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We describe a Discontinuous Galerkin (DG) scheme for variable-viscosity Stokes flow which is a crucial aspect of many
geophysical modelling applications and conduct numerical experiments with different elements comparing the DG ap-
proach to the standard Finite Element Method (FEM). We compare the divergence-conforming lowest-order Raviart-
Thomas (RT0P0) and Brezzi-Douglas-Marini (BDM1P0) element in the DG scheme with the bilinear Q1P0 and biquadratic
Q2P1 elements for velocity and their matching piecewise constant/linear elements for pressure in the standard continuous
Galerkin (CG) scheme with respect to accuracy and memory usage in 2D benchmark setups.

We find that for the chosen geodynamic benchmark setups the DG scheme with the BDM1P0 element gives the expected
convergence rates and accuracy but has (for fixed mesh) higher memory requirements than the CG scheme with the Q1P0

element without yielding significantly higher accuracy. The DG scheme with the RT0P0 element is cheaper than the other
first-order elements and yields almost the same accuracy in simple cases but does not converge for setups with non-zero
shear stress. The known instability modes of the Q1P0 element did not play a role in the tested setups leading to the
BDM1P0 and Q1P0 elements being equally reliable. Not only for a fixed mesh resolution, but also for fixed memory
limitations, using a second-order element like Q2P1 gives higher accuracy than the considered first-order elements.
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1 Introduction and Geophysical Motivation

Numerical simulations of geological and geodynamic processes is an important and growing research field which helps to
interprete geological observations in a physically meaningful manner. Typical questions that are addressed include: How
are sedimentary basins formed (e.g., [1])? How do lithospheric plates collide and how are mountains formed (e.g., [2–5])?
Why do we have plate tectonics on Earth and not on other planets (e.g., [6,7])? What is the rheology of magma [8] and how
does magma move through the Earth and why does it only sometimes result in volcanic eruptions [9]? How does mantle
convection work [7], and was this different in the early Earth [10]? While the rheology of rocks is rather complex and
nonlinear and is best described as viscoelastoplastic, inertial terms are not important for these processes and the governing
equations that need to be solved in this case are often very similar to the incompressible Stokes equations [7, 11–14].
Yet, different than in many classical CFD applications, geological processes have viscosities that vary by many orders of
magnitude over spatially small domains as the viscosity of rocks depends on pressure, temperature, strain rate. The location
of these viscosity jumps are typically not known a-priori but might form spontaneously during a simulation, for example
when a plastic shear band forms [15]. Obviously, geodynamic models need to capture these variations, see, e.g., [9,16,17].
The reliability of the numerical method is influenced by its stability and accuracy for the case of discontinuous model
parameters, cf. [18, 19].

Most geodynamic models contain a Stokes flow component, e.g. [20–22], as typical time scales are long, inertial effects
are negligible and rocks can often be considered nearly incompressible. Therefore, finding a good way of solving the
Stokes system is likely to contribute to a better understanding of, e.g., mantle convection, subduction of tectonic plates or
continental collision. The choice of the discretization method represents the first step in that solution process. Grid-based
methods such as finite differences [12, 23], finite elements and finite volumes [24] are predominantly used. Each of these
methods algebraically yields a saddle point problem with a coefficient matrix that is, typically, very large, ill-conditioned
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and indefinite [25]. Particularly for solving 3D problems, massively parallel systems need to be solved, for which iterative
methods are crucial although finding fast methods is still an open question, cf. [26]. We refer to recent works dealing
with block preconditioning with algebraic multigrid [25,27,28], Krylov subspace methods on decoupled and fully coupled
systems [22, 29] and projection-based preconditioners [30, 31].

The Finite Element Method (FEM) is one of the standard means for the simulation of geodynamic processes used
in, e.g., [32–37]. However, the “natural” trade-off between accuracy and computational expenses accounts for searching
enhanced methods. As discontinuous Galerkin methods have been demonstrated to be very efficient for solving (seismic)
wave propagation in heterogeneous media [38], they might be as useful for solving variable viscosity Stokes problems
as well. Our aim is therefore to test how the Continuous Galerkin (CG) and the Discontinuous Galerkin (DG) methods
compare with the two most commonly used quadrilateral elements for Stokes flow (Q1P0 and Q2P1). We do not consider
the Q1Q1/stab element [39–41], as stabilization of this element is achieved by introducing an artificial compressibility
that dominates for flows mainly driven by buoyancy variations [37]. In geophysical flow models this yields unphysical
pressure artifacts for cases where both the free surface of the Earth and mantle flow are considered, because the driving
density contrast between cold sinking plates and the warmer surrounding Earth’s mantle is much smaller than the density
difference between rocks and air [15,35,36]. In our experience, this results in artificial “compaction” of the Earth’s mantle
if Q1Q1/stab element is used, which makes them unsuitable for these purposes.

The DG method generalizes the FEM by eliminating continuity constraints and providing the tools to handle potential
jumps via numerical fluxes. In this respect it transfers a classical advantage of the finite volume methods to a finite
element approach [42]. Hence, it provides additional flexibility in designing the shape functions that are discontinuous, and
means to stabilize discontinuities or steep gradient regions. DG methods are inherently local requiring less communication
between neighbouring mesh cells. This facilitates the enforcement of local mass conservation (i.e., per mesh cell) [43–45],
the development of multiscale methods [46], hp-adaptivity [47, 48] and parallelization [49, 50]. On the other hand, DG
methods yield additional degrees of freedom compared to CG.

