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Abstract

In the present work we investigate a model that describes the chemotactically and proteolytically
driven tissue invasion by cancer cells. The model is a system of advection-reaction-diffusion equations
that takes into account the role of the serine protease urokinase-type plasminogen activator. The
analytical and numerical study of such a system constitutes a challenge due to the merging, emerging,
and travelling concentrations that the solutions exhibit.

Classical numerical methods applied to this system necessitate very fine discretization grids to
resolve these dynamics in an accurate way. To reduce the computational cost without sacrificing the
accuracy of the solution, we apply adaptive mesh refinement techniques, in particular h-refinement.
Extended numerical experiments show that this approach provides with a higher order, stable, and
robust numerical method for this system. We elaborate on several mesh refinement criteria and
compare the results with the ones in the literature.

We prove, for a simpler version of this model, L∞ bounds for the solutions. We also studied the
stability of its conditional steady states, and conclude that it can serve as a test case for further
development of mesh refinement techniques for cancer invasion simulations.

Key words: cancer modelling, chemotaxis, merging and emerging concentrations, finite volume method,
IMEX, adaptive mesh refinement

AMS subject classification: 92B05, 35Q92, 65M08, 65M50

1 Introduction

Cancer is one of the most frequent causes of death worldwide. By 2020 about 70% of all cancer-related
death will occur in developing countries, due to a survival rate of only about 20%-30% due to a late
diagnosis, [47]. The development of cancer involves different sub-processes like growth, vascularization,
tissue invasion, and metastasis, [22].

Cancer research aims to understand the causes of cancer and to develop strategies for its diagnosis and
treatment. The overall effort is highly interdisciplinary, involving components from medical science,
biology, chemistry, physics, informatics, and mathematics. Mathematics in particular contributes in this
research with the modelling of the biological processes, the corresponding analysis, and the numerical
simulations of a wide range of processes spanning from intracellular bio-chemical reactions to cancer
growth and metastasis.
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The growth and invasion of cancer has been the subject of many theoretical studies, concentrating on
different aspects and employing different mathematical approaches, for example: cancer growth [1, 40, 7];
cancer cells invasion of the Extracellular Matrix (ECM) [38, 3, 50, 13, 15, 39, 46, 35]; cancer stem cell
modelling [17, 45].

This is the first of a series of papers where we address models of invasion of cancer cells into the ECM.
These papers involve the degeneration of the adjacent tissue by the cancer cells and their subsequent
migration into nearby areas. We model, analyse, and numerically resolve different biological theories
that address pathways of chemical interactions taking place during the invasion of the cancer cells.

In the current paper in particular, our objective is to lay the foundation and to propose/present the
numerical treatment that we use in our studies. To this end, we focus on a model introduced by Chaplain
and Lolas in [30, 8] and further analyzed in [2, 14, 15, 46, 26]. This model describes the dynamics of cancer
invasion using deterministic descriptions of macroscopic quantities. The invasion process is dominated
by directed cell movement due to the gradients of extracellular chemicals (chemotaxis) and the gradient
in the structure of the ECM (haptotaxis). The model includes further the interactions of the cancer cells
with extracellular proteins, a part of their chemical pathway, and their diffusion.

Due to the model dynamics, suitable, accurate numerical methods of high order are needed for the
simulations. In the literature, various techniques have already been applied to this and similar models.
These include among others Finite Differences combined with Backward Differentiation Formulas (BDF)
in time (see e.g. [8]), and second order Finite Volume (FV) methods combined with linearly implicit
time integration methods like the Rosenbrock-Wanner Multiple Arnoldi Process (ROWMAP) method
(see e.g. [14, 2, 19]). Because of the computational challenge of this type of problems, and since we
employ adaptive mesh refinement, we need to have a complete control of both the challenging dynamical
behaviour of the mathematical model and problem-suited adaptive numerical schemes.

In a first step we compare several time integration techniques, some of which have been used for similar
problems, employed with a FV method introduced in [28]. We notice that even in one-dimensional
experiments that a (very) large number of grid cells (of the order of 103) is needed to properly resolve the
dynamics, albeit the methods employed are stable and second order accurate. For smaller cell numbers
large deviations in the propagation speed of the wave fronts occur, an indication that the numerical error
depends heavily on the size of the computational cells and is of the magnitude of the model dynamics.
The corresponding two-dimensional experiments exhibit similar behaviour; using though a grid as fine
as in the one-dimensional case, renders the computation prohibitively expensive.

Such difficulties are not new in the mathematical literature; there are several examples where the con-
vergence of a numerical method depends heavily on the size of the discretization cells, and at the same
time, the use of uniformly fine discretization grids is not satisfactory due to the increased computational
cost. In such cases, mesh refinement techniques are often seen as an alternative numerical treatment.
With such methods, one alters the density of the discretization grid either by refining the mesh locally,
or by complete mesh reconstruction. It has been seen, time and again, that such methods can improve
the quality of the numerical solutions, and at the same time reduce the computational costs, see e.g.
[5, 27, 31, 41, 43].

In the present paper we take the first step into obtaining efficient adaptive numerical techniques for the
class of cancer invasion problems, in particular of h-refinement in the form of cell bisection based on
properly chosen estimator functions.

Furthermore, we study analytically a reduced chemotaxis-haptotaxis model with logistic growth, and
compare it with the original system in terms of qualitative behaviour of their respective solutions. We
investigate the conditional stability of the steady states for particular parameter ranges and justify the
similarities in the transient behaviour of merging, emerging and travelling concentrations that both
systems exhibit. We prove L∞ bounds, allowing hence to use the smaller model and the corresponding
parameter set, as a test case for the development of further mesh refinement techniques for the cancer
invasion models.

The rest of the paper is structured as follows: In Section 2 we describe shortly the relevant physiological
aspects of tumor biology. We present in Section 3 the main mathematical model of tumor proliferation
and invasion that we use in this work. In Section 4 we present two reduced models that exhibit the same
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dynamics as the main model, study their stability and prove appropriate L∞ bounds. In Sections 5 and
6 we describe the numerical methods, and the mesh refinement techniques which we use and present and
discuss the results of several numerical experiments.

2 Tumor Biology

Tumorgenesis is a multistep process, in which normal cells progressively convert to cancer cells. This
process is associated with various changes in cell physiology common to most of the cancers. These
are, in particular, self-sufficiency in growth signals, insensitivity to inhibitory growth signals, evasion
of programmed cell death, limitless replicative potential, sustained angiogenesis, tissue invasion and
metastasis, and immunoediting [20, 34, 47, 11].

Tumor development is directly and indirectly influenced by paracrine as well as autocrine signals. Such
factors include angiogenesis factors, growth factors, chemokines (signaling molecules originally charac-
terized by their ability to induce chemotaxis), cytokines, hormones, enzymes, cytolytic factors, and so
forth, which may promote or reduce tumor growth [47]. One important property which distinguishes
tumor cells from normal cells is their ability to proliferate infinitely. This is the result of changes in cell
death signaling pathways (apoptosis)[24]. Angiogenesis is a further important factor for tumor growth.
Growth of blood capillaries into the tumor is necessary for supply of nutrient and oxygen, and is induced
by growth factors, such as Vascular Endothelial Growth Factor (VEGF). Angiogenesis is also required
for metastases and tissue invasion of the tumor. Metastatic tumors are the cause of about 90% of human
cancer deaths [44]. Spreading of metastases is possible through hematogenous and lymphogeneous path-
ways, which guide the metastases to other locations in the body, where they settle. Both intravasation
and extravasation (entering / exiting capillaries or lymphatic vessels) is characterized by changes in the
ECM surrounding the tumor and its interactions with tumor cells.

Molecular analysis indicates the importance of chemotactic motion in understanding of the outgrowth
of tumor cells. Meanwhile the importance of chemokines in tumor progression is acknowledged [54] e.g,
for breast cancer cells that typically metastasizes in bone marrow, liver, lymph nodes and lung. These
organs were found to secrete CXCL12, the ligand for the chemokine receptor CXCR4, which is enriched
on breast cancer cells but not in normal breast epithelial cells [54].

Chemokines are now known to affect many aspects of tumor development such as angiogenesis and
expression of cytokines, adhesion molecules, and proteases, and support of cancer cell migration. Thus
chemotaxis plays an essential role in the successful outgrowth of tumors to the preferential organs.

Another important chemokine is the protein uPA (urokinase-plasminogen activator) and its inhibitor
PAI-1 (plasminogen activator inhibitor 1). Both are part of the so-called urokinase plasminogen system
which plays an essential role in the context of cancer progression and metastasis.

The protein uPA activates the protease plasmin, which is produced in an inactive form (plasminogen).
Plasmin in turn produces the active form (uPA) by cleaving the inactive proform pro-uPA. This occurs
mainly if pro-uPA is bound to its receptor uPAR; in solution the process is much less efficient. The
resulting receptor bound uPA is the form which exhibits chemokine function, additionally it enhances
the affinity of uPAR to vitronectin [52] and integrins. Vitronectin is a component of the ECM and
responsible for the attachment of cells to ECM. It also binds to integrins which are transmembrane
proteins and are responsible for signal transduction from the outside to the inside of the cell. This
vitronectin-integrin interaction is indirectly regulated by the uPA/uPAR-complex, since the complex also
interacts with integrins. Furthermore, the above mentioned PAI-1 inhibits the proteolytic function of
uPA upon binding, both in the soluble and in the membrane-bound form, thus regulating the proteolytic
network. The complex uPAR/uPA/PAI-1 is removed from the cell surface by endocytosis, triggering
further signaling pathways related to cancer migration. PAI-1 also binds to vitronectin [42], and thus
interferes with formation of cell-signaling and cell-ECM contacts.

