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Abstract. Deriving potentials for coarse-grained Molecular Dynamics
(MD) simulations is frequently done by solving an inverse problem.
Methods like Iterative-Boltzmann-Inversion (IBI) or Inverse Monte-
Carlo (IMC) have been widely used to solve this problem. The solution
obtained by application of these methods guarantees a match in the ra-
dial distribution function (RDF) between the underlying fine-grained
system and the derived coarse-grained system. However, these meth-
ods often fail in reproducing thermodynamic properties. To overcome
this deficiency, additional thermodynamic constraints such as pressure
or Kirkwood-Buff-Integrals (KBI) may be added to these methods. In
this communication we test the ability of these methods to converge
to a known solution of the inverse problem. With this goal in mind we
have studied a binary mixture of two simple Lennard-Jones (LJ) fluids,
in which no actual coarse-graining is performed. We will further discuss
whether full convergence is actually needed to achieve thermodynamic
representability.

1 Introduction

Molecular Dynamics (MD) simulations can be used to follow the microscopic dy-
namics of atomic-scale processes up to several hundreds of nanoseconds. While this
may be sufficient for many condensed phase systems, many properties of soft con-
densed matter are determined by processes on time and length scales much longer
than that.[1–5] Owing to high computational cost of sampling a vast number of atom-
istic degrees of freedom, the relevant time and length scales in soft matter are often
inaccessible with classical, atomistic MD models. To make these scales accessible with
current computational power the number of degrees of freedom (DOF) of the models
have to be reduced to a degree where a correct physical description of the system is
still guaranteed. This process is commonly referred to as coarse-graining.

Coarse-graining can be achieved with bottom-up procedures in which degrees of free-
dom of an detailed-atomistic, or fine-grained (FG), system are systematically inte-
grated out.[6,7] A major challenge in systematic coarse-graining is the representability
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of the coarse-grained (CG) model, i.e. observables computed with the CG model and
its parent FG model must be the same. In practice, however, full representability
cannot be achieved because the multibody potential of mean force of the CG degrees
of freedom is usually approximated by effective pair potentials. [8–16]

The focus of this work is on iterative inverse coarse-graining methods. Methods of this
class derive effective pair potentials which aim to reproduce certain target proper-
ties of the FG system. Common target properties are the radial distribution functions
(RDFs). The derivation of an effective pair potential reproducing the RDF constitutes
an inverse problem. According to the Henderson theorem [17] this inverse problem has
a unique solution, and the two most common methods to solve this problem are the
Iterative Boltzmann Inversion (IBI)[11] and Inverse Monte Carlo[12] (IMC) methods.
Both methods use an iterative scheme in which an initial guess for the effective pair
potential is updated until convergence between the RDF of the CG system and the
RDF of the FG system is achieved. The representability of the CG model however
crucially depends on how well the effective pair potentials approximate the multibody
potential of mean force associated with the coarse variables and has been discussed by
Noid et al.[18,19] and others.[20–23] While some approaches use thermodynamic con-
straints, selected to represent quantities like the pressure in the iterative optimization
procedure [11,24–26], other coarse graining approaches have emphasized properties of
the pair potentials in terms of the underlying, effective, atomistic interactions.[21,27,
28] While application of thermodynamic constraints in iterative inversion methods
may interfere with the Henderson theorem, in practice it is often considered more
important to recover thermodynamic quantities than to satisfy the Henderson theo-
rem. IBI-derived models have been derived over the last years for various soft matter
systems, including polymers [11,29–31] and liquid crystals.[32]

A systematic study of the method itself was previously reported by Jain et al. and Fu
et al.[33,34] They tested the capability of IBI to converge to a known solution for the
inverse problem. In the two studies, a simple one-component Lennard Jones (LJ) fluid
was taken as a reference or FG system. Both investigated the possibility to recover the
potentials that were applied to generate the target RDFs without loosing any DOF.
The study of Jain et al. shows that even after 1000 iterations full convergence in the
potential has not been accomplished, whereas the structures have converged already
after 10 iterations. This is due to the fact that the structure of such a simple fluid is
mainly determined by short ranged repulsive interactions. This part of the interaction
potential converges much faster than the attractive long range part. To account for
the attractive part constraints can be added to the standard IBI scheme. Application
of these constraints leads to a faster convergence towards the correct potential.[33].
Fu et al. extended the study.[34] They tested the influence of the cut-off and the
capability of the effective pair potential to reproduce the isothermal compressibility.
The authors suggest to choose the cut-off such that the oscillating long range part
of the RDF is removed, since the method is insensitive to this part. Moreover, it can
be shown that effective pair potentials based on IBI lead to lower isothermal com-
pressibility compared to the FG system. With an additional constraint added to the
method the compressibility increases compared to the FG system, but is closer to the
target value.[34]

In this paper we extend these studies for a binary mixture of LJ fluids without loosing
any DOF. We systematically show the strengths and weaknesses of the IBI method
with and without additional constraints and compare them with the IMC method.
We furthermore want to address to what degree convergence is needed to achieve
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appropriate thermodynamic representability with the generated effective pair poten-
tials.