Since about two decades DG methods have become increasingly popular in the mathematical community [51, 52] and
are tested and used more and more in different fields of applications. Geophysical applications using DG methods are
hitherto mainly restricted to seismology (wave modelling, waveform inversion), see, e.g., [38, 53, 54]. Wilcox et al. give
as reasons for employing a DG method (among others) strong wave speed contrasts and the need for h-adaptive non-
conforming meshes to track solution features [38]. Although steep gradients and discontinuities are present in solutions
and material properties of typical geodynamic models, so far DG methods have not been applied to common geodynamic
model benchmarks. The aim of this paper is to realize a first step in this direction. We employH(div)-conforming elements
of Raviart-Thomas and of Brezzi-Douglas-Marini kind. Thus, the velocity approximation is globally divergence free in the
Sobolev space H1, cf. (4c). It is a well-known fact that exactly divergence-free basis functions can be advantageous for the
approximation of the Navier-Stokes and Darcy flows, see, e.g., [55, 56].

This article is organized as follows: in section 2 we give a brief review on the main differences between CG and DG
methods, present the elements, show the derivation of a DG scheme for the Stokes flow, and describe the benchmark setups
we used in the numerical experiments. In particular, we enforce local mass conservation by preserving the divergence-free
condition using div-conforming approximation for velocities in our DG scheme as described in section 2.3. In section 3 we
confer the results of the benchmark setups and the computational costs arising from the different elements and schemes.
Finally, these results are discussed and conclusions are drawn.

2 Derivation of the Numerical Method

2.1 Governing Equations

Stokes flow plays a major role in geodynamic processes like, e.g., mantle convection. It is also called creeping motion
describing a flow where viscous forces dominate over inertial forces. If the material is assumed to be incompressible,
Stokes flow can be described by the following conservation laws of momentum and mass:

−∇ · τ +∇p = −ρgẑ, (1a)
∇ · v = 0, (1b)

where v denotes velocity, p pressure, τ the deviatoric stress tensor, ρ density, g the gravitational acceleration and ẑ the
unity vector pointing in (vertical) z direction. The equation of state specifying the deviatoric stress τ completes the system,

τ = 2µε̇ (2)
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where µ denotes the viscosity and ε̇ ≡ ε̇(v) = 1
2

(
∇v +∇vT

)
the strain rate. In the following, we only consider the 2D

case with (x, z) coordinates and the following boundary conditions,

Free-slip: v · n = 0,
∂v

∂n
= 0 on Γ1 ⊂ ∂Ω, (3a)

No-slip: v = 0 on Γ2 ⊂ ∂Ω, (3b)

where n is the normal and tangential unit vectors on the boundaries Γ1, Γ2 of the open domain Ω; Γ1 ∪ Γ2 = ∂Ω,
Γ1 ∩ Γ2 = ∅.

2.2 Overview – CG and DG

The CG method (classical FEM) is a numerical method for solving (systems of) differential equations. It is based on (i) a
computational domain discretized into cells of finite (not infinitesimal) size (finite elements), (ii) a variational formulation
of the differential equation and (iii) a finite set of shape functions, each one being non-zero only on a small patch of mesh
cells. The shape functions are usually chosen as piecewise polynomials that form a basis of a discrete space approximating
the solution space, cf. section 2.3. Being a linear combination of those shape functions, also the approximate solution is
piecewise polynomial. An FEM is said to be conforming if the approximation it yields is continuous in every point.

The DG method generalizes the FEM in such a way that in general no continuity along the mesh cell edges is enforced.
Thus, the approximate solution is piecewise polynomial, meaning polynomial on every single mesh cell. However, it may
have jumps across the cell edges of the mesh. This jump resembles a non-zero flux from one mesh cell to the adjacent one
given by the cell interface integrals. Describing and handling this flux is the main difference in the numerical scheme for a
CG and a DG method.

2.3 Numerical Scheme

In what follows we will derive a numerical approximation of (1)–(3). We will in particular concentrate on the derivation of
the DG method, since the CG FEM is a standard method also in the framework of geophysical applications. Let Ω ⊂ R2 be
an open, bounded polygonal computational domain and Th (h > 0 is a mesh parameter denoting the maximal edge length)
denote a partition of the closure Ω̄ into a finite number of mesh elements. We denote a general mesh element by E and
set Th := {Ei}i∈I , where I is a suitable index set of all elements. We call two elements Ei, Ej neighbouring elements,
if Ei ∩ Ej contains their common edge. We will only consider quadrilateral elements in this article, but results can be
generalized also to the triangular case.

The approximate solution to our problem (1)–(3) is sought in the space of polynomial functions. We denote by Pk(E)
the space of polynomials of (total) degree ≤ k on a mesh element E and Qk(E) = Pk,k(E), where

Pk1,k2(E) = {p(x1, x2)| p(x1, x2) =
∑

i≤k1
j≤k2

aijx
i
1x
j
2}.

Finite Element Basis Before introducing suitable discrete spaces Xh, Qh which are used for the velocity and pressure
discretization, we first present different finite element bases that are used in our numerical schemes. The elements listed
below are, except for Q1P0, inf-sup stable, i.e., they fulfill the so-called LBB or inf-sup stability condition, see [57].

