus it can be identified with some functional χ ∈ M∗. Then using integra-
tion by parts with respect to y2 on the left hand side, backward transforma-
tion from D to the moving domain Ω(h(t)) and the separation of variables it
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can be shown that χ = ∂̄t(hu) ∈ Lp′

(0, T ;X∗), see [9, Appendix A] for more
details. Thus we can replace

∫ T

0

∫

D

{

hu · ∂ψ

∂t
+

∂h

∂t

∂(y2u)

∂y2
· ψ

}

dy dt = −
∫ T

0

〈
∂̄t(hu),ψ

〉

X
.

Finally, we transform (3.7) from the rectangle D to the moving domain
Ω(h(t)) and obtain the existence of a weak solution to our original problem
(1.1)–(1.13) with the Dirichlet boundary condition ∂tη = v2|Γw(h(t)) for a
prescribed domain deformation h.

Theorem 3.1 (Existence of weak solution for ε = 0, κ = ∞).
Assume that h ∈ H1(0, T ;H2

0 (0, L))∩W 1,∞(0, T ;L2(0, L)) satisfies (2.1). Let

the boundary data fulfill qin, qout ∈ Lp′

(0, T ;L2(0, 1)), qw ∈ Lp′

(0, T ;L2(0, L)).
Furthermore, assume that the properties (1.2)–(1.4) for the viscous stress ten-
sor hold. Then there exists a weak solution (v, η) of the problem (1.1)–(1.13),
such that

i) (u, η) ∈ [Lp(0, T ;V ) × H1(0, T ;H2
0 (0, L))] ∩ [L∞(0, T ;L2(D)) ×

W 1,∞(0, T ;L2(0, L))], where u is defined in (2.8),

ii) the time derivative ∂̄t(hu) ∈ Lp′

(0, T ;X∗) for p > 2 and ∂̄t(hu) ∈
Lp′

(0, T ;X∗) ⊕ L4/3((0, T ) × D) for p = 2,

∫ T

0

∫

D

{

hu · ∂ψ

∂t
+

∂h

∂t

∂(y2u)

∂y2
· ψ

}

dy dt = −
∫ T

0

〈

∂̄t(hu),ψ
〉

dt,

where ∂̄t(hu) = ∂(hu)
∂t − 1

h
∂h
∂t

∂(y2hu)
∂y2

= h∂y
t u,

for every test function ψ ∈ M∩ H1
0 (0, T ;X),

iii) v satisfies the condition div v = 0 a.e on Ω(h(t)),
v2(x1, h(x1, t), t) = ∂tη(x1, t) for a.e. x1 ∈ (0, L), t ∈ (0, T )

and the following integral identity holds

∫ T

0

∫

Ω(h(t))

{

− ρv · ∂ϕ

∂t
+ 2µ(|e(v)|)e(v)e(ϕ) + ρ

2∑

i,j=1

vi
∂vj

∂xi
ϕj

}

dx dt

+

∫ T

0

∫ R0(L)

0

(

Pout −
ρ

2
|v1|2

)

ϕ1(L, x2, t) dx2 dt

−
∫ T

0

∫ R0(0)

0

(

Pin − ρ

2
|v1|2

)

ϕ1(0, x2, t) dx2 dt

+

∫ T

0

∫ L

0

(

Pw − ρ

2
v2

(

v2 −
∂h

∂t

))

ϕ2(x1, h(x1, t), t) dx1 dt

+

∫ T

0

∫ L

0

−∂η

∂t

∂ξ

∂t
+ c

∂3η

∂x2
1∂t

∂2ξ

∂x2
1

+ a
∂η

∂x1

∂ξ

∂x1
dx1 dt

+

∫ T

0

∫ L

0

−a
∂2R0

∂x2
1

ξ + bη ξ dx1 dt = 0
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for every test functions

ϕ(x1, x2, t) = ψ

(

x1,
x2

h(x1, t)
, t

)

such that

ψ ∈ H1
0 (0, T ;V ), ψ2

∣
∣
Sw

∈ H1
0 (0, T ;H2

0 (0, L)),

divϕ = 0 a.e. on Ω(h(t)),

and ξ(x1, t) = Eρϕ2(x1, h(x1, t), t).

Note that the structure equation is fulfilled in a slightly modified sense,

Eρ

[
∂2η

∂t2
− a

∂2η

∂x2
1

+ bη + c
∂5η

∂t∂x4
1

− a
∂2R0

∂x2
1

]

(x1, t) =

[

−(Tf + PwI)n|n| · e2 +
ρ

2
∂tη(∂tη − ∂th)

]

(x1, h(x1, t), t)

a.e. on (0, T ) × (0, L), compare (1.9).