2 Methods

2.1 Iterative Boltzmann Inversion

Generation of effective pair potentials for non-bonded interactions which guarantee
structural agreement at a pair level between the FG and CG system can be achieved
by application of the IBI technique [11]. Here, an effective pair potential is derived
from the potential of mean force (PMF)

U0
ij(r) = −kBT ln grefij (r) (1)

between molecules of two species i and j separated by the distance r, where grefij is
the reference RDF between the two species i and j, kB is the Boltzmann constant
and T is the temperature of the system. The initial guess is usually a poor choice and
lacks the ability to reproduce the target RDF. For that U0

ij gets updated (see Eq. 2)
n-times until convergence between the target RDF and the RDF generated from the
effective pair potential is reached.

Unij(r) = Un−1ij (r) + kBT ln

[
gn−1ij (r)

grefij (r)

]
= Un−1ij (r) +∆Uij(r) (2)

Recent work by Ivanizki revealed that IBI is a modified Newton method [35] based
on an approximation of the Jacobian

∂ log gij
∂Uij

=
1

gij

∂gij
∂Uij

≈ − 1

kBT
I, (3)

I denoting the identity matrix, which becomes exact in the low density limit where
gij = exp(−Uij/kBT ).

RDFs are predominately determined by short ranged repulsive interactions, i.e. a
match in the RDF guarantees a match in the repulsive part of the potential between
the FG and CG system. On the other hand, thermodynamic properties like pressure
are mainly determined by long range attractive interactions, which are not well rep-
resented by IBI potentials. As a result, IBI potentials often overestimate the virial
pressure of the system.

It should be emphasized that, in general, the incorporation of thermodynamical con-
straints violates the Henderson theorem, because there is only one effective pair po-
tential that reproduces the RDF, and the thermodynamical constraints are either sat-
isfied automatically, or they simply do not hold true for the Henderson potential.[17]
Therefore, thermodynamical constraints can only be incorporated by relaxing the ac-
curacy with which the RDF is being matched.

For IBI such a relaxation is difficult to realize because the whole iteration process is
designed to target for a precise match of the RDF. Accordingly, it has been suggested
to intertwine the IBI iteration with somewhat artificial correction steps to enforce
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the validity of thermodynamical constraints. For example, to account for the correct
pressure and to improve on the attractive interactions, an additional update

∆Vij(r) = α

(
1− r

rcut

)
(4)

can be added to the standard IBI procedure [11].This correction is a simple linear
ramp correction that becomes 0 at the cut-off rcut and α at r = 0, where the exact
form of α is discussed in section 3.2. From now this method will be referred to as
P-IBI. Besides this simple linear polynomial there are more complex functions that
can be used for ∆Vij as well. These functions take the density of the system into
account or try to ensure correct pressure via a variational principle.[24–26] Inclusion
of the pressure correction changes Eq. 2 to:

Unij(r) = Un−1ij (r) +∆Uij(r) +∆Vij(r). (5)

It should be pointed out that every gain comes with a cost. The cost in the case of
having matched pressure as well as the RDF is the loss of exact representation of the
compressibility at a coarse-grained resolution.[24]

Besides the RDF another property can be introduced as a target property namely
the Kirkwood-Buff integrals (KBI). These integrals can be related to a variety of
other thermodynamic properties of multicomponent systems like activity coefficients,
solvation free energies, partial molar volumes and the isothermal compressibility.[36]
KBIs are integrals of the RDF over a finite volume [37,38], namely

GVij =
1

V

∫
V

∫
V

[gµV Tij (r12)− 1]dr1dr2 . (6)

In Eq. 6, gµV Tij is the RDF in the grand-canonical ensemble. In the limit V →∞, the

integral in Eq. 6 changes to [38]

G∞ij = 4π

∫ ∞
0

[gij(r)− 1]r2dr (7)

where G∞ij is the KBI in the thermodynamic limit. The KBIs (Eq. 7) should be
formally calculated in grand-canonical simulations, but it was shown by several re-
search groups that the calculation of KBIs is also possible under NpT or NV T
conditions.[39–48] To this end, the running Kirkwood-Buff integral (RKBI), defined
as

GVij(r) = 4π

∫ r

0

[gij(s)− 1]s2ds, (8)

is calculated and G∞ij is approximated by averaging the RKBI in a suitable range of r,
typically between 1.0 nm and 2.0 nm in aqueous solution mixtures, where the RKBI
reaches a limiting plateau value. The justification for this lies first within that density
fluctuations are only local far away from the critical point and second within that cor-
relation distances between the particles are small enough compared to the box size.[48]

The idea proposed by Ganguly et al. is to use RKBIs within the framework of IBI.
This method is called Kirkwood-Buff Iterative Boltzmann Inversion (KB-IBI) [47].
The main objective of this method is to guarantee not only structural, but also ther-
modynamic representability at a coarse-grained level, for systems with multiple com-
ponents. In case of KB-IBI the update is performed according to a ramp correction
as [47]

∆KBIij(r) = α′(Gn−1ij −Grefij )

(
1− r

rcut

)
(9)
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where Grefij is the plateau value of the RKBI calculated from the reference simula-

tions and Gn−1ij is the plateau value of the RKBI after the n − 1th step. The values
for Gij are obtained by averaging the RKBI in a range where the oscillations around
its plateau value are small. The parameter α′ is a system specific prefactor, which,
as a good estimation, lies in the range between 0.01 and 0.1 kJ nm−3 mol−1. [47]
The KB-IBI ramp correction (Eq. 9) can be combined with the regular IBI update
∆Uij(r), in a way similar to the pressure ramp correction in Eq. 5.