Q1P0 element: Although proven to be unstable [58] the seemingly easy-to-use Q1P0 element with bilinear velocity
shape functions and piecewise constant pressure is still heavily applied in practice. Therefore, we will use it as a reference
pointing out its benefits and limitations.

Raviart-Thomas element: For elliptic problems this element was introduced in 1977 [59]. We will consider only the
lowest-order Raviart-Thomas element RT0P0. The velocity components can locally be written as RT0(E) = P1,0(E) ×
P0,1(E). Globally, the horizontal velocity component is piecewise linear and continuous in horizontal direction and piece-
wise constant and discontinuous in vertical direction. The vertical velocity component is the other way around, i.e., piece-
wise linear and continuous in vertical direction and piecewise constant and discontinuous in horizontal direction. The
matching pressure space P0 is piecewise constant and discontinuous.

As shown in [60] for the isoviscous case, the RT0P0 element in the corresponding numerical scheme resembles the finite
difference (FD) staggered grid stencil. Raviart-Thomas elements of order k can, therefore, be considered a higher-order
generalization of the FD method working on irregular meshes. Limitations to this consideration are given in section 3 for
geodynamic benchmarks.
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Fig. 1 Degrees of freedom (DOFs) for the elements Q1P0, Q2P1, lowest-order Raviart-Thomas RT0P0 and Brezzi-Douglas-Marini
BDM1P0 (left to right). Crosses and circles denote DOFs for horizontal and vertical velocity, respectively. Squares and arrows denote
pressure and pressure gradient DOFs.
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Fig. 2 Instances of basis functions for (horizontal) velocity component of the elements Q1P0, Q2P1, RT0P0, BDM1P0 (left to right).

Brezzi-Douglas-Marini element: This element was introduced in 1985 [61] following the Raviart-Thomas element in
its approach to design a discrete basis of H0(div,Ω), cf. (4c), see also [62, §III.3]. Locally, it is bilinear like the Q1P0

element, BDM1(E) = Q1(E)2 with Q1(E) defined above. Across mesh edges, it is continuous in normal direction and
discontinuous in tangential direction like the RT0P0 element. The matching pressure space is piecewise constant and
discontinuous.

Q2P1 element: This element is based on a biquadratic approximation for velocity and a piecewise linear approximation
for pressure. On the same mesh this element reaches higher accuracy at increased computational cost compared to the
Q1P0 element. As for the other elements the pressure approximation may encounter discontinuities across mesh edges.
This element is commonly used for discretization of the Stokes flow.

In what follows we use the abbreviation Q1P0 or Q2P1 for the FEM based on using either the Q1P0 or the Q2P1 element,
respectively. On the other hand we use the abbreviation RT0P0 or BDM1P0 for the DG method based on using either the
RT0P0 or the BDM1P0 element, respectively.

Function Spaces The finite element bases Q1P0 and Q2P1 yield well-known continuous finite element methods, see,
e.g., [63, III.§6]. In what follows we define suitable discrete spacesXh, Qh for the discretization of velocity and pressure,
respectively, that will be used in the framework of the discontinuous Galerkin scheme.

Xh = {u ∈ H0(div,Ω) : u|E ∈ RT0(E) or BDM1(E) ∀E, u · n = 0 on ∂Ω}, (4a)

Qh = {q ∈ L2(Ω) : q|E ∈ P0(E) ∀E,
∫

Ω
q = 0}, (4b)

H0(div,Ω) = {u ∈ (L2(Ω))2 : ∇ · u ∈ L2(Ω),u · n = 0 on ∂Ω}. (4c)

Thus, the approximation for the velocity is div-conforming, i.e. included in H0(div,Ω). It has continuous normal
components across elements and will be globally divergence free in the space H0(div,Ω), cf. [60].

Scheme Derivation We now introduce notations for the jump and average of a (scalar or vector-valued) quantity u ∈ Rn,
n ≥ 1, along an edge e = Ei ∩ Ej shared by two neighbouring mesh elements Ei, Ej with the respective outer normal
vectors ni pointing to Ej , and nj pointing to Ei,

[u] ij := uj − ui, 〈u〉ij :=
ui + uj

2
, (5)
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where ui denotes the limiting value of u from the mesh elements Ei along edge e. The analogous notation holds for
uj . Fixing either of the normal vectors ni, nj as belonging to the edge e, we drop the index notation for the jump since
ni = −nj and thus [u] ijnj = [u] jini =: [u]ne. Consequently, we fix either of the normal vectors on interior edges and
refer to it as ne. For boundary edges e ⊂ ∂Ω the notation ne refers to the unique outward pointing normal. Secondly, we
note without proof the following Lemma, cf. e.g., [64],

Lemma 2.1 For a, b ∈ Rn, n ≥ 1, (or a ∈ R, b ∈ Rn, n > 1) the following equality applies:

[a · b] = 〈a〉 · [b] + [a] · 〈b〉 . (6)

Now, we will derive our DG approximation following [42], [65, 4.2 and 6.2], [66, 14.2]. Note that the different approach
of [55] yields similar forms. First, multiplying the momentum conservation equation (1a) with a test function φ ∈ Xh

yields after elementwise integration by parts,∫
E

2µ ε̇(φ) : ε̇(v)−
∫
∂E

φ · (τnE)−
∫
E

p(∇ · φ) +

∫
∂E

pφ · nE =

∫
E

−ρgẑ · φ, (7)

where nE denotes the unit outer normal of the mesh cell E and a : b the so-called Frobenius product, i.e., componentwise
inner product of two matrices. Let us look in more details at the second term summed with respect to the mesh cells:

−
∑
E∈Th

∫
∂E

φ · (τnE) = −
∑
e∈Fh

∫
e

[φ · τ ]ne −
∑
e⊂∂Ω

∫
e

φ · τne. (8)

First, we would like to mention that the integrals along the boundary edges e ⊂ ∂Ω vanish due to the boundary conditions
(3). Indeed, on Γ2 the test function vanishes due to the Dirichlet boundary conditions. On Γ1 we have

∑
e⊂Γ1

∫
e
φµ(∇v+

(∇v)T)ne =
∑
e⊂Γ1

∫
e
φµ(∇v)Tne, since ∇v · ne = ∂v

∂ne
= 0. Furthermore, we recall that Ω is a polygonal domain,

thus on each boundary segment we have a constant outer normal. Applying both conditions from (3a) we finally obtain that

(∇v)Tne =
(∑2

j=1
∂vj
∂x1

ne,j ,
∑2
j=1

∂vj
∂x2

ne,j

)T
= 0 on Γ1.

Further, we exploit Lemma 2.1 and, as argued in [66], we apply the interior penalty method. Thus, we replace the
normal flux term, τn, by the discrete flux, 〈2µ̃ε̇(v)〉ne − σ

|e| [v], where σ is a suitable positive weight parameter, cf.
also, e.g., [42, 4.6], [60]. In our numerical experiments presented in section 3 the parameter σ was chosen to be globally
constant.

−
∑
e∈Fh

∫
e

[φ · τ ]ne = −
∑
e∈Fh

∫
e

[φ] · 〈τ 〉ne + 〈φ〉 · [τ ]ne (9)

= −
∑
e∈Fh

∫
e

[φ] · τne (10)

' −
∑
e∈Fh

∫
e

[φ] ·
(
〈2µ̃ε̇(v)〉ne −

σ

|e|
[v]

)
. (11)

We have also used the fact that τne is continuous across mesh edges for v being the exact solution, cf. [67]. Further, µ̃
denotes an average viscosity value depending on the values of µ on the mesh cells that adhere to the respective edge e. We
choose µ̃ to be the geometric average accommodating the fact that µ may change by orders of magnitude. We note that,
for the chosen benchmark setups, this yields smaller errors than taking the arithmetic or harmonic mean. For other ways of
computing weighted averages in this context compare, e.g., [65, 4.5.2].

We note that the term [v] · 〈2µ̃ε̇(φ)〉 is zero for v being the exact solution. Therefore, we could add it to (or subtract it
from) the previous term without losing consistency. These considerations yield the following bilinear form ah, which will
be used for the numerical scheme,

ah(v,φ) =
∑
E

∫
E

2µε̇(φ) : ε̇(v) +
∑
e∈Fh

σ

|e|

∫
e

[φ] · [v] (12a)

−
∑
e∈Fh

∫
e

[φ] · 〈2µε̇(v)〉ne − ε
∑
e∈Fh

∫
e

[v] · 〈2µε̇(φ)〉ne, v,φ ∈Xh. (12b)

For ε = 1,−1, 0, this is refered to as the symmetric, nonsymmetric or incomplete interior penalty Galerkin method
(SIPG, NIPG, IIPG), respectively. SIPG methods have been introduced in [64], NIPG in [68], IIPG in [69]. We refer also
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to other works, see, e.g., [52,70–73] and the references therein, where full numerical analysis of the discontinous Galerkin
method with SIP for the Laplace equation is available. For more details on the differences of these methods, we refer the
reader to [74, 1.2], [65, 5.3] and the references therein. Numerical results presented in this paper were obtained using the
NIPG (ε = −1) that yielded best results for the considered benchmark problems.

The weak form of the incompressibility condition (1b) yields the bilinear form bh and is given by:

0 = bh(v, q) =
∑
E

∫
E

(∇ · v)q, q ∈ Qh. (13)

To discretize the pressure terms from the momentum equation we extend the bilinear form bh, cf. [65, 6.1],

b∗h(φ, p) = −bh(φ, p) +
∑
e∈Fh

∫
e

[p]φ · ne +
∑
e⊂∂Ω

∫
e

pφ · ne, (14)

where we used that φ · ne is continuous across mesh edges. Note again that the boundary integrals vanish due to eq. (3).
Now, we can state our DG approximation scheme: Find (v, p) ∈Xh ×Qh such that

ah(v,φ) + b∗h(φ, p) =

∫
Ω

−ρgẑ · φ, ∀φ ∈Xh, (15a)

bh(v, q) = 0, ∀q ∈ Qh. (15b)

In [55] analytic properties of a large class of divergence-free DG methods have been investigated. The authors studied
div-conforming spaces, which satisfy the condition ∇ · X(E) ⊆ P (E), where X(E) and P (E) are local spaces for the
approximation of velocity and pressure, respectively. Note that our local element RT0P0 satisfies the above condition. The
use of the local space BDMk+1/Pk for velocity and pressure, respectively, have been analyzed in [75] in the framework
of DG FEM. For a large class of DG methods (including our particular choice (15)) the stability and accuracy have been
investigated theoretically in [55]. In particular, it has been proven that the resulting methods satisfy the inf-sup stability
condition and that the following error estimates hold.