Since intact ECM is a rather tight mesh composed of a number of different proteins, offering only small
pores for the cell to move through, cleavage of ECM proteins by the cancer cells greatly enhances motility.
The catalytic function of uPA, namely the activation of plasmin, is regarded as essential step in the
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cancer-cell’s ability to remodel the ECM. However, which ECM-components can be cleaved by plasmin
in vivo is not well investigated, see [10], the best corrobated examples being laminin and fibronectin;
however, MMPs which are activated by plasmin seem to have multiple roles in the regulation of tumor
growth and progression (see [25] for an overview)

Thus, the proteins of this network, on one hand, help the tumor cell to remodel the ECM, so that it can
detach from the original site and re-attach in another location; one the other hand, components of the
network act as chemokines in order to guide the direction of tumor migration in this process. Below, we
describe the most important aspects of the corresponding mathematical model as was introduced in [8].

3 Mathematical model

The primary model for cancer invasion that we investigate in this paper was first proposed in [8] and
later studied in [2, 14, 15, 26, 46]. It focuses on the role of uPA and includes chemotactic/haptotactic
driven motility, diffusion, and enzyme interactions. In following we give a short model derivation.

In this model, the cancer cells are represented by c, the ECM by the component vitronectin (VN) v, uPA,
PAI-1, and plasmin by u, p, and m, and uPAR via the cancer cell density c. The differential equations
for the different components are described shortly below; refer to [8] for further details.

Cancer cells. The spatio- temporal behavior of the cancer cells c is assumed to be determined by cellular
diffusion, chemo- and haptotaxis due to uPA, PAI-1, and ECM gradients, logistic uPA/uPAR-
complex driven proliferation. In particular:

∂tc = Dc4c− div (χuc∇u+ χpc∇p+ χv∇v) + µ1c

(
1− c

c0

)
+ φ1,3 cu. (3.1)

Extracellular matrix. For the ECM v, no transport terms are included since it is a non-motile structure.
It is assumed though that it is constantly reconstructed, degraded by plasmin, produced indirectly
by the formation of uPA/PAI-1 complex, and neutralized by the PAI-1/VN interaction:

∂tv = µ2v

(
1− v

v0

)
− δvm+ φ2,1 up− φ2,2 vp. (3.2)

Urokinase plasmin activator. The uPA component u is assumed to diffuse, to bind to uPAR receptors
and PAI-1 inhibitors, and to be secreted by the cancer cells:

∂tu = Du4u− φ3,3 cu− φ3,1 pu+ α3c. (3.3)

Plasminogen activator inhibitor. The PAI-1 p is assumed to diffuse, to bind to uPA and to VN, and to
be produced indirectly by plasmin:

∂tp = Dp4p− φ4,1 pu− φ4,2 pv + α4m. (3.4)

Plasmin. The enzyme plasmin m is assumed to diffuse, to be activated by the uPA/uPAR complexes,
and suppressed by the uPA/PAI-1 complexes, to be produced indirectly by the PAI-1/VN complex
formation, and to degrade in time:

∂tm = Dm4m+ φ5,3 uc− φ5,1 pu+ φ5,2 pv − α5m. (3.5)

The model is formulated in non-dimensional variables by scaling with a reference length L = 0.1 cm, a
reference diffusion coefficient D = 10−6 cm2s−1, a rescaled time parameter t = L2D−1, and reference
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densities C, V , U , P , M for the cancer cells, vitronectin, uPA, PAI-1 and plasmin respectively. Keeping
the former notations, the rescaled systems reads as follows:

∂tc = Dc∆c −div(χuc∇u+ χpc∇p+ χvc∇v) + φ1,3cu+ µ1c(1− c),
∂tv = −δvm+ φ2,1up− φ2,2vp+ µ2v(1− v),

∂tu = Du∆u −φ3,1pu− φ3,3cu+ α3c,

∂tp = Dp∆p −φ4,1pu− φ4,2pv + α4m,

∂tm = Dm∆m −φ5,1pu+ φ5,2pv + φ53uc− α5m.

(3.6)

or, in vectorial form, as
wt +A(w) = D(w) +R(w). (3.7)

where w = (c, v, u, p, m)
T

, A(w) = (div(χuc∇u+ χpc∇p+ χvc∇v), 0, 0, 0, 0)
T
,

R(w) =


φ13cu+ µ1c(1− c)

−δvm+ φ21up− φ22vp+ µ2v(1− v)

−φ31pu− φ33cu+ α3c

−φ41pu− φ42pv + α4m

−φ51pu+ φ52pv + φ53uc− α5m

 , D(w) =


Dc∆c

0

Du∆u

Dp∆p

Dm∆m

 , (3.8)

represent the vectors of variables, advection, reaction, and diffusion respectively. We note that the
vectors for advection and diffusion include also derivatives of w, which we have omitted in the notation
for brevity.

The parameter set P we consider in this work is given by



Dc = 3.5× 10−4, χu = 3.05× 10−2, µ1 = 0.25, α3 = 0.215,

Du = 2.5× 10−3, χp = 3.75× 10−2, µ2 = 0.15, α4 = 0.5,

Dp = 3.5× 10−3, χv = 2.85× 10−2, δ = 8.15, α5 = 0.5,

Dm = 4.91× 10−3, φ13 = 0, φ21 = 0.75, φ22 = 0.55,

φ31 = 0.75, φ33 = 0.3, φ41 = 0.75, φ42 = 0.55,

φ51 = 0, φ52 = 0.11, φ53 = 0.75,

. (3.9)

These parameters have been estimated previously in the literature, see [2, 8, 30] for details.

4 Analytical properties of a chemotaxis-haptotaxis model with
logistic source

Solutions of the system (3.6) feature heterogeneous spatio-temporal dynamics in the form of merging,
emerging and travelling concentrations, see e.g. Figure 6.1.

It was in [2] that these dynamics result from the destabilization of single steady states of the system
wt = R(w) by advection. The nature of these dynamics and the size of the system (3.6) necessitate
considerable computational effort, especially for the development of new numerical methods. To alleviate
this burden we employ two simplified “versions” of (3.6) –systems (4.2) and (4.4)-(4.5) below– that are
of the same nature, and whose solutions exhibit similar dynamical behavior as (3.6). We have used these
reduced models to develop the numerical methods presented in this paper. Hence it is deemed necessary
to address them (at least partially) and to describe their relation to the system (3.6).

The first simplified system, (4.2), was identified in the literature (e.g. [19], [36]) as the large time
asymptotic limit of (3.6). For this system, we employed steady state analysis and identified a wide range
of Fourier modes with positive amplification factors; in effect, small perturbations of the steady states
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increase with time. In the numerical Section 6.3, we address the dynamics of the solution of this system,
and note their similarities to the solutions of the system (3.6).

The second system, (4.4), is a regularized version of (4.2). The benefit of this system is that the increase
of the perturbations of the steady states will not result in a blow-up of the solution (see Theorem 4.1),
while the system maintains the dynamics of (4.2). This result is not only interesting in its own right, but
is also fundamental for the development of stable mesh refinement methods. This is so, since the adaptive
mesh refinement methods necessitate (as every numerical method) a minimum degree of smoothness of
the solution. A blow-up in finite time, as is possible in bacterial chemotaxis models, would render any
simulations after the blow-up time meaningless.

In order to analyse the linear stability of the simplified system (4.2), we assume that there exist a stable
and spatially uniform steady state solution ŵ ∈ Rd of a general system of the form wt + A(w) =
R(w)+D(w) on a periodic domain. As spatially uniform, ŵ is also a steady state of the reaction system
wt = R(w). If we neglect terms in O(ε2), a small perturbation w = ŵ + εFk by a Fourier mode Fk

with corresponding wave number k, grows in time, as long as the amplification factor

λk(ŵ) = max
{

Real
{

spec
(
JR(ŵ)− k2JT (ŵ)

)}}
, (4.1)

is strictly positive, otherwise it is damped (cf. [2]). The matrices JR(w) and JT (w) denote the Jacobians
of the reaction R and the general transport operator T such that div T (∇w) = D(w)−A(w). In the case
of the model (3.6) and parameter set P, there is a spatially uniform steady state and a corresponding
range of numbers k with λk > 0, which vanishes if chemo-, haptotaxis are neglected(i.e. if χu = χp =
χv = 0).

This process is now applied on the reduced system that is a chemotaxis model with logistic growth{
∂tc = Dc∆c−∇ · (χc∇u) + µc(1− c),
∂tu = Du∆u+ αc− βu.

(4.2)

In what follows, we demonstrate that small perturbations of the steady states of the reaction (sub-)
system of (4.2) can increase due to positive amplification factors introduced if chemotaxis is included.
In particular, f we neglect the transport terms in (4.2) we get a system of ordinary differential equations
for w = (c, u)T with steady state ŵ = (1, αβ )T , in which case, the Jacobians of reaction and generalized
transport are given by

JR(w) =

(
µ(1− 2c) 0

α −β

)
, JT (w) =

(
Dc −χc
0 Du

)
.

Choosing the parameters

Dc = 3.5× 10−4, Du = 2.5× 10−3, χ = 0.04, µ = 0.1, α = 0.115, β = 0.4, (4.3)

we obtain a range of wave numbers k with positive amplification factors λk(ŵ), as shown in Figure 4.1.
This implies that small perturbations of the steady states can increase in time. Indeed, as we see in
Figure 4.1, chemotaxis (and not the diffusion) is responsible for the growth of perturbations, since the
positive amplification factors vanish in the case χ = 0. Analogous behaviour has been obtained for the
system (3.6) in [2] and for (4.2) with α = β = 1 in [36].