Finally, the running integral of the RDF can be considered to compute the update

∆Cij(r) = kBT ln

[∫ r
0
gn−1ij (s)s2ds∫ r

0
grefij (s)s2ds

]
. (10)

This method is called C-IBI according to Oliveira et al.[49] The potential gets updated
n times until convergence between the running integrals of the FG and CG system is
reached.

Unij(r) = Un−1ij (r) +∆Cij(r) . (11)

2.2 Inverse Monte Carlo

The IMC method developed by Lyubartsev and Laaksonen provides another way to
derive effective pair potentials which reproduce a target RDF. [12] In contrast to IBI,
IMC is an exact Newton method [50] and aims to directly fit gij rather than log gij
as compared to Eq. 2, i.e.,

Unij = Un−1ij −A−1(gn−1ij − grefij ), (12)

where

A =
∂gij
∂Uij

(13)

is the corresponding Jacobi matrix. As shown in [12,51,52] this matrix consists of
cross correlation quantities; it can therefore be assembled during the forward simula-
tion, but this requires longer simulation times to achieve sufficiently good statistics.

Instead of solving Eq. 12 exactly, one can reformulate this as a variational problem
and add some penalty term to enhance stability: [53]

∆Uij = arg min ‖A∆Uij − (gn−1ij − grefij )‖2 + λ‖R∆Uij‖2, (14)

because A is often very close to being singular. Eq. 14 is known as Tikhonov reg-
ularization [54]; λ > 0 is the regularization parameter and R is the regularization
operator, which, for example, can be the identity matrix. With this choice of R Eq.
14 can be rewritten as a linear system

(ATA+ λI)∆Uij = AT (gn−1ij − grefij ). (15)

As mentioned before, the major advantage of IMC compared to IBI is the exact update
scheme, in which the elements of the Jacobian matrix can be expressed in terms of
fluctuation quantities following from statistical thermodynamics, whereas IBI uses an
empirical update scheme. Another difference is that for a multi-component system
every individual IMC potential update depends on the match of all target RDFs
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simultaneously. This means that in case of a mismatch of just one of the RDFs,
all interaction potentials that are present in the system are affected. In IBI this
interdependence is not given for multi-component systems. Finally, thermodynamic
constraints are fairly easy to incorporate into the IMC scheme by augmenting the
scheme in Eq. 14 to the effect that the minimization process is restricted over ∆Uij
candidates that maintain a preassigned thermodynamic quantity, as it was previously
done for the surface tension. [53] To enforce the correct virial pressure of a single
component molecular fluid one could restrict the potential update ∆U of Eq. 14 to
satisfy the orthogonality constraint∫ ∞

0

∆U ′(r)rgref (r)r2dr = 0. (16)

But these advantages come with some disadvantages. IMC needs more statistics to
lead to reasonable results and therefore it requires higher computational cost per
iteration. Furthermore, regions of poor sampling might perturb the stability of the
algorithm and thus have to be removed.[55]

3 Simulation Setup

All simulations were performed with Gromacs 4.6.5.[56] For the generation of the
effective pair potentials the Versatile Object-Oriented Toolkit for Coarse-Graining
Applications (VOTCA version 1.3 rc1) [55,57,58] with Gromacs 4.6.5 [56] was ap-
plied.

3.1 Reference Simulation

The target RDFs were calculated from a binary mixture of Lennard-Jones particles
(interaction parameters see Table 1). There were 1000 particles per type in a cubic box
with an initial side length of 5 nm. The simulation time was 50 ns with a time step of 2
fs. For integration of the equations of motion the stochastic dynamics (sd) integrator
of Gromacs 4.6.5 was used with a time constant of 0.5 ps−1.[56] LJ interactions were
treated with the cut-off method and were truncated at a distance of 1.2 nm. The
simulation was run in a NpT ensemble at 1 bar and 85 K with the Parrinello-Rahman
barostat (τp = 0.5 ps).[59,60] Periodic boundary conditions were applied in x, y and
z direction. The analysis of the RDFs was performed over the last 25 ns.

Table 1. Interaction parameters for the reference binary Lennard-Jones system

Interaction σ [nm] ε [kJ/mol]

LJ1-LJ1 0.340 0.98
LJ2-LJ2 0.296 0.84
LJ1-LJ2 0.317 0.91

3.2 Generation of Effective Pair Potentials for Non-Bonded Interactions via
Iterative Inverse Methods

The target RDFs were Boltzmann inverted and used as an input for the methods
described in section 2. It is crucial at this point to remind again that in the study
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presented here no real coarse-graining is performed. The major objective is to test
the ability of the methods to reproduce the generating potentials of the target RDFs.
All simulations were run under NV T conditions taking the average box size from
the reference simulation and its final configuration as the starting configuration. IBI
simulations without any additional constraints were run for 1 ns per iteration for 300
iteration steps. The time step for the integration was 2 fs. As an integrator the sd
integrator of Gromacs 4.6.5 was used.[56] There were three different cut-off values
tested for the LJ interactions: 1.2 nm, 0.85 nm and 0.60 nm. All three interactions
were updated according to Eq. 2 in each iteration step. The same setup was used for
P-IBI. The pressure was corrected by application of Eq. 4 every third iteration, where
an additional scaling factor, f , of 0.0003 is included in the pre-factor α (see Eq. 4).
The pressure correction is applied in VOTCA version 1.3 according to [61]

α = −sign(∆p)0.1kBT min(1, f |∆p|) (17)

where ∆p is the pressure difference between the actual value and the target value.
For the KB-IBI update we followed the recipe of Ganguly et. al. presented in the
supporting information of [47]. 30 preliminary iterations of P-IBI were followed by
50 iterations of KB-IBI update according to Eq. 9. The scaling factor α′ was gradu-
ally decreased from 0.05 for the first 10 iterations to 0.03 for the next ten iterations
and finally to 0.01 for the final 30 iterations. RKBIs were averaged between 0.5 nm
and 0.85 nm. During the C-IBI steps the potential was updated according to Eq. 11.
C-IBI was run for 100 steps and the integrals were evaluated between 0.2 and 0.85 nm.

