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Abstract. We investigate the MUSIC algorithm for the reconstruction of
small (infinitesimal) inclusions inside a planar homogeneous object from discrete
impedance tomography data within the framework of the gap electrode model. We
provide a justification of the method whenever the number of electrodes exceeds
2(J + 1) where J is the number of the inclusions to be found.
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1. Introduction

MUSIC, an acronym for multiple signal classification, is an established technique
in signal processing, cf., e.g., Therrien [12]. In the inverse scattering community
Devaney [5] (see also [6]) adapted this technique in the late 1990’s to the reconstruction
of point scatterers, and in the summer of 2000, while my former student Martin
Brühl was visiting Michael Vogelius at Rutgers, the two of them observed that similar
ideas also work well to localize small (infinitesimal) inclusions inside a homogeneous
object from electrical impedance tomography data. Based on the results in [4]
Michael provided the theoretical backbone for this method, namely that the associated
Neumann-Dirichlet map is, essentially, a finite rank perturbation of the reference
Neumann-Dirichlet operator; this rank amounts to dJ , i.e., the space dimension d ≥ 2
times the number J of the small inclusions. Eventually, this collaboration led to our
joint paper [3]; my own contribution was comparatively minor and consisted in the
exclusion of false-negative reconstructions.

Later, we extended the method to also treat limited angle data and finite electrode
configurations [8], and together with Habib Ammari and Roland Griesmaier we drew
connections to the so-called factorization method [1, 7].

Apparently unaware of [8], Lechleiter [10] very recently reconsidered this MUSIC
variant of electrical impedance tomography for finite electrode configurations. The
novel result in [10] is a justification of the algorithm for this discrete situation in two
and three space dimensions when the number of (point) electrodes goes to infinity and
their boundary positions become everywhere dense; see [10] for the precise statement.
A shortcoming of the technique used in [10] is that the number N of electrodes that
are required to reconstruct a given configuration of finitely many inclusions is not
known before-hand.
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Figure 1. Phantom (left) and MUSIC reconstruction (right). Figure reprinted
from [8].

The purpose of this note is to show that in two space dimensions a significantly
stronger result is valid, namely, that when there are J (infinitesimal) inclusions in the
object then all of them, and no false-positives, will be reconstructed with N = 2J + 3
(or more) electrodes, wherever they are attached to the boundary. Moreover, we
show that if only N = 2J + 2 (or less) electrodes are being used then false-positive
reconstructions are possible; when N ≤ 2J then false-negatives can also occur. These
results not only apply to point electrodes but also to the more general gap model for
finite (i.e., positive) size electrodes.

We like to emphasize that our results (like those in [10]) ignore the influence
of noise and are formulated for an asymptotic model of infinitesimal inclusions to
be specified in Section 2. Also, at the time of writing we don’t know whether the
same or similar results can also be established for even more realistic electrode models
described, e.g., in Mueller and Siltanen [11], like the shunt or the complete electrode
model. Numerical experiments with real data, however, are very encouraging. To
support this latter statement we reproduce here a numerical example from [8] for real
data. Figure 1 shows the tank of a measurement device from Rensselaer Polytechnic
Institute, Troy, NY, with N = 32 electrodes and a phantom consisting of J = 3
inclusions, namely a piece of plastic and two metal objects. Note that these objects
are not ‘infinitesimal’. The right-hand side plot is the corresponding output of the
MUSIC algorithm; see [8] for a more detailed description of this example.

2. Setting of the problem

The mathematical formulation of the impedance tomography problem is based on the
boundary value problem

−∇ · (σ∇u) = 0 in D , ∂νu = f on ∂D , (2.1)

cf., e.g., [11], where D is a bounded and simply connected Lipschitz domain in R2,
and ∂ν denotes the outer normal derivative on its boundary ∂D. We assume that the
conductivity σ is equal to one except for some subdomains Ωj ⊂ D, j = 1, . . . , J ,
where the conductivity attains constant positive values σj 6= 1, i.e.,

σ =

{
σj in Ωj , j = 1, . . . , J ,

1 else .
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These subdomains are presumed to be small; to be specific we consider the case that

Ωj = xj + εOj , j = 1, . . . , J , (2.2)

where xj ∈ D are the pairwise different centers of mass of Ωj , Oj are C2 smooth
bounded and simply connected domains, and the scaling parameter ε > 0 is sufficiently
close to zero. We refer to xj as the position of the obstacle Ωj and to Oj as its shape.