Clearly, a biologically reasonable requirement is that the solution does not blow-up. So, we need to show
that it remains bounded in the L∞ norm, despite the amplification –due to the taxis terms– of possible
perturbations. To this end we employ the saturated chemotaxis flux introduced in [9, 28] and we modify
system (4.2) as follows:

{
∂tc = Dc∆c−∇ · (cQ(χ∇u)) + µc(1− c),
∂tu = Du∆u+ αc− βu,

(4.4)
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Figure 4.1: A plot of λk(ŵ) against k for the system (4.2) and the parameter set (4.3). The case with
χ = 0.04 exhibits positive amplifications factors for a wide range of modes; allowing hence for the increase of
small perturbations of the steady states. When χ = 0 all of the modes maintain negative amplification factors
and the steady states of the corresponding reaction problem remain stable.

where Q is given by

Q(χ∇u) =


χ∇u, if χ|∇u| ≤ S,(

χ|∇u| − S√
1 + (χ|∇u| − S)2

+ S

)
∇u
|∇u|

, otherwise,
(4.5)

for a positive constant S. The function Q limits the flux by ‖Q(χ∇u)‖ < S + 1 = C.
Theorem 4.1. We consider (4.4) on Ω× [0, T ), for a final time 0 < T <∞ and a compact set Ω ⊂ Rd
with a Lipschitz continuous boundary ∂Ω with the outer normal n and the boundary conditions

∂c

∂n
=
∂u

∂n
= 0, x ∈ ∂Ω, t > 0. (4.6)

Let (c(x, t), u(x, t)) be a positive classical solution with bounded non-negative initial data. Then the
following estimates hold,

c(x, t) ≤ ˜̃C max

{
‖co‖L∞(Ω), ‖c0‖L1(Ω) +

T µ|Ω|
4

}
, (4.7)

u(x, t) ≤ ‖u0‖L∞(Ω) +
˜̃Cα

β
max

{
‖co‖L∞(Ω), ‖c0‖L1(Ω) +

T µ|Ω|
4

}
, (4.8)

for all x ∈ Ω̄ and t ∈ [0, T ], where

˜̃C = C̃

(
1 +

2Dcµ

C2

)2
(

1 +

√
C2 + 2µDc

Dc

)2d

, (4.9)

and C̃ depends on Ω only.

Proof. We follow [28] and multiply the first equation of (4.4) by cs−1 for s ≥ 2. Integration by parts,
the chain rule, the bound on Q as well as Young’s inequality yield,

1

s

d

dt

∫
Ω

cs dx = −Dc

∫
Ω

∇c · ∇(cs−1) dx+

∫
Ω

cQ(χ∇u) · ∇(cs−1) dx+ µ

∫
Ω

cs(1− c) dx

≤ −4Dc(s− 1)

s2

∫
Ω

|∇(c
s
2 )|2 dx+

2C(s− 1)

s

∫
Ω

c
s
2 |∇(c

s
2 )| dx+ µ

∫
Ω

cs dx

≤ −4Dc(s− 1)

s2
‖∇(c

s
2 )‖2L2(Ω) +

2C(1− s)
s

∫
Ω

1

2

(
2Dc

Cs
|∇(c

s
2 )|+ Cs

2Dc
cs
)
dx+ µ

∫
Ω

cs dx

≤ −2Dc(s− 1)

s2
‖∇(c

s
2 )‖2L2(Ω) +

C2(s− 1) + 2Dcµ

2Dc

∫
Ω

cs dx.
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The last integral is estimated using the interpolation inequality,

‖ω‖2L2(Ω) ≤ ε‖∇ω‖
2
L2(Ω) +K(1 + ε−

d
2 )‖ω‖2L1(Ω), (4.10)

for a constant K depending only on the domain Ω and a chosen ε, [29]. We choose ε such that

C2(s− 1) + 2Dcµ

2Dc
=

2Dc(s− 1)

s2ε
− C2(s− 1) + 2Dcµ

2Dc
⇒ ε =

2D2
c (s− 1)

C2s2(s− 1) + 2Dcµs2
> 0,

and thus get

C2(s− 1) + 2Dcµ

2Dc

∫
Ω

cs dx =

(
2Dc(s− 1)

s2ε
− C2(s− 1) + 2Dcµ

2Dc

)∫
Ω

cs dx

≤ 2Dc(s− 1)

s2
‖∇(c

s
2 )‖2L2(Ω) +

2Dc(s− 1)K(1 + ε−
d
2 )

s2ε
‖c s

2 ‖2L1(Ω)

− C2(s− 1) + 2Dcµ

2Dc

∫
Ω

cs dx.

Hence the dependence on ∇(c
s
2 ) in the above estimates vanishes and using ε−

1
2 ≤ s

√
C2 + 2µDc/Dc,

we get

d

dt

∫
Ω

cs dx+
sC2(s− 1) + 2sDcµ

2Dc

∫
Ω

cs dx ≤
Ks

(
1 +

(
s
√
C2+2µDc

Dc

)d)
(C2(s− 1) + 2Dcµ)

Dc

(∫
Ω

c
s
2 dx

)2

.

Next, we multiply by the integrating factor eκt, κ = (sC2(s − 1) + 2sDcµ)/2Dc, and obtain after
integrating over [0, t], 0 < t ≤ T and eliminating the integrating factor

∫
Ω

cs(x, t) dx ≤
∫

Ω

cs0 dx+ 2K

(
1 +

2Dcµ

C2(s− 1)

)(
1 +

s
√
C2 + 2µDc

Dc

)d
sup

0≤t≤T

(∫
Ω

c
s
2 dx

)2

(4.11)

Now, the function M(s) = max
{
‖c0‖L∞(Ω), sup0≤t≤T

(∫
Ω
c

s
2 dx

) 1
s

}
satisfies the inequality

M(s) ≤

K̃ (1 +
2Dcµ

C2(s− 1)

)(
1 +

s
√
C2 + 2µDc

Dc

)d 1
s

M
(s

2

)
.

Choosing the sequence s = 2k, k ∈ N, and dissolving the recursion by estimating the value of the

monotonically increasing infinite product
∏∞
k=1

(
1 + 2kC

) d

2k ≤ (2 + 2C)2d, we get

M(2k) ≤ C̃
(

1 +
2Dcµ

C2

)2
(

1 +

√
C2 + 2µDc

Dc

)2d

M(1),

where C̃ = 2 max{K̃, K̃2} depends on Ω only. Taking the limit k →∞, we end up with

‖c(·, t)‖L∞(Ω) ≤ C̃
(

1 +
2Dcµ

C2

)2
(

1 +

√
C2 + 2µDc

Dc

)2d

M(1) = ˜̃CM(1). (4.12)

We further consider the mass of the component c by integrating the the first equation of (4.4) and obtain
applying Gauss’s theorem and using the non-negativity of c,

d

dt

∫
Ω

c dx = µ

∫
Ω

c(1− c) dx ≤ µ
∫

Ω

1

4
dx =

µ|Ω|
4

,
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since c(1− c) ≤ 1/4 for any c ≥ 0. Therefore we have

M(1) = max

{
‖co‖L∞(Ω), ‖c0‖L1(Ω) +

T µ|Ω|
4

}
.

Together with (4.12) the estimation for c follows.

Because of the maximum principle of heat equation, the solution of the following initial value problem,
dω

dt
= −βω + α ˜̃CM(1),

ω(0) = ‖u0‖L∞(Ω),

is an upper bound for u. Hence we can estimate

0 ≤ u(x, t) ≤ ω(t) = e−βt‖u0‖L∞(Ω) + (1− e−βt)α
˜̃C

β
M(1) ≤ e−βt‖u0‖L∞(Ω) +

α ˜̃C

β
M(1),

which proves the L∞(Ω) bound of the density u.

Further analytical results regarding systems of the type (3.6), (4.2) include existence, uniqueness, and
non-negativity of a classical solution for system (4.2) with homogeneous Neumann boundary conditions
and non-negative initial data c0, u0 ≥ 0 , see e.g. [53, 48]. In [32] another simplified cancer invasion
model that features also the degradation of the ECM was studied. By using particular change of variables
and comparison principles the existence, uniqueness, positivity, and boundedness of the solutions was
provided. In the more recent work [49], in the case of a quasi-steady-state ECM remodelling, existence,
uniqueness, and boundedness of the solutions was proven.

5 Numerical Methods

The numerical methods studied in this paper are employed in both one- and two-dimensional domains
(see also Section 6.5). To ease though the presentation we restrict ourselves, for the rest of the current
section, to the one-dimensional case where the interval domain Ω = (a, b) is subdivided into a finite
number of non overlapping, complementary computational cells

Ω =

N⋃
i=1

Ci,

with cell interfaces

a = x1/2, xi+1/2 = xi−1/2 + hi, i = 1, . . . , N − 1, xN+1/2 = b,

and sizes |Ci| = hi > 0 satisfying
∑N
i=1 hi = b− a. Correspondingly the cells and their centers reads as:

Ci = [xi−1/2, xi+1/2), xi =
xi+1/2 + xi−1/2

2
, i = 1, . . . N.

In the paragraphs that follow, we present the space and time discretizations, as well as the mesh adaptivity
method directly to the case of the system (3.6), although they can also be employed for the systems (4.2)
and (4.4)-(4.5).

Space discretization. We discretize the system (3.6) with a FV method, and approximate a solution
with piecewise constant functions

wi(t) ≈
1

|Ci|

∫
Ci

w(x, t) dx, (5.1)
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on every cell. In the following we present the discretization of the advection, reaction, and diffusion
operators,

Di(wh(t)) ≈ 1

|Ci|

∫
Ci

D(w(x, t)) dx, Ai(wh(t)) ≈ −1

|Ci|

∫
Ci

A(w(x, t)) dx,

Ri(wh(t)) ≈ 1

|Ci|

∫
Ci

R(w(x, t)) dx,

where wh(·) = {wi(·)}Ni=1. We discretize the reaction term by evaluating the reaction operator

Ri(wh(t)) = R(wi(t)).

Concerning the diffusion, we use second order three-point central differences when the grid is uniform
and second order five point central differences when the grid is non-uniform. In the latter case the
discretization of the diffusion operator reads

Di(wh(t)) = D
(
α

(−2)
i wi−2(t) + α

(−1)
i wi−1(t) + α

(0)
i wi(t) + α

(+1)
i wi+1(t) + α

(+2)
i wi+2(t)

)
, (5.2)

where D is a diagonal matrix with the vector
(
Dc 0 Du Dp Dm

)
on the diagonal, and the co-

efficients α
(−2)
i , . . . , α

(+2)
i , σi, are chosen such that we get a second order approximation of the second

derivative, i.e.