4. Fixed point iterations

Until now we have proved the existence of weak solution of the original prob-
lem in a domain given by a known deformation function δ, i.e. h = R0 + δ,
δ ∈ H1(0, T ;H2

0 (0, L))∩W 1,∞(0, T ;L2(0, L)), R0(x1) ∈ C2[0, L]. In this sec-
tion we show the existence of the weak solution of (1.14), which implies,
that the domain deforms according to the function η(x1, t), i.e. h = R0 + η.
This will be realized with the use of the Schauder fixed point theorem. First,
applying the compactness argument based on the equicontinuity in time we
obtain that bounded sequence sequence (v(k), η(k)) defined on Ω(δ(k)) for
some sequence δ(k) → δ converges to the limit (v, η) defined on Ω(δ). Conse-
quently, the Schauder fixed point argument implies, that the weak solution
η is associated with the time dependent domain Ω(η). Finally we obtain the
main result: existence of weak solution for a fully coupled fluid structure
interaction problem (1.1)–(1.13).

Let us denote the space Y = H1(0, T ;L2(0, L)). For each test function
ψ ∈ Lp(0, T ;X), ψ(T ) = 0, ξ = Eψ2

∣
∣
Sw

, recalling (3.5), and for any h =

R0+δ ∈ Y , such that (2.1) holds, we construct solutions u, η of the following
problem defined on the reference domain D, (σ = ∂tη),

−
∫ T

0

〈
∂̄t(hu),ψ

〉
dt (4.1)

=

∫ T

0

{

((u,ψ))h + bh(u,u,ψ)

+

∫ 1

0

h(L)qout(y2, t)ψ1 (L, y2, t) − h(0)qin(y2, t)ψ1 (0, y2, t) dy2

+

∫ L

0

(

qw +
1

2

∂h

∂t
σ
)

ψ2 (y1, 1, t) dy1
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+
〈
∂tσ, ξ

〉
+

∫ L

0

c
∂2σ

∂y2
1

∂2ξ

∂y2
1

+ a
∂

∂y1

∫ t

0

σ(y1, s)ds
∂ξ

∂y1

− a
∂2R0

∂y2
1

ξ + b

∫ t

0

σ(y1, s)ds ξ(y1, t) dy1

}

dt .

Further, let the ball Bα,K be defined by

Bα,K =
{

δ ∈ Y ; ‖δ‖Y ≤ C(α,K), 0 < α ≤ R0(y1) + δ(y1, t) ≤ α−1,

∣
∣
∣
∂δ(y1, t)

∂y1

∣
∣
∣ ≤ K, δ(y1, 0) = 0, ∀y1 ∈ [0, L], ∀t ∈ [0, T ],

∫ T

0

∣
∣
∣
∣

∂δ(y1, t)

∂t

∣
∣
∣
∣

2

dt ≤ K, ∀y1 ∈ [0, L]
}

,

where C(α,K) is a suitable constant large enough with respect to K,α and
the data.

By choosing δ ∈ Bα,K the following energy estimate holds for all 2 ≤
p < ∞ uniformly in δ,

‖u‖2
L∞(0,T ;L2(D)) + ‖u‖p

Lp(0,T ;W 1,p(D)) (4.2)

+‖ηt‖2
L∞(0,T ;L2(0,L)) + ‖ηt‖2

L2(0,T ;H2(0,L)) + ‖η‖2
L∞(0,T ;H1(0,L))

≤ c(T, p,K, α)
(

‖P‖p′

Lp′ (0,T )
+ ‖R0‖2

C2[0,L]

)

.

This estimate is obtained by multiplying (4.1) by ψ = u and ξ = Eu2|Sw
=

Eηt, cf. (3.1).

Now, let us define the following mapping by (4.1),

F : Bα,K → Y ;

F(δ) = η, (δ = h − R0).

Our aim is to apply the Schauder fixed point theorem and prove that the
mapping F has at least one fixed point. This implies the existence of the
weak solution to our problem (4.1).

First we check that F(Bα,K) ⊂ Bα,K . Note that our a priori esti-
mate (4.2) yields ‖ηy1

‖C([0,T ]×[0,L]) ≤ K, ‖ηt‖L2(0,T ;C[0,L]) ≤ K and ‖η‖Y ≤
C(α,K) for given data Pin, Pout, Pw, R0, given K,α; α < Rmin := miny1∈[0,L]

R0(y1) and for sufficiently small time T̃ . Moreover, since H1(0, T ;H2(0, L)) →֒
C(0, T ;C1[0, L]) and η(y1, 0) = 0, there exist a maximal time Tmax, such that

i) ‖η‖∞ := ‖η‖C([0,Tmax]×[0,L]) ≤ Rmin − α.
This yields that mint∈(0,Tmax) miny1∈(0,L) (R0 + η) ≥ Rmin−‖η‖∞ ≥ α.
Thus we can avoid a contact of the regularized deforming wall with the
solid bottom.

ii) Further, we require that the domain deformation is bounded from above,
‖R0 + η‖∞ ≤ α−1.
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Having i), the condition ii) is satisfied if Rmin − α ≤ α−1 −Rmax. Thus, for
instance if α−1 ≥ Rmin + Rmax.
Consequently, F(Bα,K) ⊂ Bα,K as far as t ≤ T ∗ := min{Tmax, T̃} for given
data Pin, Pout, Pw, R0, K and α such that α ≤ min{Rmin, 1

Rmin+Rmax
}.