Let us denote by v, p, vh, ph the exact and approximate solutions (velocity vector and pressure), respectively. Moreover
let v ∈ Hk+1(Ω), p ∈ Hk(Ω) is a regular solution and ‖·‖1,h is a suitable discrete H1 norm in the broken Sobolev space
Xh, i.e., ‖uh‖21,h =

∑
E

∫
E

(∇uh)2dx+
∑
e

∫
e
σ
h | [uh] |2 for any uh ∈Xh. Then it holds

‖v − vh‖1,h + ‖p− ph‖L2(Ω) ≤ chk (‖v‖k+1 + ‖p‖k) , (16)

where k ≥ 1, c > 0 is a constant independent of the mesh size h. Moreover, the approximate velocity vh is exactly
divergence-free and the resulting DG methods are conservative, energy-stable and optimally convergent, cf. [55] and [75].

Let us also point out that in [60] the author investigates the use of the RT0P0 element in the framework of divergence-free
DG methods. It has been proven that such a DG scheme is algebraically equivalent to the standard MAC finite difference
scheme, that is often used in engineering applications in order to approximate the Stokes problem. Using this fact, we can
apply the recent result of Li and Sun [76] who have proven superconvergence of the MAC scheme, i.e., the discrete L2

errors of pressure, velocity as well as gradient of velocity are of second order.
In this paper we compare the behaviour of the above DG methods and standard, i.e. continuous finite elements, for some

typical geophysical tests. Recall that when we apply CG-FEM method the space Xh is a discrete space approximating
(H1(Ω))2 with cellwise bilinear Q1 or cellwise biquadratic functions Q2. For the latter the pressure space Qh is the space
of cellwise linear functions with mean value zero. Thus, we do not require that the discrete velocities for CG-FEM are
div-conforming (i.e., in H0(div,Ω)). Note that using the same bilinear forms without edge integrals the formulation above
coincides with the standard variational formulation of incompressible Stokes flow in a CG-FEM setting, see, e.g., [63,
III.§6], [66, 12.2].

2.4 Benchmark Setups

SolCx Benchmark The analytic solution to this benchmark was derived by Zhong [77] and our implementation fol-
lows [22]. We include a Matlab function (SolCx.m) to compute the analytic solution in the online supplement to this article
that is based on the one provided in Underworld [33]. The setup resembles a simplified mantle convection model with a
lateral viscosity jump caused by, e.g., a material interface. The flow is driven by a prescribed smooth density field.
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Fig. 3 Benchmark setups SolCx (left) and Rayleigh-Taylor instability (right) with material viscosities µ1, µ2 and densi-
ties ρ (SolCx setup), ρ1, ρ2 (Rayleigh-Taylor).

Rayleigh-Taylor Instability This fluid-interface benchmark is used to test the velocity solution of gravity driven flows,
see [12, 35, 78]. The boundary between the two fluids is perturbed by a sinusoidal perturbation of low, yet finite, ampli-
tude A. By stretching the domain horizontally while keeping the relative shape of the perturbation we change its wave-
length. This variation affects the maximal values for the vertical velocity at the interface. The analytic velocity solution is
obtained for an infinitesimal amplitude and derived in detail in [78]. It is computed in a separate Matlab function (diap-
Grwth.m) in the online supplement to this article.

3 Numerical Experiments

In this section we describe the methodology for comparison of methods and discretizations for the above benchmarks and
how to quantify computational costs of the different discretizations. All simulations using the RT0P0 element were done
with σ = 1 while for all simulations using the BDM1P0 element σ was set to σ = 1

h , where h denotes the edge length.
This choice yielded the best results.

Note that the system was solved directly and that we did not investigate the performance of the method in larger scale
simulations.

3.1 SolCx Benchmark

The flow in the SolCx Benchmark is driven by a prescribed density field ρ = − sin(πz) cos(πx) in the open domain
Ω = (0, 1)× (0, 1), the gravity g = 1 is normalized. The flow is subjected to free-slip boundary conditions as given in (3a),
see Fig. 3 (left).

We consider two test cases: an isoviscous setup (µ1 = µ2 = 1) and a setup with a lateral viscosity jump of three orders
of magnitude (µ1 = 1, µ2 = 103) at x = .5. For both cases, we computed the discrete L2 error for velocity and for pressure
as well as the H1 error for velocity with numerical quadratures of sufficient order. Having obtained errors on consecutively
refined meshes we can determine the order of convergence for pressure and velocity. Note that we only considered cases
where element edges are aligned with the viscosity jump. Strong variations in the viscosity within elements leads to reduced
order of convergence, cf. [18, 19].