The IMC simulations were performed without having any thermodynamic constraint
included. The run time per iteration has been increased up to 5 ns. To guarantee
stability of the IMC scheme regions of insufficient sampling were removed from each
RDF (interval for RDF/interaction evaluation see table 2). Parameter like time-step
and integrator were kept the same as in the IBI steps. The potential updates were
performed in cycles, i.e only one interaction got updated per step. Further, we tested
the influence of 30 preliminary steps of P-IBI followed by 4 IMC updates per inter-
action. The update scheme was additionally stabilized by the application of Eq. 14
with regularization parameter λ of different magnitudes (100, 300, 1000).

Table 2. Interval for RDF/interaction evaluation in the IMC scheme

Interaction r(0) [nm] rcut [nm]

LJ1-LJ1 0.32 0.85
LJ2-LJ2 0.27 0.85
LJ1-LJ2 0.29 0.85

3.3 Calculation of Thermodynamic properties

The generated effective pair potentials have been applied to calculate the following
thermodynamic properties: pressure, KBIs, isothermal compressibility, the partial
molar volume and the derivative of the activity coefficient. To this end, 100 ns of MD
simulations were performed in the NV T ensemble. For integration of the equations of
motion the sd integrator was applied.[56] The time step for the integration was 2 fs.
The reference temperature was 85 K. The cut-off for the LJ interactions was chosen
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according to the cut-off within the generation procedure. This means for the derived
potentials a cut-off of 0.85 nm was used. The analysis of the data has been performed
over the last 90 ns.

4 Results and Discussion

In figure 1 the target RDFs for the three interactions (dashed lines) present in the
system are shown together with their underlying LJ potentials (solid lines, Uref ).
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Fig. 1. Reference LJ potentials (solid lines) and target RDFs (dashed lines) for the three
interactions present in the system: LJ1-LJ1 (black), LJ2-LJ2 (red) and LJ1-LJ2 (green).

4.1 Effective pair potentials via different variations of the Iterative Boltzmann
Inversion method

The target RDFs were Boltzmann inverted and the different variations of the IBI
method were executed as described in Section 3.2. For convenience the results are
discussed based on the LJ1-LJ1 interaction. Since the remaining interactions in the
system (LJ2-LJ2, LJ1-LJ2) show similar behaviour, the following discussion can be
assigned to them accordingly.

In figures 2 and 3 the influence of the pressure correction on the convergence of
the IBI method with a cut-off of 0.85 nm is shown. One can see clearly that conver-
gence in the RDF has been reached after 50 steps for IBI (figure 2) as well as for
P-IBI (figure 3). But in both cases the potential has not converged to the reference
potential. Without pressure correction one obtains less attractive potentials after the
IBI process in comparison to the reference potential. This is in agreement with the
fact that RDFs are mainly determined by the repulsive part of the LJ potential. By
approaching a match between the RDFs the short ranged repulsive part of the po-
tential converges faster than the long ranged attractive part. As a consequence the
virial pressure of the system is overestimated by the IBI potentials. As one can see
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further, even after 300 steps the potential well is not matched, although an agreement
in the RDF has been accomplished after 50 steps. Further iterations would lead to a
closer approximation towards the reference potential, but full convergence cannot be
reached within a reasonable number of iterations.

To account for the large virial pressure and the lack of attraction in the resulting
potential the linear pressure correction (see Eq. 4) is applied. This correction in P-
IBI leads to a final potential which is slightly more attractive than the reference
potential, but it is in better agreement with it as the potential obtained from IBI.
Moreover, the method seems to have converged to a stable solution after 80 steps,
i.e. further iteration does not significantly improve the obtained potentials. What we
have shown up to this point is in accordance to what is known from literature for sin-
gle component LJ systems.[11,33,34] Since IBI treats each interaction independently
this is not a surprise. Independent treatment means that an update of one interaction
does not affect the other interactions in the system.[55]
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Fig. 2. IBI: RDFs (dashed lines) and potentials (solid lines) for the LJ1-LJ1 interaction:
reference or target (black), the PMF (red), after 50 iterations (green) after 300 iterations
(blue)