α
(−2)
i =− 8

(hi−1 − hi+1)

(hi−2 + 2hi−1 + 2hi + 2hi+1 + hi+2)σi
,

α
(−1)
i =8

hi−1(4hi−1 + 4hi−2 + 2hi − 4hi+1 − 2hi+2) + 3h2
i+1

(hi + hi−1)(hi−1 + 2hi + hi+1)σi

+ 8
h2
i+2 + 4hi+1hi+2 + hihi+2 + hi−2(hi−2 − 2hi+1 − hi+2 + hi)

(hi + hi−1)(hi−1 + 2hi + hi+1)σi
,

α
(+1)
i =8

hi+1(4hi+1 + 4hi+2 + 2hi − 4hi−1 − 2hi−2) + 3h2
i−1

(hi + hi+1)(hi−1 + 2hi + hi+1)σi

+ 8
h2
i−2 + 4hi−1hi−2 + hihi−2 + hi+2(hi+2 − 2hi−1 − hi−2 + hi)

(hi + hi+1)(hi−1 + 2hi + hi+1)σi
,

α
(0)
i =− (α

(−1)
i + α

(+1)
i ),

α
(+2)
i =− α(−2)

i ,

σi =h2
i−2 + h2

i+2 + 2(h2
i−1 + h2

i+1) + 3(hi−1hi−2 + hi+1hi+2)

+ hi(hi+1 + hi−1 + hi+2 + hi−2)− hi−2(hi+1 + hi+2)− hi−1(hi+1 + hi+2),

The derivative approximation (5.2) reduces to the common three-point central difference whenever the
grid is uniform around Ci.

For the discretization of the advection, we use the central upwind flux, see [28]. The discrete advection
operator in the conservative formulation reads

Ai(wh(t)) = − 1

hi

(
Hi+1/2(wh(t))−Hi−1/2(wh(t)) 0 0 0 0

)T
. (5.3)

The numerical fluxes Hi+1/2, cf. (5.11), serve as approximations of the taxis fluxes between the cells
Ci and Ci+1. They are given by products of the approximated characteristic velocities Pi+1/2 with the
reconstructions of the cancer cell densities on the cell interfaces. For Pi+1/2 in particular, we compute:

Pi+1/2(wh(t)) = χuLi+1/2(uh(t)) + χvLi+1/2(vh(t)) + χpLi+1/2(ph(t)), (5.4)

where Li+1/2 represents central difference approximations of the first derivative. Since, 2nd order ap-
proximations cannot be obtained by a three point stencil on non-uniform grids, we employ a four point
finite difference approximation centered around the interface, i.e.

Li+1/2(uh) = β
(−1.5)
i+1/2 ui−1 + β

(−0.5)
i+1/2 ui + β

(+0.5)
i+1/2 ui+1 + β

(+1.5)
i+1/2 ui+2,
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where the coefficients are chosen such that we get a third order accurate approximation of the first
derivative,

β
(−1.5)
i+1/2 =

hi+1(6hi − 4hi+1 − 2hi+2) + 2hihi+2

(hi + hi−1)(hi−1 + 2hi + hi+1)(hi−1 + 2hi + 2hi+1 + hi+2)
,

β
(−0.5)
i+1/2 = −hi+1(12hi + 6hi−1 − 2hi+2 − 4hi+1) + hi+2(2hi−1 + 4hi)

(hi−1 + hi)(hi + hi+1)(hi + 2hi+1 + hi+2)
,

β
(+0.5)
i+1/2 =

hi(12hi+1 + 6hi+2 − 2hi−1 − 4hi) + hi−1(2hi+2 + 4hi+1)

(hi+1 + hi+2)(hi + hi+1)(hi−1 + 2hi + hi+1)
,

β
(+1.5)
i+1/2 = − hi(6hi+1 − 4hi − 2hi−1) + 2hi+1hi−1

(hi+1 + hi+2)(hi + 2hi+1 + hi+2)(hi−1 + 2hi + 2hi+1 + hi+2)
.

In order to approximate the gradient of c, we apply the Monotonized Central (MC) limiter [51] which
reads on a uniform grid as:

si(ch) = minmod

(
2
ci − ci−1

h
,
ci+1 − ci−1

2h
, 2

ci+1 − ci
h

)
. (5.5)

where the minmod operator is given by

minmod(v1, . . . , vn) =


max{v1, . . . , vn}, if vk < 0, k = 1, . . . , n,

min{v1, . . . , vn}, if vk > 0, k = 1, . . . , n,

0, otherwise.

(5.6)

For the case of non-uniform one dimensional grids, we define the Generalized MC (GMC) limiter as
follows:

si(ch) = minmod

(
2θi

ci − ci−1

κi−1
,

−2κici−1

κi−1(κi−1 + κi)
+

2(κ2
i − κ2

i−1)ci

κi−1κi(κi−1 + κi)
+

2κi−1ci+1

κi(κi−1 + κi)
, 2θi

ci+1 − ci
κi

)
,

(5.7)
where κi = hi + hi+1, and

θi = 1 +
min{hi−1, hi+1}

hi
. (5.8)

Remark 5.1. The middle term in (5.7) is a second order approximation of the first derivative of c at the
center xi of the cell Ci.

Whenever the grid is uniform, (5.8) yields θi = 2 and (5.7) reduces to the usual uniform grid MC limiter
(5.5). The reason for the local dependence of θi in (5.8) is that the usual MC limiter choice, i.e. θi = 2
for every i in (5.7), can hamper the positivity of the solution over non-uniform grids. We hence set
forth the following proposition, where we prove the maximum principle and Total Variation Diminishing
(TVD) property of the proposed GMC limiter (5.7), (5.8).

The discretization of advection makes use of the linear reconstructions

c+i+1/2 = ci +
hi
2
si(ch), c−i+1/2 = ci+1 −

hi+1

2
si+1(ch). (5.9)

Proposition 5.1. α) The interface reconstructions c±i+1/2 satisfy the maximum priciple, i.e. ci ≤
c+i+1/2, c

−
i+1/2 ≤ ci+1 for increasing data ci ≤ ci+1 and ci ≥ c+i+1/2, c

−
i+1/2 ≥ ci+1 for decreasing data

ci ≥ ci+1.

β) We consider for a constant α > 0 the linear transport equation

∂tc+ α∂xc = 0,

being resolved by the upwind scheme

cn+1
i = cni −

τα

hi
(c+i+1/2 − c

+
i−1/2).
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If the CFL condition

min
1≤i≤N

ατ

hi
≤ 1

2

holds, the numerical solution satisfies the TVD property:

N−1∑
i=1

|cn+1
i+1 − c

n+1
i | ≤

N−1∑
i=1

|cni+1 − cni |.

Proof. α) Equation (5.7) yields
0 ≤ si ≤ minmod

(
2k+
i

ci+1 − ci
hi

, 2k−i
ci − ci−1

hi

)
, if either ci ≤ ci+1 or ci−1 ≤ ci,

0 ≥ si ≥ minmod

(
2k+
i

ci+1 − ci
hi

, 2k−i
ci − ci−1

hi

)
, if either ci ≥ ci+1 or ci−1 ≥ ci,

(5.10)

where

k+
i =

hi + min{hi−1, hi+1}
hi + hi+1

, k−i =
hi + min{hi−1, hi+1}

hi−1 + hi
, 0 ≤ k+

i , k
−
i ≤ 1.

Thus for ci < ci+1, where si, si+1 ≥ 0, we get

ci ≤c+i+1/2 ≤ ci + k+
i (ci+1 − ci) ≤ ci+1,

ci+1 ≥c−i+1/2 ≥ ci+1 − k−i+1(ci+1 − ci) ≥ ci.

And similarly for ci > ci+1, where si, si+1 ≤ 0,

ci ≥c+i+1/2 ≥ ci + k+
i (ci+1 − ci) ≥ ci+1,

ci+1 ≤c−i+1/2 ≤ ci+1 − k−i+1(ci+1 − ci) ≤ ci.

β) We follow [6] and first show that local maxima decrease. Secondly we prove that a monotonically
increasing solution remains monotone. It can be shown analogously that monotonically decreasing
solutions remains monotonically decreasing and that local minima increase.

We first consider the local maximum case cni−1 < cni , ci > cni+1. In this case the slope is limited by
(5.7), si = 0 and si−1 ≥ 0. The updated cell average can be estimated using (5.10):

cn+1
i = cni − λi

(
cni − cni−1 −

sni−1hi

2

)
≤ cni − λi

(
cni − cni−1 − k+

i−1(cni − cni−1)
)
≤ cni ,

where λi = τα
hi

.

Next, we consider monotonically increasing cell averages ci−1 ≤ ci ≤ ci+1. Using the first property
of the proposition, we get cn+1

i ≤ cni − λi(cni − cni ) = cni . We derive also a lower bound,

cn+1
i = cni − λi

(
cni +

hisi
2
−
(
cni−1 +

hi−1si−1

2

))
≥ cni − λi

(
cni + k+

i

(
cni − cni−1

))
+ λic

n
i−1

≥ (1− 2λi)c
n
i + 2λic

n
i−1 ≥ cni−1

where the restriction λi ≤ 1
2 has been used. We conclude that cn+1

i−1 ≤ cni−1 ≤ cn+1
i ≤ cni ≤ cn+1

i+1 ≤
cni+1. Hence the solution remains monotone.

The numerical fluxes which we use are based on the upwind approach and are given as follows

Hi+1/2(wh) =

{
Pi+1/2(wh)c+i+1/2, if Pi+1/2(wh) ≥ 0,

Pi+1/2(wh)c−i+1/2, if Pi+1/2(wh) < 0.
(5.11)
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In the two-dimensional case we consider uniform, quadrilateral meshes. Therefore we can employ the
above numerical fluxes for advection using dimensional splitting. We further discretize the Laplace
operator with common five point finite differences on these meshes.

After space discretization, we end up with the following system of ordinary differential equations

∂twh = A(wh) +R(wh) +D(wh). (5.12)

Time discretization. The numerical approximations of the solution of (5.12) at discrete points in
time tn will be denoted as wn

h .