Secondly, we verify the relative compactness of the mapping F in Y .
Let us consider a sequence {δ(k)}∞k=1 in Bα,K . Denote by u(k) and η(k) ≡
F(δ(k)) the weak solution of (4.1) for h = h(k) := R0 + δ(k). Note, that
due to the apriori estimate (4.2) we have weak convergences of η(k), u(k)

in the corresponding spaces. In Section 4.1, cf. Lemma 4.1, we show the
equicontinuity in time, which implies the strong convergences of η(k) in Y as
well as the strong convergence u(k) in L2((0, T ) × D).

Finally, in Section 4.2 we check the continuity of the mapping F with
respect to the strong topology in Y .

4.1. Relative compactness of the fixed point mapping F
In this section we verify the relative compactness of the mapping F using the
integral equicontinuity in time and the Riesz-Fréchet-Kolmogorov compact-
ness argument. We prove Lemma 4.1, which provides the integral equiconti-
nuity of η(k) and additionaly of u(k), that holds independently on k. To this
end we need to find suitable divergence free test functions in order to control
difference of velocity at different time instances. In order to obtain such test
functions we follow a construction presented in [4], see also the reference [16]
therein.

We introduce, in analogy to [4, Lemma 3], the following extensions of
the domain and the weak solution. Let BM be a box domain

BM ≡ (0, L) × (0,M) ∈ R
2 (4.3)

for some M > α−1 specified later. Let us consider a sequence {δ(k)}∞k=1 in

Bα,K and h(k) := R0 + δ(k). We define an extension of solution u(k)(y, t) =

v(k)(x, t) of (4.1) where h = h(k) into BM ,

v̄(k) =

{
v(k) in Ω(h(k)(t))

(0, η
(k)
t ) in BM\Ω(h(k)(t)).

(4.4)

Further, for γ > 1 and any function f(x1, x2) we define fγ as follows

fγ(x1, x2) = (γf1(x1, γx2), f2(x1, γx2)).

Note that if f is divergence free, then fγ is divergence free, too.

In what follows we will use the following property, which is valid for any

f ∈ H1(BM ), for γ = 1 + C
√

τ
α and M ≥ 2α−1, see [9, Lemma 9.2]

|fγ − f | ≤ |f(x1, γx2, t) − f(x1, x2, t)| + (γ − 1)|f(x1, γx2, t)|. (4.5)
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Lemma 4.1. For the weak solution (v(k), η
(k)
t ) = (u(k), σ(k)) of the problem

(4.1), where h = h(k), it holds
∫ T−τ

0

∫

BM

χ
(k)
t |v̄(k)(t + τ) − v̄(k)(t)|2 +

∫ T−τ

0

∫ L

0

|η(k)
t (t + τ) − η

(k)
t (t)|2

≤ C(τ1/p + τ1/2). (4.6)

Here χ
(k)
t denotes the characteristic function of Ω(h(k)(t)). The constant C =

C(K,α) does not depend on k.

Proof. We recall that h(k) = R0 + δ(k), but for the sake of simplicity we omit
the superscript (k) in this proof and we denote h := R0+δ(k), v̄ := v̄(k), η :=
η(k).
To prove the statement of this lemma, we will use following two properties.

1. For each ψ ∈ H1(0, T ;X), cf. (3.5), ψ(T ) = 0 it holds

−
∫ τ̃

0

〈
∂̄t(hu),ψ

〉
dt (4.7)

=

∫ τ̃

0

∫

D

hu
∂ψ

∂t
+

∂h

∂t

∂(y2u)

∂y2
ψdydt −

∫

D

hu(τ̃ , y)ψ(τ̃ , y)dy.

For classical time derivative, this property is clear. For our distributive
derivative ∂̄ it can be proven using test function ψ = ζ(y, t)ϕǫ(t), where
ζ ∈ H1(0, T ;X), ϕǫ(t) = max{0,min{1, τ̃+ǫ−t

ǫ }} and passing ǫ → 0,
cf.[17].

2. By inserting any time independent test function ψ = ψ(y) into (4.7)
and subtracting (4.7) for τ̃ = t + τ, and τ̃ = t we obtain

−
∫ t+τ

t

〈
∂tv,ϕ(x, t)

〉

XΩ
ds (4.8)

=

∫ t+τ

t

∫

D

∂h

∂t

∂(y2u)

∂y2
ψ(y)dyds −

∫

D

[hu(t + τ) − hu(t)]ψ(y)dy.

Here the integral on the left hand side has been transformed into Ω(h(t)),
ψ = ψ(y) = ϕ(x), y ∈ D, x ∈ Ω(h(t)) and the space XΩ is defined as

XΩ =
{
ϕ ∈ W 1,p(Ω); divϕ = 0 a.e. on Ω,

ϕ2|Γw
∈ H2

0 (0, L), ϕ1|Γw
= ϕ2|Γin∪Γout∪Γc

= 0
}
, Ω = Ω(h(t)).