In the next step we investigate the influence of different cut-off values on the con-
vergence of P-IBI. The results are shown in figure 4. In all three cases the RDF is
well-matched after 50 iterations. If the cut-off is short (0.60 nm), the depth of the
potential well closely matches with the reference potential, but the potential decays
too rapidly beyond the minimum. If the cut-off is chosen to be as long as in the
reference simulations (1.20 nm) a secondary minimum has evolved. As mentioned be-
fore, RDFs are mainly determined by short range repulsive interactions. Therefore,
inclusion of long range correlations in IBI iterations leads to a poor convergence in
that part of the potential and this is exactly what we observe for a cut-off of 1.20 nm.
If the cut-off is chosen at the intermediate value (0.85 nm), the final potential is a
bit more attractive compared to the shorter cut-off, but converges faster in the long
range part compared to the longer cut-off.
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Fig. 3. P-IBI: RDFs (dashed lines) and potentials (solid lines) for the LJ1-LJ1 interaction:
reference or target (black), the PMF (red), after 50 steps (green), after 80 steps (blue), after
300 steps (violet)

To determine the optimal cut-off distance for the LJ interaction throughout the IBI
process, one should choose it long enough to get good representation of the potential
beyond the minimum, but also short enough to exclude fluctuations on the very long
distances, which lead to poor convergence of the method. Again this is in accordance
to what is known from literature for a single component system.[34]

In the last step, KB-IBI and C-IBI updates have been investigated and compared
to the previous results. As we see in figure 5, the RDF gets well reproduced by all
IBI methods tested. By having a look at figure 6 one sees that P-IBI and IBI lead to
larger RKBIs compared to the FG reference. The blue (IBI) and the violet (P-IBI)
RKBIs are always above the black target RKBI. KB-IBI updates do not provide a
significant improvement (red curve). If the update gets performed according to the
C-IBI method, the RKBI is matched the best, especially in the longer range (r > 0.60
nm), but in this case the potential (solid green line in figure 5) becomes too repulsive
compared to the reference. The reason why the KB-IBI method (solid red line in fig-
ure 5) does a better job in the reproduction of the potential is because the correction
term shifts the potential directly by adding a ramp potential on top of it (Eq. 9). In
C-IBI the correction has not direct relation to the potential, since the update is based
on matching the integrated RDF over the whole range.

To summarize it, the C-IBI scheme reproduces the target RKBI best by construc-
tion. This is achieved, however, with a potential which deviates significantly from
the reference atomistic potential. Potentials obtained from KB-IBI, P-IBI and IBI do
not match the target RKBI in the long distance range but approximate the reference
atomistic potential better. Agreement of, both, the pair potential and the RKBI with
the atomistic references cannot be achieved with any of the IBI-related methods for
the binary Lennard-Jones system studied in this work. Neither the KB-IBI method
nor the C-IBI method provide an improvement over the P-IBI method in terms of the
reproduction of the reference potential. We note that for the present Lennard-Jones
system a complication arises from the fact that the RKBIs do not converge to a lim-
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iting plateau value but keep on oscillating at long range. This makes it difficult to
apply the KB-IBI update (see Eq. 9), which relies on a limiting plateau value being
found in the RKBI.
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4.2 Effective pair potentials via the Inverse Monte-Carlo Method

Since the goal of IMC is the same as for IBI, i. e. generation of effective pair poten-
tials by achieving a match in the RDF between the CG and FG system, comparable
results are expected.

As we see from the red curve in figure 7, simple application of IMC leads to a com-
plete mismatch in the RDF and a non-physical shape of the potential (figure 8). This
results in a crash of the simulation after a few iterations. It is known that this is
likely to happen if the initial guess, i.e. the PMF, is too far away from the solution
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of the problem. To provide a better starting point 30 preliminary steps of P-IBI are
performed. But from the green curve in figures 7 and 8 we do not see any further
improvement. The algorithm cannot converge to a stable solution. For further sta-
bilization we add a regularization term to the IMC update scheme according to Eq. 14.

A singular value decomposition (SVD) of the matrix A (see Eq. 13) allows an analy-
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Fig. 7. Target RDF between LJ1-LJ1 (black line), RDF after 4 IMC steps without previous
IBI (red line), RDF after 4 steps with previous IBI (green line).

sis on how large the regularization parameter λ has to be. The SVD decomposes the
matrix A to

A = UΣV T =

n∑
k=1

ukσkv
T
k (18)

where Σ is a diagonal matrix with the singular values σ1, ..., σn of A and V (v1, ...vn)
and U(u1, ...un) are both unitary n× n matrices. Now substitution of Eq. 18 in Eq.
15 leads to

∆Uij =

n∑
k=1

σk
σ2
k + λ

(
uT
k (gn−1ij − grefij )

)
vk. (19)

A good regularization parameter λ should be such that it dominates the smallest sin-
gular values (squared) but is itself small compared to the larger ones. The optimal λ
parameter can only be determined if the exact solution is known, which unfortunately
is not the case in practice. Finding good heuristic choices of λ is still a problem that
is intensively studied in the mathematical community.

In our case the SVD analysis shows the smallest singular values of a magnitude
of 100 or below. These are the values we considered to be regularized. So the IMC
method is run with a regularization parameter λ of 100. The red curves in figure 9
show the final result of 4 IMC updates per interaction with a regularization value
of 100. As one can see with additional regularization a match in the RDF could be
achieved and a physical correct looking shape of the potential was obtained for all
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three interactions LJ1-LJ1 (upper panel), LJ2-LJ2 (middle panel) and LJ1-LJ2 (lower
panel). Nevertheless the generated potentials are a bit too attractive compared to the
reference potentials (black lines in all the panels of figure 9). That is why larger reg-
ularization parameter of 300 and 1000 are tested. These larger values lead to a better
approximation towards the reference potential (green lines λ = 300 and blue lines
λ = 1000 in figure 9). Especially with λ = 1000 the potentials for the LJ1-LJ1 and
LJ1-LJ2 interaction could almost be fully recovered. Both potentials show only minor
divergence in the long-range part of the potential. Beyond that the generated LJ1-LJ2
potential has a slightly deeper potential well. The generated LJ2-LJ2 potential stays
a bit more attractive for both larger λ values.