Isoviscous Setup For the discretizations where the velocity is approximated with (bi-)linear basis functions (RT0P0,
Q1P0, BDM1P0) we obtain second order convergence for the velocity measured in L2 and H1 norms. The L2 error
obtained with the RT0P0 element is slightly smaller than for Q1P0 and BDM1P0. Apparently, the RT0P0 element shows the
superconvergence behavior mentioned in section 2.3, cf. [76]. The Q1P0 and BDM1P0 elements are on the same level. The
higher order of the Q2P1 element yields fourth order convergence for the velocity measured in the L2 norm. As the cross
derivatives ∂xvz , ∂zvx vanish locally for the RT0P0 element, it does not converge with respect to the H1 norm and, hence,
its plot is omitted. The other three elements yield H1 errors on about the same level (BDM1P0 smallest, Q2P1 largest).
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Fig. 4 Analytic solution in SolCx benchmark as given by [77] for velocity (arrows) and pressure (color-coded). Left: Isoviscous setup,
µ1 = µ2 = 1. Right: Viscosity jump of three orders of magnitude, µ1 = 1, µ2 = 103. The reference arrow lengths are 2.53 × 10−2

and 3.60 × 10−3, respectively, for the arrow originating at the point (x = 0, z = .5). Note that the pressure is discontinuous in
the variable viscosity setup and the jump is aligned with the viscosity jump. The analytic solution for the isoviscous setup is v =
[− sin(πx) cos(πz); cos(πx) sin(πz)]/4π2, p = − cos(πx) cos(πz)/2π. The analytic solution of the variable-viscosity setup can be
found in [77].

The L2 pressure error differs only slightly for the RT0P0 and the Q2P1 element as well as for the Q1P0 and the BDM1P0

element. For the latter ones it is at least two orders of magnitude smaller and has higher rate of convergence, which seems
to be influenced by superconvergence effects for this particular setup.

Let us consider the errors with respect to the number of degrees of freedom (DOFs) needed to reach a certain accuracy.
The Q2P1 element still yields the smallest velocity error in the L2 norm. On the other hand, the Q1P0 element performs
slightly better than the BDM1P0 element (and a lot better than the Q2P1 element) in terms of the H1 error in the velocity
and the pressure error.

For the velocity and pressure error in the isoviscous SolCx setup see Figs. 5 and 6.

Lateral Viscosity Jump In this setup the velocity errors show a similar behavior as for the isoviscous case, i.e., the
BDM1P0 and Q1P0 element converge with second order to the analytic solution with the error being at the same order of
magnitude, while the Q2P1 element converges with fourth order and, therefore, reaches much higher accuracy at the same
resolution. For the BDM1P0 element the convergence order measured in the H1 norm is only 1.3, approximately, while the
two conforming elements keep the order 2. The pressure errors for these three elements are of similar order and converge
with second order.

Considering the number of degrees of freedom the elements’ performance is similar to the isoviscous case. The Q2P1

element yields the best L2 error for the velocity while the Q1P0 element yields highest accuracy in terms of the H1 error
for the velocity and L2 error for the pressure. For the velocity and pressure error in the SolCx setup with discontinuous
viscosity see Figs. 7 and 8.

We omit the RT0P0 element for this setup as it does not converge to the analytic solution. Due to the simple structure of
this element no coupling of the two velocity components can be captured in the numerical scheme given in section 2.3. As
the cross derivatives ∂xvz , ∂zvx vanish element-wise, shear stress components are not taken into account in the discrete
scheme. Shear stress is zero in the isoviscous SolCx setup but non-zero for discontinuous viscosity. This explains why the
RT0P0 element converges in the isoviscous case but not in the discontinuous viscosity case. We aim to further investigate
this problem in a future study.

We can deduce from Figs. 5 and 7 that the BDM1P0 element has about the same accuracy (in terms of the L2 errors)
as the Q1P0 element for any fixed resolution. This is to be expected as both elements are of the same order, i.e. velocity
is approximated with piecewise bilinear, pressure is approximated with piecewise constant shape functions. The RT0P0

element is computationally cheaper, yielding similar accuracy in simple setups like the isoviscous SolCx setup but fails for
setups with non-zero shear stress. The Q2P1 element, being of higher order, yields higher accuracy and higher order of
convergence at the price of increased computational costs.
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Fig. 5 Isoviscous SolCx Benchmark: L2 (left) and H1 (center) errors for velocity and L2 error for pressure (right) for the four dis-
cretizations Q1P0, Q2P1, RT0P0 and BDM1P0. The slope of the plots corresponds to the order of convergence towards the analytic
solution when increasing the mesh resolution, i.e., decreasing the grid size.

10
3

10
5

10
−10

10
−6

10
−2

Slope: 1.0

#DOFs

L 2
er
ro
r
(v
)

10
3

10
5

10
−6

10
−4

10
−2

Slope: 1.0

#DOFs

H
1
er
ro
r
(v
)

10
3

10
5

10
−10

10
−6

10
−2

Slope: 1.0

#DOFs
L 2

er
ro
r
(p
)

Q1
Q2
RT
BDM

Fig. 6 Isoviscous SolCx Benchmark: L2 (left) and H1 (center) errors for velocity and L2 error for pressure (right) for the four dis-
cretizations Q1P0, Q2P1, RT0P0 and BDM1P0. The slope of the plots corresponds to the order of convergence towards the analytic
solution when increasing the number of degrees of freedom.

10
−2

10
−1

10
−10

10
−6

10
−2 Slope: 2.0

Slope: 4.0

Grid size

L 2
er
ro
r
(v
)

10
−2

10
−1

10
−6

10
−4

10
−2

Slope: 1.28

Slope: 2.0

Grid size

H
1
er
ro
r
(v
)

10
−2

10
−1

10
−6

10
−4

10
−2

Slope: 2.0

Grid size

L 2
er
ro
r
(p
)

Q1
Q2
BDM

Fig. 7 Variable Viscosity SolCx Benchmark: L2 (left) and H1 (center) errors for velocity and L2 error for pressure (right) for the three
discretizations Q1P0, Q2P1 and BDM1P0. The slope of the plots corresponds to the order of convergence towards the analytic solution
when increasing the mesh resolution, i.e., decreasing the grid size.