Now, let us integrate (4.8) over
∫ T−τ

0
dt. The first term on the right hand

side (integrated over
∫ T−τ

0
) can be bounded with Cτ independently on k for

test functions (4.13) specified later . The second term on the right hand of
(4.8) can be rewritten due to the transformation to the Ω(h(t))

∫ T−τ

0

∫

Ω(h(t+τ))

v(xt+τ , t + τ)ϕ(xt+τ )dx −
∫

Ω(h(t))

v(xt, t)ϕ(xt) dx dt. (4.9)

Note, that the space coordinate xt ≡ x(t) ∈ Ω(h(t)) depends on time, hence
the test functions ϕ implicitly depend on time, which is pointed out above.
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Using the previously defined extensions of the solution v̄ and some fur-
ther manipulations we can rewrite (4.9) as follows

∫ T−τ

0

∫

Ω(h(t))

v̄(xt+τ , t + τ)ϕ(xt+τ ) − v(xt, t)ϕ(xt)dx

+

∫

BM

(χt+τ − χt)v̄(xt+τ , t + τ)ϕ(xt+τ ) dx dt = (4.10)

∫ T−τ

0

∫

Ω(h(t))

[v̄ (xt+τ , t + τ) − v(xt, t)]ϕ(xt)
︸ ︷︷ ︸

(I)

+ [ϕ(xt+τ ) − ϕ(xt)]v̄(xt+τ , t + τ)
︸ ︷︷ ︸

(II)

+

∫

BM

(χt+τ − χt)v̄(xt+τ , t + τ)ϕ(xt+τ )
︸ ︷︷ ︸

(III)

dx dt.

Here χt, χt+τ are the characteristic functions of Ω(h(t)), Ω(h(t + τ)), re-
spectively. In what follows we estimate the term (II) for any test function
ϕ ∈ Lp(0, T ;XΩ). Further, we concentrate on the terms (I), (III) using spe-
cific test functions.

From the imbedings in one dimension we have δ ∈ C0,1/2([0, T ];H1(0, L)),
cf. (4.19), thus

‖δ(t + τ) − δ(t)‖L∞((0,T )×(0,L)) ≤ C
√

τ . (4.11)

Using (4.11) we can estimate the term (II):

(II) ≤
∫ T−τ

0

(
∫

Ω(h(t))

|ϕ(xt+τ ) − ϕ(xt)|2dx

)1/2

‖v̄‖L2(Ω(h(t))‖dt (4.12)

=

∫ T−τ

0

(
∫

Ω(h(t))

∣
∣
∣

∫ x2(t+τ)

x2(t)

∂sϕ(x1, s)ds
∣
∣
∣

2

dx

)1/2

‖v̄‖L2(Ω(h(t))‖dt

≤
∫ T−τ

0

(∫

BM

|∇ϕ|2dx|x2(t + τ) − x2(t)|2
)1/2

‖v̄‖L2(Ω(h(t))‖dt

≤ ‖ϕ‖L2(0,T ;H1(BM ))‖δ(t + τ) − δ(t)‖L∞((0,T )×(0,L))‖v̄‖L2((0,T )×BM )

≤ C
√

τ .

Now we specify proper test functions, that will be used in what follows.
For xt = x(t) ∈ Ω(h(t)), γ > 1 and fixed t, τ we set

ϕ(xt) = v̄γ(xt+τ , t + τ) − v̄γ(xt, t), (4.13)

ξ(x1) = E(∂tη(x1, t + τ) − ∂tη(x1, t)).

Note that since v is divergence-free, the test function ϕ is also divergence-

free 2. Moreover, taking into account (4.11), for γ ≥ 1 + C
√

τ
α and x2 ∈

Γw(t) the coordinate γx2 exceeds the moving domain Ω(h(s)), since we have

2Since ϕ(xt+τ ) = v̄γ(xt+2τ , t + 2τ)− v̄γ(xt+τ , t + τ), we have to integrate over
R T−2τ

0 dt

in the estimate of the term (II), or we define ϕ(xt+τ ) = 0 if t + τ > T .
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γ(R0 + δ(s)) ≥ R0 + δ(s) + ‖δ(t + τ)− δ(t)‖∞, s = t, t + τ . According to the
construction, such a test function fulfill the boundary condition

Eϕ(x1, R0(x1) + δ(x1, t)) = E(0, ∂tη(x1, t + τ) − ∂tη(x1, t)) ≡ (0, ξ(x1)).

Let us estimate now the term (III). Since ∂tη is bounded in L∞(0, T ;
L2(0, L)) independently on k, we have

∫

BM

|χt+τ − χt|2 =

∫ L

0

|δ(t + τ) − δ(t)|2 =

∫ L

0

∣
∣
∣
∣

∫ t+τ

t

∂tδ(s)ds

∣
∣
∣
∣

2

≤ Cτ.

(4.14)
Thus, the term (III) can be bounded for ϕ from (4.13) as follows.