Denote by L2
�(∂D) the set of L2 functions over ∂D with vanishing mean and by

H1
� (D) the set of H1 functions over D with trace in L2

�(∂D). Then it is well known
that for f ∈ L2

�(∂D) the boundary value problem (2.1) has a unique weak solution
u ∈ H1

� (D). The selfadjoint operator

Λε : L2
�(∂D)→ L2

�(∂D) , Λε : f 7→ g = u|∂D ,
which takes the boundary current f onto the trace of the solution u of (2.1) is known as
the Neumann-Dirichlet operator associated with this conductivity σ; we also introduce
the corresponding Neumann-Dirichlet operator Λ0 for the homogeneous conductivity
σ0 ≡ 1. The main result of [3] states that

Λε − Λ0 = ε2K + o(ε2) , ε→ 0 , (2.3)

where K is a selfadjoint operator of rank 2J , which does not depend on ε. Moreover,
if N(x, y) is the Neumann function for the Laplacian in D and

uz,p = p · ∇yN( · , z) (2.4)

is the corresponding insulated dipole potential sitting in z ∈ D with dipole moment
p ∈ R2 and trace

hz,p = uz,p
∣∣
∂D

then

hz,p ∈ R(K) , if and only if z ∈ {xj} . (2.5)

In fact, cf. [3], these dipole potentials span the entire range of K, i.e.,

R(K) = span{hxj ,p : j = 1, . . . , J , p ∈ R2} . (2.6)

These results extend to the case when some inclusions are insulating and others are
perfectly conducting; see Ammari and Kang [2].

In the sequel we assume that N electrodes are attached to the boundary of the
object D, each of which covering a (relatively closed) connected piece En ⊂ ∂D,
n = 1, . . . , N , with En ∩ Em = ∅ for n 6= m; by |En| we denote the arc length of En.
Let RN� be the vectors of RN whose entries sum up to zero, and let P be the operator

P : L2
�(∂D)→ RN� , P : g 7→ [Gn]n , (2.7)

where

Gn =
1

|En|

∫
En

g ds − cg (2.8)

and

cg =
1

N

N∑
n=1

1

|En|

∫
En

g ds .

The adjoint P ∗ : RN� → L2
�(∂D) of P maps the vector I = [In]n ∈ RN� onto the

function

f = P ∗I =

{
In/|En| on En , n = 1, . . . , N ,

0 else .
(2.9)
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Assume now that I = [In]n ∈ RN� and that In units of current are simultaneously
injected through the electrodes En, n = 1, . . . , N , respectively. Defining G = [Gn]n =
Pg, where g is the trace of the solution u of (2.1) for the boundary current f of (2.9),
then, according to the gap electrode model (cf. [11]), G provides the corresponding
potential measurements at the N electrodes, i.e., Gn − Gm is the voltage difference
between the nth and the mth electrode.

Accordingly, in the gap model framework PΛεP
∗ is the discrete measurement

operator analog of the continuous Neumann-Dirichlet map considered before, and

PΛεP
∗ − PΛ0P

∗ = ε2PKP ∗ + o(ε2) , ε→ 0 ,

is the gap model analog of (2.3). The corresponding (idealized) MUSIC method
consists in testing whether Phz,p ∈ R(PKP ∗) for a test point z ∈ D and some
dipole moment p ∈ R2 \ {0}; compare (2.5).† The following general result determines
necessary assumptions for the success of this scheme.

Proposition. Let D ⊂ R2 be a bounded and simply connected domain; let K be
defined as above and P be any bounded operator from L2

�(∂D) to some Hilbert space
X . Then the following holds:

(i) If P is injective on the 2J dimensional space (2.6) then Phxj ,p ∈ R(PKP ∗) for
every j = 1, . . . , J and p ∈ R2.

(ii) If P is injective on the set of linear combinations of any J + 1 insulated dipoles
located in D then

Phz,p ∈ R(PKP ∗) , if and only if z ∈ {xj} .

Proof. We trivially conclude from (2.6) that

R(PKP ∗) ⊂ R(PK) = span{Phxj ,p : j = 1, . . . , J , p ∈ R2} .(2.10)

Assume now that Phxk,q /∈ R(PKP ∗) for some k = 1, . . . , J and q ∈ R2. Then it
follows that we can find

h ∈ span{hxj ,p : j = 1, . . . , J , p ∈ R2} \ {0}
with Ph⊥R(PKP ∗). This means that Ph belongs to the null space of PKP ∗, and
since P is assumed to be injective on R(K) this implies that KP ∗(Ph) = 0. Therefore
we have

0 = 〈f,KP ∗Ph〉 = (PKf) · (Ph)

for any f ∈ L2
�(∂D). Since h ∈ R(K) we can choose f to be the corresponding

preimage to conclude that the Euclidean norm of Ph is zero, i.e., that Ph = 0. But
since P is injective on R(K) this means that h = 0, which provides the desired
contradiction and establishes (i).