The discretization of the taxis-terms dictates a limit on the time step τn = tn+1 − tn according to the
CFL condition

max
i,±

τn
Pi±1/2(wn

h)

hi
= CFL ≤ 1. (5.13)

We have compared several numerical methods to approximate (5.12). They are shortly described in the
following part.

EXPLICIT: The first order forward Euler time integration

wn+1
h = wn

h + τn (A(wn
h) +R(wn

h) +D(wn
h)) .

This is the only explicit method, we apply. It requires small time steps for stability reasons due to
the explicit discretization of diffusion. Indeed, τn = O(maxi h

2
i ).

CND: A Crank-Nicolson type method with

wn+1
h − τn

2
D(wn+1

h ) = wn
h + τn

(
1

2
D(wn

h) +R(wn
h) +A(wn

h)

)
.

Since we approximate the diffusion term implicitly, and the reaction term is not stiff we can choose
the time steps according to the CFL condition (5.13) alone.

ROSENBROCK: A general s-stage linearly implicit or Rosenbrock method takes the form:
wn+1
h = wn

h + τn

s∑
j=1

bjkj ,

(Id− aj,jτn J)kj = g(wn
h + τn

j−1∑
ν=1

(aj,ν + γj,ν)kν)− τnJ
j−1∑
ν=1

γj,νkν , j = 1, . . . , s.

(5.14)

for given lower triangular matrices A = (ai,j)
s
i,j=1, Γ = (γi,j)

s
i,j=1, a vector b and

g(wh) = A(wn
h) +R(wn

h) +D(wn
h).

If A, b satisfy specific algebraic conditions, high order of consistency can be reached with these
methods. Stability properties can be achieved by selecting reasonable values for the parameter
matrix Γ and a suitable approximation J of ∂

∂wh
(g(wh) [14]. We choose J = d

dwh
(R(wn

h)+D(wn
h))

since we assume the taxis discretization to be stable in explicit methods.

ROS2: An L-stable, second order consistent two stage Rosenbrock method (s = 2), which has been used
for applications in reaction-diffusion-taxis systems in [16]. It is given by the coefficients

A =

(
1−

√
2

2 0
√

2− 1 1−
√

2
2

)
, Γ =

(
0 0

2−
√

2 0

)
, b =

(
1
2

1
2

)T
. (5.15)
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0 0
1
2

1
4

1
4

1 1
3

1
3

1
3

1 1
3

1
3

1
3

Table 5.1: Butcher tableau for the simplified TR-BDF2 method.

ROS3: An L-stable [21] third order Rosenbrock method (s = 3) with coefficients

A =

 a 0 0

0.5 a 0

0.5 0.5 a

 , γ2,1 = −(3a+ γ3,1 + γ32),

a = 1− 1

2

√
2 cos(θ) +

1

2

√
6 sin(θ), γ3,2 =

1

2
− 3a,

b =
(

1
3

1
3

1
3

)T
, γ3,1 = − 1

1 + 2γ3,2

(
6a3 − 12a2 + 6(1 + γ3,2)a+ 2γ2

3,2 −
1

2

)
,

θ =
1

3
arctan

(√
2

4

)
.

ROS3-ATC: The ROS3 method with Adaptive Time step Control (ATC).

STRANG: A second order splitting approach. Let ΞF (τ)y be a numerically approximated solution of
the initial value problem

∂twh = F(wh), wh(0) = y,

at t = τ , for any operator introduced before, F ∈ {D, R, A}. The Strang-splitting method yields

wn+1
h = ΞT

(τn
2

)
ΞD

(τn
2

)
ΞR(τn) ΞD

(τn
2

)
ΞT

(τn
2

)
wn
h . (5.16)

This method is known to be second order accurate in time, if the methods used to compute
ΞF (τn), are at least second order. We choose the fourth order Runge-Kutta method [18] for the
reaction- and taxis-step and the TR-BDF2 method (modified trapezoidal rule with the second order
backward differential formula) for the diffusion-terms. The TR-BDF2 can be written as an imlicit
Runge-Kutta method, coefficients can be found in Table 5.1.

STRANG-IR: A variant of the STRANG method: it employs the linearly implicit second order method
ROS2 for the reaction term instead of the explicit Runge-Kutta method.

IMEX3: A third order implicit-explicit method following [37]. We consider a splitting of the ordinary
differential equation into an implicit part I and an explicit part E ,

g(wh) = A(wn
h) +R(wn

h) +D(wn
h) = I(wh) + E(wh),

where I = D and E = A+R, and apply an explicit Runge-Kutta method for the explicit part and
a coupled diagonally implicit Runge-Kutta-method to the implicit part resulting in an Implicit-
Explicit (IMEX) scheme. A general s-stage scheme reads

W∗
i = wn

h + τn

i−2∑
j=1

āi,jEj + τn āi,i−1Ei−1, i = 1, . . . , s,

Wi = W∗
i + τn

i−1∑
j=1

ai,jIj + τnai,iIi, i = 1, . . . , s,

wn+1
h = wn

h + τn

s∑
i=1

b̄iEi + τn

s∑
i=1

biIi,

(5.17)
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0
1767732205903
2027836641118

1767732205903
2027836641118

3
5

5535828885825
10492691773637

788022342437
10882634858940

1 6485989280629
16251701735622 −

4246266847089
9704473918619

10755448449292
10357097424841

1471266399579
7840856788654 − 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

0 0
1767732205903
2027836641118

1767732205903
4055673282236

1767732205903
4055673282236

3
5

2746238789719
10658868560708 −

640167445237
6845629431997

1767732205903
4055673282236

1 1471266399579
7840856788654 − 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

1471266399579
7840856788654 − 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

Table 5.2: Tableau for the explicit (first tableau) and the implicit part (second tableau) of the third order
IMEX-Runge-Kutta scheme (IMEX3).

where Ei = E(Wi), Ii = I(Wi), i = 1, . . . , s. The explicit scheme is given by b̄, Ā, and the
diagonally implicit scheme by b, A.

We consider a third order four-stage scheme (s = 4 in (5.17)) constructed in such a way that it
fulfills several stability conditions, e.g. L-stability [23]. The corresponding coefficients can be found
in Table 5.2.

IMEX3-ATC: Third order IMEX method with adaptive time step control. This method is applied in
two further variants: IMEX3-ATC-UPWIND1 uses first order upwind fluxes (si(ch) = 0 in (5.11)),
IMEX3-ATC-IR treats reaction terms implicitly and uses I = D +R.

Adaptivity in time. Adaptive time step control is done conventionally by employing an additional
lower order scheme in order to calculate a local error estimate

εn = ‖wn+1
h −wn+1, low

h ‖1. (5.18)

The approximation wn+1
h is then rejected if

εn ≥ εtol
n = max{10−6, 10−6 ‖wnh‖1}, (5.19)

otherwise it is accepted. In both cases, the time step τn is updated as

τnew = min

0.9
p+1

√
εtol
n

εn
τold,min

i,±

hi CFL

Pi±1/2

 , (5.20)

where the integer p refers to the order of accuracy of the method which is used to compute the comperative
solution wn, low

h , and where hi and Pi±1/2 are updated only after an accepted time step.

We consider adaptive time step control for the third order linearly implicit scheme and the third order
IMEX-Runge-Kutta scheme. Both of them are third order methods and feature an embedded method of
second order (p = 2). Hence, lower order approximations (wn+1, low

h ) can be obtained without much ad-
ditional computational costs. Weights β which replace the regular weights b in the lower order embedded
schemes are given by

β̄ = β =
(

2756255671327
12835298489170 − 10771552573575

22201958757719
9247589265047
10645013368117

2193209047091
5459859503100

)T
,

for the IMEX3 scheme, and by

β =
(

1
2

1
2 0

)T
,
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for the ROS3 scheme.

We have examined in this paragraph, numerous time integration methods with different properties in
order to identify suitable choices for the numerical simulation of systems like (3.6), (4.2), and (4.4)
when combined with the space discretization, introduced previously. We include methods of first order
(EXPLICIT, CND), second order (ROS2, STRANG and STRANG-IR) and of third order (ROS3, IMEX3
and variations). Concerning the diffusion term, the methods ROS3, STRANG, STRANG-IR and IMEX3
are L-stable, which is favourable in diffusion problems, cf. [21], while ROS2 and CND are A-stable
only. Except for EXPLICIT and the ATC variations, all methods use only the CFL condition (5.13) to
determine the time steps, i.e. we expect them to necessitate similar number of time steps. Since the
ATC technique is an additional condition on top of the CFL, we expect the ATC methods to use more
time steps in general and thus to be more expensive but more accurate. We also expect EXPLICIT to
be expensive since it necessitates time steps of order ( 1

N )2. Several methods treat the reaction terms
implicitly (ROS2, ROS3, STRANG-IR, IMEX3-ATC-IR) which might cause additional computational
burden in the case of (3.6) since less sparse matrices are used in the computations. An exceptional
case, for demonstrating the advantages of our second order advection discretization, is the IMEX3-ATC-
UPWIND1 method which combines third order time integration with first order fluxes in space.

Adaptivity in space. We constrain, in this work, the adaptation of the mesh to the 1-dimensional
case, and postpone the treatment of the 2-dimensional case for a subsequent paper.

We consider a (in general) non-uniform grid where the computational cells (their total number, posi-
tion, and size) depend also on the time tn. We use in particular the following notation regarding the
discretization of the domain:

Ω =

Nn⋃
i=1

Cni , |Cni | = hni .

where Nn is the total number of computational cells at the time instance tn.

For the handling of the grid, we employ an h-refinement Adaptive Mesh Refinement (AMR) method
with cell bisection. Due to the cell bisection, the h-refinement leads to the creation of a dyadic tree,
to each level of which a different level of refinement number (to be clarified subsequently) is assigned.
We set Lni to represent the refinement level of the cell Cni (see also [27, 41]). The main components of
h-refinement, as we employ it, are the following:

Grid initialization: We set an initial computational grid comprised of N0 equivalent computational cells
C0
i . We assign the 0th level of refinement in each cell, i.e. L0

i = 0 for every i = 1, . . . , N0. The
initial conditions are evaluated over this mesh.