(III) ≤
∫ T−τ

0

‖χt+τ − χt‖L2(BM )‖v̄‖L4(BM )‖ϕ‖L4(BM )dt ≤ C
√

τ . (4.15)

For the test functions from (4.13) the term (I) equals

(I) =

∫ T−τ

0

∫

Ω(h(t))

[v̄(t + τ) − v̄(t)][v̄γ(t + τ) − v̄γ(t)]dxdt

=

∫ T−τ

0

∫

Ω(h(t))

[v̄(t + τ) − v̄(t)]2
︸ ︷︷ ︸

(Ia)

+ (4.16)

[v̄(t + τ) − v̄(t)].
(

[v̄γ(t + τ) − v̄(t + τ)] − [v̄γ(t) − v̄(t)]
)

︸ ︷︷ ︸

(Ib)

dxdt

For the simplicity we used shorter notations here, e.g., v̄(t+τ) := v̄(xt+τ , t+
τ). The term (Ia) appears on the left hand side of the assertion of this lemma;
the term (Ib) need to be estimated from above. We illustrate the estimate of
some chosen terms of (Ib) as follows. Estimates of other terms are analogous.

In the sequel we take γ = 1+ C
√

τ
α and M ≥ 2α−1. For these parameters

we have according to Lemma 4.5,
∫ T−τ

0

∫

Ω(h(t))

v̄(t + τ)[v̄γ(t) − v̄(t)]dxdt ≤

Cα

√
τ

∫ T−τ

0

‖v̄(t + τ)‖L2(BM )‖v̄(t)‖H1(BM )dt ≤ Cα

√
τ .

To complete the proof, the remaining terms coming from the fluid equa-
tions, i.e., the convective term, the viscous term, boundary terms and the
equation for η have to be estimated. We illustrate here only the calculations
for the nonlinear viscous term and omit tedious but standard calculations for
other terms, previously performed also in [6].

After subtracting the weak formulation (4.1) for
∫ t+τ

0
ds −

∫ t

0
ds, in-

serting test functions constructed above (independent on s) into (4.1) and

integrating over
∫ T−τ

0
dt we obtain from the viscous term

∫ T−τ

0

∫ t+τ

t

∫

Ω(h(s))

τij(e[v(s)]).e[v̄γ(t + τ) − v̄γ(t)]dx ds dt. (4.17)
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For the simplicity, we set ω := v̄γ(t + τ) or ω := v̄γ(t) in (4.17). Using the
fact, that |τij(e(v))| ≤ C5(1 + |e(v)|)p−1, which can be derived from (1.2),
(1.4), cf. [11, Lemma 1.19], (4.17) can be bounded as follows,

≤
∫ T−τ

0

∫ t+τ

t

∫

Ω(h(s))

C5(1 + |e[v(s)]|)p−1e[ω]dx ds dt

≤ C(K,α)

∫ T−τ

0

∫ t+τ

t

‖1 + ∇v(s)‖p−1
Lp(Ω(h(s)))‖∇ω‖Lp(Ω(h(s)))ds dt

≤ C(K,α)

∫ T−τ

0

(∫ t+τ

t

‖1 + ∇v(s)‖p
Lp(Ω(h(s)))ds

) p−1
p

‖∇ω‖Lp(BM )τ
1
p dt

≤ C(K,α)τ
1
p

(
∫ T

0

‖1 + ∇v(s)‖p
Lp(Ω(h(s)))ds

) p−1
p ∫ T−τ

0

‖∇ω‖Lp(BM )dt

≤ C(K,α)τ
1
p ‖1 + ∇v‖p−1

Lp(0,T ;Lp(Ω(h))‖∇ω‖L1(0,T ;Lp(BM )) ≤ C(K,α)τ
1
p .

The estimates of remaining terms on the right hand side can be obtained
using the so-called Steklov averages analogously as in e.g., [9, Section 5] or [6,
Section 8] and we leave them to the valued reader. The proof of the lemma
is now completed. ¤

Due to the (4.14) it is also easy to obtain from (4.6) that

∫ T−τ

0

∫

BM

|χ(k)
t+τ v̄(k)(t + τ) − χ

(k)
t v̄(k)(t)|2+

∫ T−τ

0

∫ L

0

|η(k)
t (t + τ) − η

(k)
t (t)|2

≤ C(τ1/p + τ1/2). (4.18)

This result implies that χ
(k)
t v̄(k)(t), and consequently v̄(k)(t) is relatively

compact in L2((0, T ) × BM ).

Consequently, the Riesz-Fréchet-Kolmogorov compactness argument [2,
Theorem IV.26] based on (4.18) implies the relative compactness of ∂tη

(k), v̄(k)

in L2(0, T ;L2(0, L)), L2(0, T ;L2(BM )), respectively. Additionally, the stan-
dard interpolations give us the compactness of v̄(k) in Lr((0, T ) × BM ), 1 ≤
r < 4 and ∂tη

(k) in Ls((0, T ) × (0, L)), 1 ≤ s < 6.

4.2. Continuity of the mapping F
As already shown above η(k) converges strongly to some η in Y as k → ∞.
In this section we show by limiting process for k → ∞ in (4.1) that for any
convergent subsequence δ(k) ∈ Bα,K , δ(k) → δ in Y we have

F(δ(k)) = η(k) → F(δ) and that η ≡ F(δ).

First, we know that η(k) → η in H1(0, T ;L2(0, L)). Due to the boundedness
of η from apriori estimate (4.2) and the imbeddings in one dimension we have
even stronger result - the uniform convergence of ∂y1

η(k) in C([0, T ]× [0, L]).