10
3

10
5

10
−10

10
−6

10
−2

Slope: 1.0

Slope: 2.0

#DOFs

L 2
er
ro
r
(v
)

10
3

10
5

10
−6

10
−4

10
−2

Slope: 0.50

Slope: 1.0

#DOFs

H
1
er
ro
r
(v
)

10
3

10
5

10
−6

10
−4

10
−2

Slope: 1.0

#DOFs

L 2
er
ro
r
(p
)

Q1
Q2
BDM

Fig. 8 Variable Viscosity SolCx Benchmark: L2 (left) and H1 (center) errors for velocity and L2 error for pressure (right) for the three
discretizations Q1P0, Q2P1 and BDM1P0. The slope of the plots corresponds to the order of convergence towards the analytic solution
when increasing the number of degrees of freedom.

Copyright line will be provided by the publisher



12 R. S. Lehmann et al.: Comparison of CG and DG Approaches for Variable-Viscosity Stokes Flow

Table 1 Relative errors erel =
∣∣∣K−Kan

Kan

∣∣∣ for the three elements at ϕ(λ∗
exp) in the middle of the chosen range. Resolution

for all elements fixed at 50 by 50 elements.

erel(λ
∗
exp)

µ2/µ1 Q1P0 Q2P1 BDM1P0

103 4.9× 10−1 1.5× 10−3 5.0× 10−1

101 2.8× 10−1 1.4× 10−3 2.6× 10−1

100 6.0× 10−2 8.4× 10−4 1.0× 10−1

10−3 2.7× 10−1 3.6× 10−4 3.7× 10−1

While the Q1P0 and Q2P1 element keep the L2 order of convergence for the velocity when changing to the H1 norm,
the convergence order of the BDM1P0 element decreases.

3.2 Rayleigh-Taylor Instability

In the Rayleigh-Taylor instability benchmark the flow is driven by the density difference ∆ρ = ρ2− ρ1 of the two material
layers. Both, the density difference ∆ρ = 1 and the gravity g = 1 are normalized. The computational domain is set
to be Ω = (0, λ) × (0, zmax), where zmax = 1, see Fig. 3 (right). The material interface follows a mesh edge with a
sinusoidal perturbation of amplitude A and wavelength λ, i.e., the elements adjacent to the perturbed edge are slightly
deformed. Hence, the mesh is not globally regular anymore. We vary the viscosity contrast 10−3 ≤ µ2/µ1 ≤ 103 and
study the vertical velocity vz at the tip of the sinusoidal perturbation. The magnitude of this velocity also depends on the
wavelength λ, i.e., for every viscosity contrast there is one dominant wavelength λ∗ that yields a maximal magnitude for
the vertical velocity in this location. We vary the wavelength λ in a certain range around the dominant wavelength λ∗exp that
we determined experimentally, see the axis labels in Fig. 9 for the ranges of ϕ = 2π(zmax−zjump)/λ, zmax = 1, zjump = 0.1.

In this setup, the free-slip condition is imposed at the vertical boundaries, no-slip at the horizontal boundaries, see (3).
We run two sets of experiments. Firstly, we fix the resolution to 50 by 50 elements. Secondly, we choose the resolution such
that for all elements it yields approximately the same number of non-zero entries in the system matrix. In both cases we
compute the maximum vertical velocity vz for different wavelengths λ of the sinusoidal perturbation by changing the width
of the domain and we vary the viscosity contrasts between 10−3 and 103, fixing the perturbation amplitude at A = 10−4.
A non-dimensional growth factor Kan = vz

A
2µ2

∆ρ zjumpg
can be analytically derived as given in [78, sec. 6] and [12, sec. 16.2].

We compare the numerically retrieved value of K to the analytic one. For the same reasons as in the previous section we
omit the RT0P0 element here.

We shall first consider the case µ2/µ1 ≤ 1, i.e., the top layer viscosity being less or equal to the bottom layer viscosity,
with fixed resolution of 50 by 50 elements, see Fig. 9, bottom left. The Q2P1 element, as in all other cases, very accurately
resembles the analytic value of the maximum vertical velocity while the Q1P0 and the BDM1P0 elements deviate stronger,
see Tab. 1. Yet, the relative errors for the latter two stay in the same range.

For the same viscosity contrasts, but roughly equivalent memory usage of all three elements (Fig. 9, bottom right), the
Q2P1 element is still the best choice. The relative error for the Q1P0 element is less than half of the error for the BDM1P0

element, see Tab. 2.
In the case µ2/µ1 > 1, i.e. the top layer being more viscous than the bottom layer, the BDM1P0 element yields a

better approximation to the maximum vertical velocity than the Q1P0 element. Still, the Q2P1 element gives much higher
accuracy, see Fig. 9, top left, and Tab. 1. For equivalent memory usage (Fig. 9, top right, Tab. 2), this behavior changes
partially. For some wavelengths at viscosity contrast µ2/µ1 = 103 the BDM1P0 element yields a smaller error, for others
the Q1P0 element does. For µ2/µ1 = 101 the Q1P0 error, all in all, is smaller than the error obtained with the BDM1P0

element.
Similar to the SolCx benchmark, using the Q2P1 element in the Rayleigh-Taylor instability benchmark, see Fig. 9, we

obtain very accurate approximations for any considered viscosity contrast. On the one hand, we can see the BDM1P0 and
Q1P0 elements yielding an error of equal order of magnitude for the bottom layer viscosity being greater or equal to the top
layer viscosity (µ1 ≥ µ2). On the other hand, when the top layer viscosity exceeds the bottom layer viscosity, the BDM1P0

element yields better results than the Q1P0 element.