For further calculations we take the potentials generated with a regularization pa-
rameter of 1000. Although this value might lead to a too strong dominance of the
regularization term over the data fit term in Eq. 14, it leads to the best reproduction
of the underlying potentials for all three interactions.

In this section we could show that the run of previous IBI steps and addition of
a regularization term stabilizes the IMC method. Without these auxiliary steps the
algorithm did not converge to a stable solution. But with them, comparable results
to the P-IBI method are obtained as shown in figure 10. In this graph the results of
P-IBI after 80 steps and the regularized IMC run (λ = 1000) after 4 steps (with pre-
liminary 30 P-IBI steps) for the LJ1-LJ1 interaction are compared. One sees clearly
that the IMC method results in a better reproduction of the reference Lennard-Jones
potential than the P-IBI method does. This also holds true for the LJ1-LJ2 inter-
action. The final LJ2-LJ2 interaction is for both methods nearly the same, but in
both cases slightly too attractive. Overall it seems that the interdependence of the
potential update in IMC leads to an improvement in the reproduction of all poten-
tials present in a binary system. Compared to P-IBI also less iterations are needed to
obtain reasonable well matched RDFs and potentials. But as there is no free lunch,
the fewer amount of iterations comes with the cost of a longer run time per iteration.
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4.3 Thermodynamic quantities

The generated effective pair potentials are now further evaluated as described in Sec-
tion 3.3. Before we start with the KB analysis, we first investigate how well the RDFs
are reproduced for the different potentials. In figure 11 we see the RDFs for the LJ1-
LJ1 interaction in good agreement with the FG reference (target RDF) even beyond
the cut-off for mostly all of the applied methods. Only the KB-IBI derived potentials
lead to a small shift in the RDF towards smaller distances. The LJ2-LJ2 RDFs (not
shown here) obtained with IMC and KB-IBI potentials show a slightly larger first
peak, whereas slightly smaller first and second maxima are obtained with the C-IBI
derived potential. For the LJ1-LJ2 interaction the RDF (not shown here) obtained
with the KB-IBI potential shows a first and second maximum which are too large,
whereas the other methods are in good agreement with the reference. So in general
one can say that an update based on the KB-IBI method comes with the cost of less
structural accuracy in the production run. This structural inaccuracy might be re-
lated to the fact, that KB-IBI targets to match a quantity which is mainly determined
by the long-range part of the potential, whereas the RDF is mainly determined by
the short-range part of the potential. Thus to get accurate structural representation,
it may be preferable not to match the reference potential exactly. It may be more
important that the update of the generating method focuses on the short-range part
of the potential, since this is the part which mainly is determining the RDF.

In order to calculate thermodynamic quantities using KBIs obtained from molec-
ular simulations, finite size artefacts should be considered. To this end, Ganguly et
al. applied a tail correction to the RDF and studied the dependence of the RKBI
on system size in NpT simulations.[48] They could show that for sufficiently large
systems, the RKBI approaches a limiting plateau value, which corresponds to the
correct thermodynamic limit (Eq. 7). In particular, this could be demonstrated by
comparing the KBIs obtained by means of this approach with an alternative method
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introduced by Schnell et al. [62,63] These authors showed that KBI values in the ther-
modynamic limit can be obtained from an analysis of particle number fluctuations
in small sub-volumes (sub-boxes) Vs ⊂ V in simulations of closed NV T (or NpT )

systems. By following the formalism of Hill,[64] they could show that SKBIs (GVs
ij ,

defined below) scale linearly with the inverse of system size Ls = V
1/3
s of these small

subboxes:[62]

GVs
ij = G∞ij +

a

Ls
(20)

The small boxes can be considered as grand-canonical ensembles embedded in a larger
box, which acts as particle bath with which an exchange of particles and energy takes
place. Assuming our simulation box (NV T or NpT ) with size L is large enough
compared to the small box with size Ls, this method can be applied for our system
as well. The SKBIs (see Eq. 20) are calculated from particle number fluctuations in
these small sub-boxes according to: [63]

GVs
ij = Vs

[
〈NiNj〉 − 〈Ni〉〈Nj〉

〈Ni〉〈Nj〉
− δij
〈Ni〉

]
(21)

where Ni is the particle number of type i in the sub-box with the volume Vs and δij is
the Kronecker delta. The averages are taken over sub-boxes randomly inserted along
the trajectory of the NV T system. Following this procedure, SKBIs are calculated for
various sub-box sizes (Ls). From these calculations the KBIs in the thermodynamic
limit can be obtained via Eq. 20. To make use of this equation, first the regime where
the SKBIs (Eq. 21) scale linear with the inverse box size has to be identified and
second this regime has to be extrapolated for Ls → ∞ or 1/Ls → 0. In table 3 the
limiting KBI values (G∞ij ) for all interactions with different generating potentials are
presented. In figure 12 the plots from which the limiting KBI values are obtained are
shown. Since we choose a spherical shape for the sub-boxes, the radii of these spheres
is used as size Ls.
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Table 3. Limiting KBI values for the interactions LJ1-LJ1, LJ2-LJ2,LJ1-LJ2 for different
generating potentials