Weak solution of the FSI problem for shear-thickening fluids 21

Indeed,

L∞(0, T ;H2(0, L)) ∩ W 1,∞(0, T ;L2(0, L)) (4.19)

→֒ C0,1−β(0, T ;H2β(0, L))

for 0 < β < 1. From the continuous imbedding of H2β(0, L) into H2β−ǫ(0, L)
and the Arzelá-Ascoli Lemma we conclude that a subsequence of η(k) con-
verges strongly in C([0, T ];Hs(0, L)), 0 < s < 2. Since for s > 3/2 we
also have continuous imbedding Hs(0, L) →֒ C1[0, L], we can conclude, that
η(k) → η strongly in C(0, T ;C1[0, L]).

Let us summarize available convergences

u(k) ⇀ u weakly in Lp(0, T ;W 1,p(D)),

v̄(k) → v̄ strongly in Lr((0, T ) × BM ), 1 ≤ r < 4,

u(k) → u strongly in Lr((0, T ) × D), 1 ≤ r < 4,

η(k) ⇀ η weakly in H1(0, T ;H2(0, L)), (4.20)

η(k) ⇀∗ η weakly* in L∞(0, T ;L2(0, L))

η(k) → η uniformly in C(0, T ;C1[0, L]),

∂tη
(k) → ∂tη strongly in Ls((0, T ) × (0, L)), 1 ≤ s < 6.

∂̄t(hu)(k) ⇀ χ weakly in

{
Lp′

(0, T ;V ∗) for 2 < p < ∞
Lp′

(0, T ;V ∗) ⊕ L4/3((0, T ) × D) for p = 2.

The last statement of (4.20) follows from (4.2) and from the boundednes of
the functional ∂̄t(hu)(k). Let us present the estimation of nonlinear terms

on the right hand side. Indeed, from Lemma 2.5 it follows
∫ T

0
((uk,ψ)) ≤

C(K,α)‖ψ‖Lp(0,T ;W 1,p(D). The non-linear convective term can be estimated

using Lemma 2.6, the Hölder inequality and the imbedding of W 1,p(D) into

L
2p

p−2 (D) for p > 2 as follows
∫ T

0

Bh(k)(u(k),u(k),ψ) ≤ C(K,α)

∫ T

0

‖u(k)‖1,p‖u(k)‖2‖ψ‖ 2p

p−2

≤ C(K,α)‖u(k)‖L∞(0,T ;L2(D))‖u(k)‖Lp(0,T ;W 1,p(D))‖ψ‖Lp′ (0,T ;W 1,p(D)),

which is bounded due to (4.2) for all ψ ∈ Lp(0, T ;V ). Analogously the term
∫ T

0
Bh(k)(u(k),ψ,u(k)) is bounded, which leads to 3

∫ T

0

bh(k)(u(k),u(k),ψ) ≤ C(K,α)‖ψ‖Lp(0,T ;W 1,p(D)) for p ∈ (2,∞). (4.21)

Further estimates of the remaining terms on the right hand side conclude the
proof of (4.20)8.

In what follows we have to verify, that F(δ(k) → F(δ) and that the limit
η from (4.20) is the weak solution asociated with δ, and thus F(δ) = η.

3For p = 2 this estimate is valid for ψ ∈ Lp(0, T ; V ) ∩ L4((0, T ) × D), cf. [6].
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4.2.1. Limiting process k → ∞. Now let us consider (4.1) with u(k) instead
of u, h(k) instead of h and σ(k) = ∂tη

(k) instead of σ.

First of all we have to realize, that due to the solenoidal property, which
depends on h(k), the test functions are also implicitly dependent on k. This
fact presents a difficulty when we pass with k → ∞. Nevertheless we can
construct sufficiently smooth test functions ψ̃(y, t) = ϕ̃(x, t), which are inde-

pendent on k and divergence free in Ω(h) (i.e. divhψ̃ = 0). They are also well
defined on infinitely many approximate domains Ω(h(k)) and dense in the
space of admissible test functions Lp(0, T ;X), cf. (3.5). Such a test functions
ϕ̃ can be constructed on (0, T ) × BM as algebraic sum, see [4, Remark 3]

ϕ̃ = ϕ0 + ϕ1,

where ϕ0 is a smooth function with compact support in Ω(h), divϕ0 = 0
on Ω(h) and ϕ0 is extended by 0 to (0, T ) × BM . Further, having ξ ∈
H1(0, T ;H2

0 (0, L)) we define ϕ1
def
= (0, ξ(x1)/E) on BM\Bα, Bα = (0, L) ×

(0, α) ∈ R
2, the constant E comes from (1.15). Note that divϕ1 = 0 on

BM\Bα. Moreover, ϕ1 such that
∫

∂Bα
ϕ1·n =

∫ α

0
ϕ1

1(L, x2, t)−ϕ1
1(0, x2, t)dx2+

∫ L

0
ξ
E (x1, t)dx1 = 0 can be extended into Bα by a divergence-free extension,

whereas remaining boundary conditions on Γin, Γout, Γc are preserved, see
e.g., [7, p.144]. Note, that due to the uniform convergence of η(k) we have
that supϕ0 ⊂ Ω(h(N)) for sufficiently large N and the function ϕ0 is well
defined on each Ω(h(N)) for such N . Moreover ϕ1 is defined on Ω(h(k)) for
each k. For more details on this construction we refer a reader to [3, Section
7, pp. 35-36], compare [4].