Monitor function computation: We compute, on each cell, the value of a monitor function Mi(·) that
depends on the numerical solution wn

h and drives the subsequent refinement/coarsening process.

The monitor functions we employ in this work are either based on geometric properties of the
numerical solutions, like the discrete gradient of c,

Mi(wh) = max

{∣∣∣∣2 cni+1 − cni
hni+1 + hni

∣∣∣∣ , ∣∣∣∣2 cni − cni−1

hni + hni−1

∣∣∣∣} , (5.21)

or, its discrete local variation

Mi(wh) = max
{∣∣cni+1 − cni

∣∣ , ∣∣cni − cni−1

∣∣} , (5.22)

or even based on properties of the model like (the hierarchical error estimator of) the characteristic
velocities (5.4):

Mi(wh) = max
{∣∣∣Pni−1/2 − P

n,low
i+1/2

∣∣∣ , ∣∣∣Pni+1/2 − P
n,low
i+1/2

∣∣∣} , (5.23)

where the lower order approximations Pn,low
i+1/2 are computed using two point approximations of the

first derivative, and the higher order Pni+1/2 by using (5.4).
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We have seen that geometric estimators like (5.21) and (5.22) are more robust and problem inde-
pendent than model-driven estimators (5.23), see also [5, 27, 41, 43].

Refinement/Coarsening: We set predefined thresholds Ccoa < Cref, which when violated by the mon-
itor function (above or below) the corresponding cells are marked for refinement/coarsening. In
particular:

- If Mi(w
n
h) > Cref the cell Cni is marked for refinement. A mother cell Cni , of refinement level

Lni = k, when refined (bisected), yields two isodynamous daughter cells of level of refinement
k + 1. Approximate values of the monitor function (using the mother cell) are computed on
the daughter cells, and the refinement process is repeated (at most) nref times. We prescribe
a maximal level of refinement Lmax beyond which no further refinement is allowed.

- If Mi(w
n
h) < Ccoa the cell Cni is marked for coarsening. A cell is coarsened only if its sibling

cell (the cell with which it shares the same mother cell) has also been marked for coarsening.
Approximate values of the monitor function on the (coarse) mother cell are computed by the
daughter cells, and the coarsening process is repeated (at most) ncoar times. Cells that have
just been refined are prevented from being coarsened. Cells of refinement level Lni = 0 can
not be coarsened; the local resolution of grid cannot become coarser than the initial grid.

Grid smoothness: During our numerical investigations, we have noticed that smoothly varying grids
perform better in terms of error approximation (in this type of problems). Smoothly varying grids
are the non-uniform grids, where neighbour cells differ by at most 1 level of refinement, i.e.

|Lni − Lni+1| ≤ 1, i = 1, . . . , Nn − 1. (5.24)

We impose this smoothness condition with an iterative process by enforcing refinement of the
neighbour cells, or by preventing further coarsening of the current cell. We refer to the Section 6.4
for more details.

Solution update: The numerical solutions are updated on the new grid. If a cell of the new grid is
a result of coarsening (i.e a mother cell), the corresponding new numerical value is obtained by
(mass conservative) averaging of the numerical solution over its daughter cells. If a new cell is
the result of refinement (i.e. a daughter cell), the corresponding new numerical value is obtained
by a mass conservative projection of the piecewise polynomial solution from the mother cell to
the daughter cell. In more detail, we construct a second order polynomial , that interpolates the
masses of the mother cell and its two neighbour cells, from which we project the masses to the new
daughter cells. No change is needed if a cell has not been altered by the refinement process. The
solution update step takes place after each one of the nref, ncoar refinement/coarsening processes;
the monitor function is computed on the new mesh before every subsequent refinement/coarsening.

Time evolution: The numerical solution evolves in time with time steps that are uniform in space, thus
the same τn is used for all cells. These time steps are computed by the CFL and by other stability
conditions needed by the chosen time integration method. The numerical methods used are adjusted
to non-uniform grids.

As most AMR methods, h-refinement alternates between the manipulation of the grid and the time evo-
lution of the numerical solution, so, after a successful completion of the Time evolution step, the process
is repeated with the Monitor function computation step. Before the first Time evolution takes place, the
solution is (at most) nini times initially refined by proceeding according to the Refinement/Coarsening
step while making use of the initial data in the Solution update.

6 Numerical study

In this section, we present results of numerical simulations∗, compare the performance of the methods
introduced previously, and demonstrate the capabilities of the h-refinement.

∗All numerical experiments were conducted using MATLAB.
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6.1 Experiment I

Our aim with this experiment is to compare the time integration methods described in Sect. 5. To that
end, we consider the system (3.6) on the one-dimensional interval Ω = (0, 10) together with homogeneous
Neumann boundary conditions. The parameters are chosen according to the parameter set P (3.9). The
following initial conditions are used:

c0(x) = exp

(
−x2

ε

)
,

v0(x) = 1− 1

2
exp

(
−x2

ε

)
,

u0(x) =
1

2
exp

(
−x2

ε

)
,

p0(x) =
1

20
exp

(
−x2

ε

)
,

m0(x) = 0,

, x ∈ (0, 10), (6.1)

where ε = 5×10−3. The initial conditions can be interpreted as an accumulation of cancer cells c, which
start their invasion from the left boundary of the domain. The ECM v is mostly intact, except for the
location of the cancer cell accumulation. Activation of the plasmin m has not taken place up to t = 0,
but the urokinase u and a smaller amount of PAI-1, p, is already on the spot everywhere, where cancer
cells are located.

Figure 6.1 shows the computed time evolution of all the components of the system during the period
t ∈ [0, 500]. A cluster of cancer cells travels to the right degenerating at the same time the ECM. In
areas, where vitronectin is already degenerated to a small level, new clusters, which take the form of
peaks in the cancer cell densities, emerge. This can already be seen at t = 25. The number of these
peaks as well as their heights in c vary in time. Clusters not only emerge, but they also move and merge.
By t = 75 almost half of the domain is invaded by the cancer cells and even when the entire domain is
invaded, the cancer cell density exhibits a dynamically heterogeneous spatio-temporal behavior, which
can be seen by comparison at t = 300 and t = 500. The enzymes of the uPA-system, which regulate the
process of invasion, do not develop isolated clusters and take densities between 0 and 1 throughout the
period t ∈ [0, 500]. The inhibitor PAI-1 density stays smooth mostly, while uPA and plasmin develop
spiky solutions, as they are more directly influenced by the cancer cells. For the computation, we have
employed the numerical method described in Section 5, over a computational grid of 5000 cells along
side with IMEX3 for the time integration.

In order to compare different time integration methods, we consider the shorter domain (0, 5) and the
final time T = 60. We will study how the methods, described in the previous section, perform in this
case. For comparison reasons, we consider a fixed Courant number of CFL=0.49 for every method.

Since the exact solution is not known, we compute a reference solution wref on a very fine grid with
30 000 uniform cells Cref

i , i = 1, . . . , 30 000 using our space discretization (cf. Section 5). In order to
further minimize the temporal error, the reference solution is computed using the high order method
of Dormand and Prince [18] along side with ATC adjusted to preserve the positivity of the numerical
solution† and a strict tolerance of 10−12. We are only interested in a solution at time T and thus we drop
the time index and denote by wref

i the reference solution at T = 60 on the cell Cref
i , the corresponding

piecewise constant approximation by wref and its first component, the cancer cell density, by cref. To
compare the accuracy of the introduced methods in space, we compute the discrete L1-errors of the
cancer cell densities:

E(N) := |cref − cN |L1
disc(Ω) =

N∑
i=1

∣∣CNi ∣∣ |cNi − cref(xi)|, (6.2)

†We accept a time step if both criteria εn < εtoln , and mini w
n
i ≥ 0 hold. In the case εn < εtoln , and mini w

n
i < 0 we

repeat the time integration step using τnew = 0.8 τold. In all other cases we proceed according to the standard ATC (cf.
Section 5).
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Figure 6.1: (Exp. I) Overview of the dynamics of the system (3.6) (over space x) with parameter set P
with Dc = 3.5 10−4. A uniform space discretization (cf. Section 5) with N = 5000 cells and IMEX3 time
integration were employed.

where wN with its first component cN is a numerical solution on N uniform cells CN1 , . . . , C
N
N with cell

centers x1, . . . , xN .

The error of each method we are going to compare, consists of a spacial and a temporal component.
Most methods we use determine their time steps according to the CFL condition (5.13) alone. In these
“CFL-based” cases, the temporal part of the error is proportional to the cell size, i.e.

|cref − cN |L1
disc(Ω) ≤ C1τ

p + C2

(
1

N

)q
≤ C

(
1

N

)min{p, q}

, (6.3)

where p and q denote the orders in time and space of the method used to compute cN , and τ is the
maximal time step used up to T . In the case of explicit diffusion, which is employed in the EXPLICIT
method, time steps are further reduced for stability and the term C1τ

p in (6.3) can be estimated by

C1

(
1
N

)2p
from above whereas the heuristic estimate C1τ

p ≤ C̃1Tε
tol holds in the ATC case. We expect

E(N) to be of order two for all tested methods which make use of our second order space discretization,
except for CND, which is only first order accurate in time. For the IMEX3-ATC-UPWIND1 method
E(N) should exhibit a first order convergence despite the high order time discretization, since it employs
numerical fluxes of first order only.

To verify this convergence behaviour, we compute numerical solutions on N cells for each method for

N ∈ {100, 200, 400, 800, 1000, 2000, 3000, 4000, 5000}

and plot E(N) against N in log-log scale in order to visualize the convergence of the method experi-
mentally. We restrict our numerical experiments to N = 5000 due to the limitations of the comparison
of numerical simulations with reference solutions computed over very fine grids; it has been seen ex-
perimentally that the number of grid cells of the numerical solutions should not exceed the 10% of the
number of cells of the reference solution.