Method G∞11 (nm3) G∞22 (nm3) G∞12 (nm3)

atomistic -0.054 -0.029 -0.032
IBI -0.055 -0.031 -0.031
P-IBI -0.055 -0.030 -0.030
KB-IBI -0.054 -0.023 -0.034
C-IBI -0.063 -0.045 -0.021
IMC -0.054 -0.025 -0.033

In table 3 the limiting KBIs for the different generating potentials are listed. The
KBIs obtained from potentials derived via IBI and P-IBI slightly underestimate the
atomistic reference for the LJ1-LJ1 and LJ2-LJ2 interaction. They overestimate the
LJ1-LJ2 KBI. The potentials derived via KB-IBI and IMC show the best reproduction
of the KBI for the LJ1-LJ1 interaction. They underestimate the KBI of the LJ2-LJ2
interaction and overestimate the KBI for the LJ1-LJ2 interaction. It is interesting to
see that the C-IBI method shows the poorest performance in reproducing the KBIs
for all interactions, although this method shows the best fit in case of the RKBIs. A
reason for this mismatch might be that finite size effects have a too strong influence
on the potentials derived via C-IBI. This also applies for the KB-IBI method. But in
case of KB-IBI the underlying potential is closer to the reference one than it is the
case for C-IBI. This might lead to the better representability of the KBI by potentials
derived via KB-IBI compared to potentials generated via C-IBI.

Having obtained the limiting KBI values, we calculate the isothermal compressibility,
κT , of the system and the partial molar volume for each of the particles, v1 and v2.
Following the KB theory the compressibility can be calculated as [36]

κτ =
ζ

η kBT
(22)

and the partial molar volume for particle type LJ1 as [36]

v1 =
1 + ρ2(G∞22 −G∞12)

η
(23)

and for type LJ2 respectively as [36]

v2 =
1 + ρ1(G∞11 −G∞12)

η
(24)

where
ζ = 1 + ρ1G

∞
11 + ρ2G

∞
22 + ρ1ρ2(G∞11G

∞
22 −G∞2

12 ) , (25)

and
η = ρ1 + ρ2 + ρ1ρ2(G∞11 +G∞22 − 2G∞12) , (26)

ρ1 is the number density for particle type LJ1, G∞11 is the limiting KBI for the LJ1-LJ1
interaction, ρ2 is the number density for particles type LJ2, G∞22 is the limiting KBI
for the LJ2-LJ2 interaction and G∞12 is the limiting KBI for the LJ1-LJ2 interaction.
[36]
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To complete the KB analysis, the derivative of the activity coefficient, γ1, with respect
to the mole fraction of the mixture, x1, for particle type LJ1 is calculated.[65](

∂ ln γ1
∂ lnx1

)
p,T

= − ρ2x1(G∞11 +G∞22 − 2G∞12)

1 + ρ2x1(G∞11 +G∞22 − 2G∞12)
. (27)

The results for the KB analysis together with the virial pressure and the average
energy density of the system are presented in table 4.

Table 4. Virial pressure p in [bar], the isothermal compressibility κτ in [10−9m2/N], the
partial molar volumes v1 and v2 in [nm3], the derivative of the activity coefficient

(
∂lnγi
∂lnxi

)
p,T

and the total energy density in [10−22kJ/nm3] for the different generating potentials

Method p κτ v1 v2
(
∂lnγ1
∂lnx1

)
p,T

Energy density

atomistic 1.0 1.07 0.0298 0.0208 0.133 -1.762
IBI 942.4 0.83 0.0296 0.0207 0.176 -0.836
P-IBI 16.7 1.31 0.0298 0.0204 0.182 -1.739
KB-IBI 609.8 1.02 0.0315 0.0208 0.055 -1.135
C-IBI 2317.9 0.71 0.0256 0.0172 0.726 0.321
IMC 413.1 0.99 0.0308 0.0208 0.089 -1.442

As one sees from table 4 the reference pressure of 1 bar is not matched with any
of the derived potentials. The P-IBI potentials provide the best approximation of the
reference value, but in this case the compressibility is slightly overestimated com-
pared to the atomistic reference. C-IBI potentials generate the highest virial pressure
compared to all other potentials which is due to a mismatch of the C-IBI potentials
in the attractive and repulsive regions (see figure 5). In case of the IBI method, the
potential well is too high which also leads to more repulsion between the particles and
as a consequence to a larger virial pressure. The potentials generated via IMC also
overestimate the virial pressure despite that all three IMC potentials are closest to
the atomistic reference potentials. This may be explained because IMC potentials are
slightly more repulsive in the tail compared to reference potential (see figure 9). This
shows that even small differences in the potential have a big impact on the pressure of
the system. Moreover it shows how well the long range part of the potential has to be
matched to achieve the correct pressure. The KB-IBI potentials also overestimate the
virial pressure of the system, but reproduce the compressibility of the system quite
well compared to the atomistic reference. In general, the compressibility is under-
estimated if the potential is too repulsive compared to the atomistic reference. The
partial molar volumes of the two different components agree well with the reference
values for nearly all potentials, except the C-IBI generated potentials. This results
from the poor agreement of the limiting KBIs with the atomistic reference as we can
see from figure 12. The derivatives of the activity coefficient overestimate the refer-
ence values for mostly all IBI potentials. The IMC and KB-IBI potentials however
underestimate this quantity.