Having ψ̃(y, t) = ψ̃(x1,
x2

h(x1,t) , t) = ϕ̃(x, t), x ∈ Ω(h), y ∈ D, let us

construct the set of admissible test functions ψ(k) by transformation of ϕ̃

from Ω(h(k)) into D,

ψ(k)(y1, y2, t) := ψ̃(x1,
x2

h(k)(x1, t)
, t) = ϕ̃(x1, x2, t), (4.22)

x ∈ Ω(h(k)), y ∈ D.

The test functions (4.22) have the following property

ψ(k) : D → R
2; divh(k)ψ

(k) = 0, Eψ
(k)
2 (y1, 1, t) = ξ(y1, t), and

ψ(k) → ψ̃,

êh(k)(ψ(k)) → ê(ψ̃)

}

uniformly on (0, T ) × D.

This property follows from the special construction of ϕ̃, the property (4.24)
below and the uniform convergence of h(k) and ∂y1

h(k) that follows from
(4.19). The test functions (4.22) satisfy the boundary conditions on Sin, Sout,
Sc, cf. (2.9) as well.

Thus it is enough to consider test functions ψ = ψ̃, which are inde-
pendent on k and smooth enough. The limiting process in the test functions

follows afterwards using the uniform convergence ψ(k) and ê(ψ(k)).
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In the following lines we will present the limiting process for k → ∞ in
chosen nonlinear terms. Let us first consider the convective term and show

∫ T

0

(

bh(k)(u(k),u(k),ψ) − bh(u,u,ψ)
)

dt → 0.

Recalling (2.15), the following terms appear in the above expression
∫ T

0

Bh(u,u(k) − u,ψ) + Bh(k)(u(k) − u,u(k),ψ) + B(h(k)−h)(u,u(k),ψ)dt.

To show the convergence of above integrals, we restrict ourselves only to the
terms containing ∂y1h

(k), convergence of terms with h(k) is analogous. Let
us consider

∫ T

0

∫

D

(
∂u(k)

∂y2
− ∂u

∂y2

)

· ψu1
∂h

∂y1
+

∂u(k)

∂y2
· ψ

(

u
(k)
1 − u1

) ∂h(k)

∂y1

∂u(k)

∂y2
· ψ

(
∂h(k)

∂y1
− ∂h

∂y1

)

u
(k)
1 dy dt.

The convergence of the first term is obvious due to the weak convergence
of u(k) in Lp(0, T ;W 1,p(D)). The strong convergence of u(k) in Lp′

((0, T ) ×
(D)) and the uniform convergence of ∂y1

h(k) imply the convergence in the
remaining two terms.

Now we denote ê(k) := êh(k) , ê := êh, cf. (2.11) and Remark 2.2. The
limiting process in the viscous term will be realized as follows.

∫ T

0

((u(k),ψ))h(k) − ((u,ψ))hdt (4.23)

=

∫ T

0

∫

D

h
[

τij(ê
(k)(u(k)))ê

(k)
ij (ψ) − τij(ê(u))êij(ψ)

]

+
[

h(k) − h
]

τij(ê
(k)(u(k)))ê

(k)
ij (ψ) dy dt

=

∫ T

0

∫

D

h τij(ê
(k)(u(k)))

[

ê
(k)
ij (ψ) − êij(ψ)

]

dy dt

︸ ︷︷ ︸

(I)

+

∫ T

0

∫

D

h
[

τij(ê
(k)(u(k))) − τij(ê(u))

]

êij(ψ) dy dt

︸ ︷︷ ︸

(II)

+

∫ T

0

∫

D

[

h(k) − h
]

τij(ê
(k)(u(k)))ê

(k)
ij (ψ) dy dt

︸ ︷︷ ︸

(III)

.

It is easy to see that the term (III) goes to zero. Using the fact that

êh(u) = ∇uF (h) + (∇uF (h))T ∈ R
2×2
sym; F (h) =

1

2

[
1 0

−y2

h
∂h
∂y1

1
h

]

(4.24)
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and due to the uniform convergence of h(k) in C(0, T ;C1[0, L]) the conver-
gence in all components of F is obvious and we obtain that (I) → 0.

In order to show the convergence in the term (II), we will use the Minty-
Trick. Let us denote for better readability ξk := êh(k)(u(k)) ξ := êh(u) and

φ := ê(ψ). Define the operator A, A : Lp((0, T ) × D) → Lp′

((0, T ) × D),

〈
A(ξk), φ

〉
:=

∫ T

0

∫

D

h τij(ξ
k)φdy dt.