Figure 6.2 indicates that CND does not compute acceptable approximations, although a first order
convergence can be observed. STRANG, IMEX3, ROS2, and ROS3 seem to converge second order in
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Figure 6.2: (Exp. I) Experimental convergence plot of “CFL-based” methods.
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Figure 6.3: (Exp. I) Experimental convergence plot of non “CFL-based” methods.

space. In particular, IMEX3 gives better results than STRANG. Surprisingly, the two stage Rosenbrock
method gives a slightly better accuracy, than the three stage Rosenbrock method.

In Figure 6.3 a slow convergence of the IMEX3 method with first order upwind fluxes can be observed; it
does not produce accurate approximations. The EXPLICIT method however performs better, especially
for more than 2000 computational cells. Both are outperformed by IMEX3-ATC for which a second
order convergence can be seen. Though, the additional computational costs for IMEX3-ATC prevails
the slight advantage in accuracy for large N compared to IMEX3.

Table 6.1 gives an overview of the experimental orders of convergence (EOC), the absolute discrete L1-
error of a sample solution with 2000 cells, and the corresponding computational times. The EOCs are
calculated by the discrete L1-errors for N1 = 2000 and N2 = 4000 cells

EOC =
log(E(N1))− log(E(N2))

log(N2)− log(N1)
. (6.4)

The computed EOC numbers verify our previous expectations. The computational costs of IMEX3
are less than the those of ROS2 and ROS3, since in the latter the linearly implicit method handles
reaction-terms implicitly and this makes them solve systems of linear equations with less sparse ma-
trices. Similarly the variations of STRANG and IMEX3-ATC that employ implicit methods for the
reaction terms (STRANG-IR and IMEX3-ATC-IR) are significantly more expensive albeit slightly more
accurate. The time adaptive ATC methods (using an absolute and relative tolerance of 10−6) do not
offer considerable advantages over the “CFL-based” methods in terms of error and EOC while they are
substantially more expensive. All methods we employed delivered non negative results at the final time
T . However STRANG and STRANG-IR are the only methods we used for which the solution stays non
negative for all time steps between 0 and T . Due to their accuracy and relatively low computational
costs (see Table 6.1), we promote IMEX3, and STRANG since it also preserves positivity, as our favorite
methods of choice.
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EOC rel. CPU times discrete L1 error

CND 1.162 0.32 5.544× 10−1

IMEX3-ATC-UPWIND1 0.675 0.89 5.414× 10−1

STRANG 1.925 1 3.472× 10−2

STRANG-IR 1.927 3.26 3.422× 10−2

EXPLICIT 2.067 3.24 2.425× 10−2

ROS3 1.919 4.52 2.331× 10−2

ROS2 1.942 3.03 2.125× 10−2

IMEX3-ATC 2.009 3.68 1.810× 10−2

IMEX3-ATC-IR 1.930 348.01 1.794× 10−2

ROS3-ATC 1.946 198.04 1.789× 10−2

IMEX3 1.940 0.64 1.775× 10−2

Table 6.1: (Exp. I) EOCs using formula (6.4) with N1 = 2000, and N2 = 4000, relative computational times
(with STRANG as the reference method) and the L1 error computed for N = 2000.
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Figure 6.4: (Exp. II) Overview of the dynamics of the system (3.6) (over space x) with parameter set P
with Dc = 5.3 × 10−3. A uniform space discretization (cf. Section 5) with 5000 cells and the IMEX3 time
integration were employed. The resulting solution is smoother than in Exp. I without exhibiting the same
merging/emerging/travelling concentration phenomena.

6.2 Experiment II

In this experiment we investigate the performance of the methods in the case of a smoother solution.
Namely, we consider once again the system (3.6) on the domain Ω = (0, 10) together with homogeneous
Neumann boundary conditions and parameter set P but choosing an increased diffusion coefficient of
the cancer cells, i.e.

Dc = 5.3× 10−3.

Figure 6.4 exhibits the behavior of the solution and comparing to Experiment I, Figure 6.1, we no longer
see the dynamic phenomena of merging/emerging, and travelling concentrations; the solution has reached
a steady state by t = 300.

In order to estimate errors in this setting we make use of a reference solution wref, computed with the
Dormand and Prince method which we also used to compute the reference solution for Experiment I on
N = 30 000 cells. As previously done, we use a fixed Courant number CFL = 0.49 and only compute
solutions at the fixed time T = 50. Test approximations are computed on the domain Ω = (0, 5)
distributed into N uniform cells with

N ∈ {100, 200, 400, 800, 1000},
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Figure 6.5: (Exp. II.) Experimental convergence plot for four selected methods.

EOC discrete L1 error

CND 0.973 3.933× 10−2

ROS2 2.055 4.203× 10−4

STRANG 1.958 2.341× 10−4

IMEX3 2.154 2.037× 10−4

Table 6.2: (Exp. II) Experimental orders of convergence of four selected methods. The error is computed at
the grid N = 1000 and the EOC by interpolation between N1 = 400 and N2 = 1000.

and errors are calculated according to (6.2).

Following the convergence results of Section 6.1 we restrict the study in this section to the most prominent
methods STRANG and IMEX3 as well the ROS2 and CND. Figure 6.5 indicates the convergence of these
methods. As expected STRANG, ROS2, IMEX3 seem to be second order convergent in space. STRANG
and IMEX3 seem to perform best and are almost indistinguishable.

Table 6.2 presents the EOCs –computed according to (6.4)– with N1 = 400 and N2 = 1000. The discrete
L1-error was computed on N = 1000 cell grids. Comparing with Experiment I, cf. Table 6.1, we see
that the methods exhibit similar EOCs and a significant drop in the actual error, which is due to the
smoother solution that their spatial counterpart resolves.
Remark 6.1. In both the larger and smaller diffusion case the STRANG and the IMEX3 methods have
produced approximations that are among the most accurate and efficient ones, cf. Sections 6.1, 6.2 and
Tables 6.1, 6.2.

6.3 Experiment III

With this experiment we show that the solutions of the reduced system (4.2) equipped with the initial
conditions 

c0(x) = exp

(
−x

2

ε

)
u0(x) =

1

2
exp

(
−x

2

ε

) , x ∈ (0, 2), (6.5)

where ε = 5× 10−3, and the parameter set (4.3), exhibits also merging and emerging phenomena.

Figure 6.6 shows a graphical representation of the cancer cell concentration c as resolved by the nu-
merical method described in Section 5 with N = 5000 uniform computational cells over the domain
Ω = (0, 2); for the time evolution we have employed the STRANG method. As mentioned in Section 4,
merging/emerging and travelling concentrations appear in a way very similar to the c component of the
system (3.6) when the parameters (3.9) are used, cf. Experiment I in Section 6.1 and Figure 6.1.
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Figure 6.6: (Exp. III) A focus view of the c component of the reduced system (4.2). The spatial distribution
for three different time instances shows the merging/emerging/travelling concentration phenomena.

Due to the small characteristic velocities that appear in practice (in a magnitude of 10−2) the same exper-
iment conducted with the system (4.4) and various S ∈ [0, 10−2] yields results that are indistinguishable
from the solution of the system (4.2).

6.4 Adaptive mesh refinement

Next, we investigate the benefits of adaptive mesh refinement by conducting Experiment I (Section 6.1)
again. For our experiments we choose STRANG as time integration method, and the domain Ω = (0, 5),
and set the number of refinement steps nref = 1, ncoa = 1, nini = 3. Further, we fix the maximum
refinement level to be Lmax = 3.

We compute the discrete L1-errors over uniform and non-uniform grids using the formula

E(tn) := |cref, n − cn|L1
disc(Ω)(tn) =

N∑
i=1

∣∣∣CNn
i

∣∣∣ |cni − cref, n(xi)|, (6.6)

where cref, n is the reference solution for the cancer cell density at time tn, computed by the method
of Dormand and Prince on a uniform mesh with 30 000 cells, and c is the the solution obtained by the
method whose error we want to compute. Note that the error E(tn) further depends on the initial
number of computational cells N0.

We consider the absolute gradient of c (5.21) with thresholds Cref = 10, Ccoa = 2.5, and the estimated
discretization error of the characteristic velocities (5.23) with thresholds Cref = 2× 10−5, Ccoa = 1.25×
10−7 as monitor functions for the adaptation of the mesh. In the case of the variation monitor (5.22),
we adapt the thresholds to the initial grid cell number, i.e. Cref = 5

4N0
, Ccoa = Cref

4 .

Further, we propose a modification of the refinement methods that aims for a better regularized structure
of the grid, i.e. we enforce the smoothness condition (5.24) in the following way:

1. If a cell Cni which is to be refined has a neighbour Cnj , j ∈ {i− 1, i+ 1} on a lower level Lnj < Lni ,
we refine the neighbour Cnj as well and iterate this strategy with Cnj .

2. If a cell Cni that is marked for coarsening has a neighbour Cnj on a higher level Lnj > Lni , which is
not marked for coarsening, we do not coarsen Cni .

This “smooth refinement” strategy is employed for the following numerical simulations.

Figure 6.7 displays the numerical solution of the system (3.6) with parameters (3.9) over an adaptively
redefined grid, using the gradient of c as monitor function and the above mentioned thresholds for the
manipulation of the grid. The locality of the grid refinement method is verified by the sizes of the
computational cells.
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(a) Spatial distribution of the solution components at t = 41.
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Figure 6.7: (AMR-Exp. I) The solution of the system (3.6), with parameters and initial conditions as in
Experiment I (Sec. 6.1), by employing AMR according to the gradient of c (5.21), the thresholds Cref =
10, Ccoa = 2.5 and N0 = 100. The size of the computational cells exhibits the (local) refinement of the grid at
areas of large gradients of c.
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(a) Travelling of the front concentration and
emerging of a second concentration for 0 ≤ t ≤
23.
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(b) Emerging of a third concentration which
merges with an existing one while 30 ≤ t ≤ 40.
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Figure 6.8: (AMR-Exp. I) Dynamics of the cancer cell concentration c for 0 ≤ t ≤ 60.
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Figure 6.9: (AMR-Exp. I)Experimental convergence plot of the error (6.6) at t = 50 for the uniform and three
adaptive strategies. Even for higher cell numbers (not showing here), the gradient-based strategy is the most
efficient of the four methods.
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Figure 6.10: (AMR-Exp. I)Time evolution of the error (6.6) for three refinement strategies and three uniform
solutions in Experiment I for t ∈ [0, 35]. Showing also the number of computational cells (range and average)
that the methods employ. Nonuniform solutions exhibit smaller errors than uniform ones while employing
fewer cells.