3.3 Computational Costs

Finally, we list the number of entries in the system matrix for the different discretizations as an indicator for computational
costs of the solution and how much memory its assembly requires, see Tab. 3. It can be observed that the RT0P0 element is
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Fig. 9 Rayleigh-Taylor Instability Benchmark: Non-dimensional growth factor K versus frequency ϕ = 2π(zmax − zjump)/λ, zmax = 1,
zjump = .1. Solid lines give the analytically obtained value Kan at the tip of the sinusoidal perturbation (i.e., where vertical velocity is
maximal). Top to bottom: Viscosity contrasts µ2/µ1 = 103, 101, 100, 10−3. Left: Errors for Q1P0, Q2P1, BDM1P0 at fixed mesh
resolution of 50 by 50. Right: Errors for Q1P0(mesh resolution 90 by 90), Q2P1(40 by 40), BDM1P0 (60 by 60), i.e., such that the
system matrix has approximately 4.5× 105 non-zero entries.

the cheapest one considered here. However, its drawbacks are obvious, as it fails to converge in relevant variable viscosity
benchmark setups.

If one considers memory usage instead of mesh resolution one obtains different observations. For a fixed memory the
Q1P0 element gives a higher accuracy than the BDM1P0 element that seemed to be competitive when fixing the mesh
resolution, cf. Figs. 6, 8.

In any case, regarding fixed memory limitations or fixed resolution, the Q2P1 element has best over-all performance.
Copyright line will be provided by the publisher
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Table 2 Relative errors erel =
∣∣∣K−Kan

Kan

∣∣∣ for the three elements at ϕ(λ∗
exp) in the middle of the chosen range. Resolution

for Q1P0, Q2P1, BDM1P0 element is 90 by 90, 40 by 40, 60 by 60 elements, respectively, yielding approximately the
same memory usage for all three elements (≈ 4.5× 105 non-zero entries in system matrix).

erel(λ
∗
exp)

µ2/µ1 Q1P0 Q2P1 BDM1P0

103 1.6× 10−1 2.4× 10−3 3.5× 10−1

101 9.7× 10−2 2.5× 10−3 1.8× 10−1

100 1.6× 10−2 1.6× 10−3 7.7× 10−2

10−3 9.0× 10−2 7.5× 10−4 2.6× 10−1

Table 3 Number of global degrees of freedom (DOFs) and of non-zero entries (NNZs) in the system matrix on a square
32-by-32-mesh for the four discretizations. Note that the Q1P0 and Q2P1 elements are used in the standard finite element
framework while the RT0P0 and the BDM1P0 elements are used in the DG scheme derived in section 2.3.

Element DOFs NNZs
RT0P0 3136 2.6× 104

Q1P0 3202 4.8× 104

BDM1P0 5248 1.2× 105

Q2P1 11 522 3.1× 105

4 Conclusions

The main aim of this paper was to study behaviour of the DG finite element method based on the use of div-conforming
elements to approximate the Stokes flow with variable viscosity and examine how it compares in terms of accuracy and
memory usage to the standard CG finite element method for some typical geodynamic benchmark setups. In the DG scheme
we employ the Raviart-Thomas (RT0P0) and the Brezzi-Douglas-Marini element (BDM1P0). In contrast to the Q1P0 finite
element they fulfill the LBB stability condition, implying that they are more reliable.

We showed that the overall results are as accurate or more accurate than the ones obtained with the Q1P0 element in a
standard finite element scheme considering a fixed mesh resolution. Yet, the Q1P0 CG method yields better results than the
DG method using the BDM1P0 element when considering a fixed memory limitation. Secondly, being of first order both
of them are computationally less expensive than the Q2P1 element. However, whenever a second-order FEM like Q2P1 is
computationally feasible, higher accuracy can be obtained compared to the DG method based on the BDM1P0 element or
the Q1P0 element in the classical FEM scheme.

The divergence-conforming property of the BDM1P0 and the RT0P0 element has been seen to be advantageous for, e.g.,
Navier-Stokes equations [55] or Darcy flow [56]. However, in the tested benchmark setups this does not produce noticable
benefits. We would like to investigate this point in our future study on different test cases.

The BDM1P0 element yields good results in all tested setups and offers an alternative to the LBB-unstable Q1P0 element.
The setups presented in this article do not lead to common instabilities of the Q1P0 element. However, we want to point
out that for the Stokes flow the reliability of the BDM1P0 element is its major advantage when being compared to the Q1P0

element. This could well be taken as justification to deploy this discretization.
Due to the flexibility of hp-refinement within the DG methods, it is possible to apply low order discretizations in the

vicinity of viscosity jumps, but higher order polynomials in the areas with constant or smoothly varying viscosity. This
might be a promising future direction for complex geodynamic simulations.
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