To prove (ii) we note that (2.10) implies that if Phz,p ∈ R(PKP ∗) then there
exists h in (2.6) with Phz,p = Ph, and hence, the injectivity of P gives

hz,p = h =

J∑
j=1

hxj ,pj

† In practice, of course, inclusions are small but not infinitesimal, and the algorithm tests whether
Phz,p ∈ R(P (Λε − Λ0)P ∗); see [8].
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for certain dipole moments pj , j = 1, . . . , J . But then we necessarily have

uz,p =

J∑
j=1

uxj ,pj

because the two functions on the left and right both satisfy the same Cauchy problem
on ∂D for the Laplacian, and hence, comparing their singularities, we necessarily have
z ∈ {xj} as claimed. �

We remark that this proposition (and its proof) is not restricted to the two-
dimensional case considered in this work, but is valid for any finite space dimension.
Further, without these injectivity assumptions both statements of the proposition no
longer need to hold true; this will be exemplified in Section 4 below.

3. The main result

Theorem. Let D ⊂ R2 be a bounded and simply connected Lipschitz domain, let K
be defined as above, and P be given by (2.7). Furthermore, assume that the number
N of electrodes and J of inclusions satisfy the constraint N > 2J + 2. Then, if z ∈ D
and p ∈ R2 \ {0}, there holds

Phz,p ∈ R(PKP ∗) , if and only if z ∈ {xj} . (3.1)

Proof. By virtue of the proposition it is sufficient to show that P is injective on the
subspace spanned by any given set of J + 1 insulated dipole potentials. For this we
identify R2 with the complex plane and use complex variable techniques, i.e., by abuse
of notation we identify the two-dimensional real spatial variable x = (ξ, η) ∈ R2 with
the complex number x = ξ + iη ∈ C, and likewise for the other variables xj , p, and z.

Consider first the case when D is the two-dimensional unit disk. In this case the
insulated dipole potential uz,p of (2.4) can be written explicitly as

uz,p(x) =
1

π
Re
( p

x− z
+

p̄x

1− xz̄

)
, x ∈ D , (3.2)

the expression in paranthesis being real by itself for x ∈ ∂D, hence

hz,p(x) =
1

π

( p

x− z
+

p̄x

1− xz̄

)
, x ∈ ∂D .

Now assume that Ph = 0 for any function of the form

h(x) =
1

π

J+1∑
j=1

( pj
x− xj

+
p̄jx

1− xx̄j

)
. (3.3)

By virtue of (2.7), (2.8) this implies that there exists c ∈ R such that

Hn =
1

|En|

∫
En

hds = c

for all n = 1, . . . , N , and some c ∈ R, and hence, the rational function h of (3.3)
attains the same value c at N different points on the unit circle (at least once on each
piece En of the boundary covered by any of the electrodes). Since the numerator and
denominator degrees of h are at most 2J + 2 < N , each, this implies that h ≡ c;
moreover, as each individual dipole trace has vanishing mean on ∂D, so has h, and
therefore we conclude that h ≡ 0, which was to be shown.
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Figure 2. Sketch of the example of Section 4.

Assume next that D is an arbitrary simply connected Lipschitz domain in the
complex plane and denote by φ a conformal map which takes D onto the unit disk.
Moreover, denote by ûz,p the insulated dipole potential (3.2) for the unit disk. Then,
cf. [8], the insulated dipole potential uz,p in D with z ∈ D and dipole moment p is
given by

uz,p(x) = ûz′,p′(φ(x)) + γz , x ∈ D ,

where (in complex variables notation) z′ = φ(z) and p′ = φ′(z)p; γz ∈ R is an additive
constant (for fixed z) to satisfy∫

∂D

uz,p ds = 0 .

It follows that the trace of any linear combination h of J + 1 insulated dipoles located
in D is a rational function with numerator/denominator degree 2J + 2 at most of the
variable φ( · ). Thus, as in the first part of the proof, if Ph = 0 then there are at least
N points on the unit circle where this rational function has the same value c ∈ R,
from which we deduce that h ≡ 0. �

Note that for the if-part of this theorem N = 2J + 1 electrodes are sufficient.