Lemma 2.4 implies the monotonicity of operator A,
〈
A(ξk) −A(ξ), ξk − ξ

〉
≥

0. Further, from assumptions (2.1) on h(k) and Lemma 2.5 we obtain for
u,ψ ∈ Lp(0, T ;W 1,p(D)) and for any k

∣
∣
〈
A(ξk), φ

〉∣
∣ ≤ c(K,α)‖φ‖Lp(0,T ;Lp(D)).

Thus A is bounded in Lp′

((0, T )×D) and consequently A(ξk) ⇀ f . Moreover,
from the weak convergence of ∇u(k) and the uniform convergence of h(k) in
C(0, T ;C1[0, L]) we obtain the weak convergence ξk ⇀ ξ.

Now we prove that limk→∞
〈
A(ξk), ξk

〉
= 〈f, ξ〉, i.e., we show that

limk→∞
〈
A(ξk), ξk − ξ

〉
= 0. To this end, we limit in the rest terms of the

weak formulation (4.1) with u(k), h(k), σ(k) instead of u, h, σ using test func-
tions ψ = u(k) − u. In what follows we present the limiting process in the
nonlinear convetive term. Recalling (2.15) we can write

∫ T

0

bh(k)(u(k),u(k),u(k) − u) dt =
1

2

∫ T

0

Bh(k)(u(k),u(k),u(k) − u)

−Bh(k)(u(k),u(k) − u,u(k)) dt. (4.25)

We can estimate the first term on the right hand side using the Hölder and

the interpolation inequality ‖ϕ‖4 ≤ c‖ϕ‖1/2
1,2 ‖ϕ‖1/2

2 , cf. [9, Lemma 3.1]

∫ T

0

Bh(k)(u(k),u(k),u(k) − u)dt ≤

C(K,α)‖u(k) − u‖L2(L2)

(

‖u(k)‖
3
2

L2(W 1,2) + ‖u(k)‖L2(W 1,2)‖u‖
1
2

L2(W 1,2)

)

,

here L2(W 1,2) := L2(0, T ;W 1,2(D)). Thus, the strong convergence of u(k) in
L2((0, T ) × D) implies, that the first term on the right hand side of (4.25)
tends to 0. Further, we can rewrite the second term as

Bh(k)(u(k),u(k) − u,u(k)) = Bh(u,u(k) − u,u) + B(h(k)−h)(u,u(k) − u,u)

+Bh(k)(u(k) − u,u(k) − u,u(k)) + Bh(k)(u,u(k) − u,u(k) − u).

Due to the weak convergence of ∇u(k), uniform convergence of h(k) and the
strong convergence of u(k), cf. (4.20) we obtain also for the second term
∫ T

0
Bh(k)(u(k),u(k)−u,u(k))dt → 0. This concludes the proof of convergence

in the convective term (4.25). The limiting process in the remaining terms of
(4.1) is obvious and we omit it here.
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Consequently, we have obtained limk→∞
〈
A(ξk), ξk

〉
= 〈f, ξ〉 and the

Minty-Trick argument implies that f = A(ξ), i.e.

A(ξk) ⇀ A(ξ) and thus
〈
A(ξk), φ

〉
→ 〈A(ξ), φ〉

for any φ ∈ Lp((0, T ) × D) as k → ∞.

This concludes the limiting process in (4.1) and the Section 4.2. We have
found out that F(δ(k)) → F(δ) as k → ∞ and that η is the weak solution of
(4.1) associated with the limit δ, (h = R0 + δ), thus F(δ) = η.

Finally, using the continuity of the mapping F , its relative compactness
in Y and the property F(Bα,K) ⊂ Bα,K we deduce from the Schauder fixed
point theorem, that there exists at least one fixed point of the mapping
F defined by the weak formulation (4.1), F(η) = η. Thus, we obtain the
existence of at least one weak solution (1.14) of the original unsteady fluid-
structure interaction problem (1.1) – (1.13). The proof of the Theorem 1.2 is
now completed. ¤

Remark on the global existence result. Let us point out that we have ob-
tained the existence of weak solution until some time T ∗. We remind that this
time is obtained in order to achieve the fixed point of the mapping F and to
avoid the contact of the elastic boundary Γw(t) with the fixed boundary for
given data Pin, Pout, Pw, R0 and α, K. Similarly as in [4, Grandmont et al.],
we can prolongate the solution in time and even obtain the global existence
until the contact with the solid bottom.

Indeed, we can construct a non-decreasing sequence of times {T ∗ =
T ∗

1 , . . . , T ∗
m−1, T

∗
m, . . .}, such that for given α, K, α ≤ min{Rmin, 1

Rmin+Rmax
},

starting from initial data in time T ∗
m−1, we have the existence of weak solu-

tion for some time T ∗
m−1 + T := T ∗

m. We distinguish between two situations.
Either supT ∗

m = ∞, which means, that the contact with the solid bottom
never happens and we obtain global existence. Otherwise supT ∗

m := T ∗∗ < ∞
for given α. In this case we can decrease α. If the time interval of the exis-
tence cannot be prolongated for chosen α, we have to decrease α again. This
is repeated until α reaches 0. The later represents the contact with the solid
boundary at some time T ∗∗+ T̄ , where T̄ ≥ 0.
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