All the results of the KB analysis can be related to how well each method could
reproduce the limiting KBIs compared to the target system. A weakness of the small-
system method applied to calculate the limiting KBIs is the reliability of the linear
fit, especially if the differences have a small magnitude. But from the thermodynamic
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analysis we see that properties that are insensitive to the long range part of the poten-
tial can be reproduced by all applied methods in good agreement with the atomistic
reference. To achieve a better match in a quantity, e.g. the derivative of the activity
coefficient, that is mainly determined by the tails of the potential, a better recon-
struction of this part for all interactions in the system has to be guaranteed.

Finally the average energy densities of the systems have been compared. This quantity
reflects how well the different methods could reproduce the potentials for all inter-
actions present in the system. P-IBI potentials reproduce the energy density most
accurately. Here all the generated potentials have a slightly deeper minimum com-
pared to the atomistic reference potentials. KB-IBI and IMC potentials provide less
negative energy densities. A reason for this can be the more repulsive tails of the
potentials derived via IMC. KB-IBI potentials are also always slightly more repulsive
compared to the atomistic reference, but less repulsive than potentials generated via
IBI. That is why in this case the energy density is even less negative. The energy
density predicted by the C-IBI potentials is positive, which can again be related to
the overly repulsive potentials generated by this method.

5 Conclusion

In this paper we have addressed the question whether it is possible to recover the
generating potentials of target RDFs via different variations of the IBI method and
the IMC method. The point of interest was to see if these methods can converge to
a known solution of the inverse problem of finding effective pair potentials for non-
bonding interactions derived from a given set of RDFs. The system under study was
a binary mixture of two LJ particles.

For none of the methods it was possible to recover the potentials for all interac-
tions, although good structural match could be achieved for all methods that have
been considered. We could show that for IBI-type methods implementation of ther-
modynamic constraints improves the convergence of the method with respect to the
potential and the RDF, if used in combination with a well chosen cut-off. The cut-off
should be chosen such that it is large enough to include the relevant parts of the po-
tential, but not too large, since this affects the convergence negatively. As additional
thermodynamic constraints the pressure (P-IBI), KBIs (KB-IBI) and the integrated
RDF (C-IBI) have been investigated. An update based on C-IBI does not improve
the convergence towards the reference potential most probably because of finite size
effects. The KB-IBI method leads to results that are in between those obtained with
P-IBI and C-IBI. The linear corrections used in P-IBI and KB-IBI lead to reproduc-
ing the reference potential better than the alternative update based on the integrated
RDF used in C-IBI. The C-IBI-based update however provides the best represen-
tation of the RKBIs. In terms of convergence of the method towards the reference
potential, inclusion of the pressure as a thermodynamic constraint in the standard
IBI procedure is preferred over the alternative quantities (KBIs or integrated RDFs),
although this may interfere with the Henderson theorem.[17]

For IMC we could show how sensitive this method reacts to several factors. First,
the initial guess should be close to the actual potential. Hence, the PMF is not a
good choice. Second, one should provide enough statistics to achieve convergence of
the algorithm. In our case we could not achieve convergence within 5 · 106 MD steps
(compare IBI: 1 ·106 MD steps). But we could show that it is possible to decrease the
statistical demand by adding a regularization term, which stabilizes the algorithm. A



22 Will be inserted by the editor

SVD analysis of the matrix helps to get a good educated guess for the magnitude of
the regularization parameter. The regularization allows the generation of potentials
which have the best agreement with the reference potentials for all three interactions
present in the binary system.

We further addressed the thermodynamic representability of the derived potentials in
comparison with the atomistic reference. To this end, the isothermal compressibility,
the partial molar volumes of the binary mixture components, and the derivative of
the activity coefficient with respect to the mole fraction (for component 1) have been
calculated from the KBIs obtained with the derived potentials. The IBI potentials do
not reproduce the isothermal compressibility of the atomistic reference model. The
KB-IBI potentials best reproduce this quantity. The partial molar volumes of the two
mixture components are represented well with the majority of the potentials. The
pressure of the system is overestimated with all potentials. While the P-IBI potential
shows the best agreement with the reference pressure, it overestimates the isothermal
compressibility. All IBI potentials overestimate the derivative of the activity coeffi-
cient computed for one of the components. Hence, these potentials do not accurately
represent the dependence of the chemical potential on composition which is mainly
determined by the tails of the LJ potentials. The KB-IBI potentials underestimate
the derivative of the activity coefficient. The reason that KB-IBI and C-IBI do not
well represent the quantities they are designed for is related to finite-size system ef-
fects, which are stronger in Lennard-Jones mixtures as compared to aqueous solution
mixtures previously studied.[47,49]

Comparison with the results obtained with IMC potentials further showed that even
a better match of the potential around the attractive minimum does not improve
the thermodynamic representability of the model. The non-sensitivity of the RDFs
on long-range tails of the potentials clearly poses a challenge in representing ther-
modynamic properties with models derived by inverse coarse-graining methods. The
derived potentials that best reproduce the attractive tail of the reference potential
also represent the average energy density of the system better, but already small devi-
ations in the long range part do not allow an accurate representation of this quantity.
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