Figure 6.8 displays the dynamics of the c component of the solution as they are captured by the adaptive
mesh refinement method that we employ (gradient-based monitor function, N0 = 1600 initial grid points,
and STRANG time integration). These involve moving, emerging, and merging of concentrations of the
cancer cell densities.

Figure 6.9 displays the experimental convergence plots of the discrete L1-errors (6.6) at t = 50, against
the average number of cells for the uniform STRANG method and three adaptive strategies. The
average cell number of a numerical solution is given by N̄(tn) = 1

tn

∑n
k=0Nkτk, where Nk is the total

number of computational cell at time tk. For all adaptive strategies we conducted simulations for
N0 ∈ {50, 100, 200, 400, 800, 1600}. For medium/high average-cell-numbers (up to N̄ = 2000) all
three adaptive strategies outperform the uniform, with the gradient-based being the more efficient one.
Even on very fine grids, the gradient-based adaptation yields lower errors than the uniform method.
Both, the gradient and the error based refinement methods converge in our numerical experiments.

Figure 6.10 shows the time evolution of the error (6.6) for the three adaptive strategies on an initial grid
of N0 = 400 cells as well as for various uniform solutions. In the case of the gradient and the variation
strategy methods, the error is smaller than the uniform solution on 1000 cells for t ∈ [0, 35], albeit the
refinement methods uses less cells. Employing discretization errors in monitor functions seems to be
even more beneficial since the error of the characteristic-velocity based refinement method is during all
times t ≤ 35 less than the error of the uniform solution on 3000 cells. Note that this method uses only
1100 cells in average. The variation based refinement also outperforms the uniform method on 3000 cells
except for around t = 23, when a second concentration emerges in the solution, cf. Figure 6.8. The error
of the gradient based refinement method increases linearly in time and thus does not seem to be affected
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Figure 6.11: (AMR-Exp. I) Time evolution of the error (6.6) of two gradient based refinement methods and
three uniform solutions in Experiment I for t ∈ [0, 60]. Showing also the number of computational cells (range
and average) that the methods employ. The adaptive gradient strategy method with smooth refinement is
significantly more efficient than the adaptive gradient without smooth refinement, while using almost the same
amount of grid cells.

by sudden dynamics of the solution. This way it drops below the error of the uniform method on 2000
cells for t ≥ 20.

Moreover, Figure 6.11 demonstrates the advantage of the previously introduced smooth refinement strat-
egy, by exhibiting the error evolution of the gradient based refinement method using N0 = 400 with and
without smooth refinement during the timespan t ∈ [0, 60]. The smooth refinement method produces
solutions close to those on uniform grids with 2000 cells even for large t while the method which does
not enforce smoothness condition (5.24) is closer to the uniform solution on 1000 cells. One can further
see that employing smooth refinement increases the average number of cells only slightly by 12 and thus
does not increase the computational costs significantly. Also the various dynamics of the solution, as e.g.
the first process of merging concentrations around t = 40, have a smaller impact on the method which
employs smooth refinement.

6.5 A 2D experiment

We present results of a 2D-simulation of the system (3.6) which shows similar dynamical phenomena as
in the 1D cases.

We have used IMEX3 over Ω = [−15, 15]2 with uniform discretization with grid size steps h = (0.05, 0.05)T ,
the parameter set P (3.9) and the following initial conditions,

y(x) =


4 + 0.7 sin(0.9x), x < 0,

7 sin(0.9x) + 0.008x3 + 4, 0 ≤ x ≤ 5,

5 + 0.7 sin(4.5) + 0.7 sin(0.9(x− 5)), x > 5,

c0(x) = 1{x2≥y(x1)}(x),

v0(x) = 1− c0(x),

u0(x) = 0.5c0(x),

p0(x) = 0.05c0(x),

m0(x) = 0,

(6.7)

for all x = (x1, x2)T ∈ Ω. We display results in the window Ω̄ = [0, 5]2, which includes 100 × 100 grid
cells, since this domain stays untouched by reflections, which are caused by the homogeneous Neumann
boundary conditions, while 0 ≤ t ≤ 200.

The initial conditions and the simulation results are visualized in Figure 6.12. As time evolves the
accumulated cancer cells disseminate and degenerate the ECM. They travel in negative x2 direction,
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Figure 6.12: (Exp. 2D) Showing here only the cancer cell density c at three time instances.

towards high densities of vitronectin. Formations of heterogeneous patterns of cancer cells, occurs at
areas where the ECM has already degenerated by the propagating cancer cell front. No steady states
have appeared until T = 200.

Conclusion

We address in this work the formation of cancer cell clusters and the dynamics of cancer cell invasion of
the ECM. The model (3.6) that we use, was proposed in [8] and focuses on the role of the serine protease
uPA and includes the action of the urokinase-plasminogen-system on the interaction between cancer cells
and the ECM, represented by vitronectin.

For such type of systems, a (very) large number of computational cells is needed to resolve the dynamics
of the solutions in a consistent way. For smaller cell numbers the numerical approximation errors are
of the order of the dynamics or solutions. For that reason, special numerical techniques are deemed
necessary.

We describe in Section 5, a higher order finite volume method able to resolve the dynamics of the solution
of System (3.6), a wide collection of time integration methods, and the adaptive mesh reconstruction that
we employ. Choosing either the STRANG or the IMEX3 method for the time integration we observe, in
Section 6, an experimental second order of convergence. STRANG in particular, unlike other methods
that have been proposed earlier in the literature for the system (3.6), preserves the positivity of the
solution at every time step without requiring local modifications of numerical quantities (see for instance
[2]). However, even the high order STRANG method necessitates very fine discretization grids to produce
accurate results. To alleviate the computational costs we employ adaptive mesh refinement methods.

In Section 6 we demonstrate the efficiency and accuracy of the mesh refinement technique, in particular
of the h-refinement/cell bisection that we employ. We have noticed, with a series of test scenarios, that
the best results in terms of errors are obtained if a) the gradient of the cancer cells is used as estimator
function for the refinement/coarsening procedure, and b) the grid is smooth (neighbouring cells differ by
at most one level of refinement).

Analytically, we have studied in Section 4 a reduced chemotaxis-haptotaxis model with logistic growth
(4.2), which we have compared to the original system (3.6) in the following sense: as in the case of the
system (3.6) with parameter set P (3.9), so in the case of the system (4.2), we have found parameters
for which the amplification factors of a wide range of Fourier modes are positive. In effect, small
perturbations of the steady states of the reaction problem grow with time due to chemotaxis. We have
confirmed this behaviour also numerically in Section 6.3, and thus, shown that the system (4.2) exhibits
the same phenomena of merging/emerging concentrations. We hence propose it for further development
of numerical methods for chemotaxis-haptotaxis cancer invasion models.

Using a saturated chemotaxis system (4.4),(4.5) we have proved L∞ bounds on the solutions of both
systems; this allows us to suggest/propose the smaller model (4.2), and the corresponding parameter set,
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as a test case for the further development of mesh refinement techniques for the cancer invasion models.
This test case can also be used for the extension of the mesh refinement technique that we have employed
here, to the two dimensional case; a task that we will take upon on a subsequent paper.

As noted in the introduction of this work, this is the first in a series of papers where we aim to study
different biological theories dealing with the invasion of cancer cells on the ECM under different assump-
tions on the bio-chemical interaction pathways. In our future study we concentrate on one particular
type of cancer and make our cancer-growth model more specific. One application that we have in mind
would be the breast cancer, which is of a solid nature and its growth behaviour is quite well-understood
and documented. From a numerical point of view, and based on the wellness of the current results,
our next steps include the further adaptation of our numerical methods over to 2D domains and the
development and analysis of suitable 2D adaptive mesh refinement techniques.
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[46] Z. Szymańska, C.M. Rodrigo, M. Lachowicz, and M.A.J. Chaplain. Mathematical modelling of
cancer invasion of tissue: the role and effect of nonlocal interactions. Math. Models Methods Appl.
Sci., 2009.

[47] M.C.B. Tan, P.S. Goedegebuure, and T.J. Eberlein. Tumor biology and tumor markers. Sabiston
Textbook of Surgery, The Biological Basis of Modern Surgical Practice, 18, 2008.

[48] Y. Tao. Global existence of classical solutions to a combined chemotaxis-haptotaxis model with
logistic source. J. Math. Anal. Appl., 354(1):60–69, 2009.

[49] Y. Tao and M. Winkler. Energy-type estimates and global solvability in a two-dimensional chemo-
taxis–haptotaxis model with remodeling of non-diffusible attractant. J. Diff. Eq., 2014.

[50] S. Turner and J.A. Sherratt. Intercellular adhesion and cancer invasion: a discrete simulation using
the extended Potts model. J. Theor. Biol., 216(1):85–100, May 2002.

[51] B. Van Leer. Towards the ultimate conservative difference scheme. IV. A new approach to numerical
convection. J. Comput. Phys., 23(3):276–299, 1977.

[52] Y. Wei, D.A. Waltz, N. Rao, R.J. Drummond, S. Rosenberg, and H.A. Chapman. Identification of
the urokinase receptor as an adhesion receptor for vitronectin. J. Biol. Chem., 1994.

[53] D. Wrzosek. Global attractor for a chemotaxis model with prevention of overcrowding. Nonlinear
Anal., 59(8):1293–1310, 2004.

[54] A. Zlotnik. Chemokines and cancer. Int. J. Cancer, 119(9):2026–2029, 2006.

30