4. Examples

We complement our results with two illuminating examples, a theoretical and a
numerical one.

First we show that the inequality N > 2J + 2 occurring in the theorem is best
possible in general. To this end we consider the unit disk D and the function

h(x) = hx+,p0(x)− hx−,p0(x) =
2

π

(Re (x− ξ)
|x− ξ|2

− Re (x+ ξ)

|x+ ξ|2
)

(using complex variables, again), which is the trace of the difference of two insulated
dipoles located in x± = ±ξ for some ξ ∈ (0, 1) with the same unit dipole moment p0
oriented towards the positive real axis. It is easy to see that h is negative whenever
Real (x) = ±ξ and that

h(±1) =
2

π

( 1

1− ξ
− 1

1 + ξ

)
> 0 .

Accordingly, h must have four different zeros on the unit circle, the real parts of which
are different from ±ξ. We can therefore attach N = 4 electrodes to the unit circle in
such a way that Ph = 0, i.e., that

Phx−,p0 = Phx+,p0 . (4.1)



A note on the MUSIC algorithm for impedance tomography 7

Note that hx±,p0 are both symmetric with respect to the real axis and that h is also
symmetric with respect to the imaginary axis. Hence, the roots of h are also symmetric
with respect to both axes, and we can constrain the four electrodes to maintain this
symmetry and to omit the points ξ ± i

√
1− ξ2 and their reflections at the imaginary

axis, compare Figure 2.
Assume next that we inject a current of one unit into the object through the

two electrodes E1 and E2 in the positive real half plane, each, and extract the
same amount of current at the other two electrodes, respectively; the corresponding
boundary current is thus given by

f = P ∗


1
1
−1
−1

 ,
and

u0(x) =
1

π|E1|

∫
E1

log
|x+ eit||x+ e−it|
|x− eit||x− e−it|

dt

is the associated reference potential for the homogeneous unit disk with conductivity
σ0 ≡ 1. Obviously, u0 is symmetric with respect to the real axis and

∇u0(x±) = αp0 for some α > 0 . (4.2)

Consider now the situation that x+ is the location of the only inclusion within the
unit disk, i.e., J = 1, and that this (small) inclusion has the shape O+ of a disk with
positive conductivity σ+ 6= 1 and area |O+|. Then [3, Theorem 2.1] yields

Kf = λ+hx+,p0 , λ+ = 2α |O+|
1− σ+
1 + σ+

,

for the operator K of (2.3), and hence, by virtue of (4.1),

Phx−,p0 = Phx+,p0 =
1

λ+
PKf =

1

λ+
PKP ∗


1
1
−1
−1

 .
In other words, the MUSIC algorithm would return x− as a false-positive position of
a second small inclusion, and hence, the second statement of the proposition and our
theorem do not extend to this setting with N = 2(J + 1).

Consider next the situation that x− is the position of a second disk shaped
inclusion of the same size with conductivity σ− = 1/σ+, so that N = 2J . Then,
cf. [3, Theorem 2.1] again, it follows from (4.2) that

Kf = λ+hx+,p0 + λ−hx−,p0

with λ+ as before and

λ− = 2α |O+|
1− σ−
1 + σ−

= −λ+ ,

so that

PKP ∗


1
1
−1
−1

 = PKf = λ+P
(
hx+,p0 − hx−,p0

)
= 0
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Figure 3. A numerical example with N = 9 electrodes and J = 3 inclusions.

by virtue of (4.1). Accordingly, [1, 1,−1,−1]T is a vector from the orthogonal
complement of R(PKP ∗). On the other hand, from the symmetry of hx+,p0 and
(2.8) we conclude that

Phx+,p0 =


β
β
γ
γ

 − β + γ

2


1
1
1
1

 =
β − γ

2


1
1
−1
−1


for some β > 0 and γ < 0, which proves that Phx+,p0⊥R(PKP ∗); the same result
holds true for Phx−,p0 . This shows that the first statement of the proposition is not
valid in this example, for the MUSIC scheme fails to return either of the locations of
the two inclusions, if the test is performed with the dipole moment p0.

As a second example we have simulated data for J = 3 tiny inclusions in the
unit disk, using N = 9 electrodes that cover 5/8 of the unit circle. Accordingly,
the assumption N > 2J + 2 of our theorem is just fulfilled, and as we can see from
Figure 3 the positions of the three inclusions are well reconstructed by the MUSIC
scheme. The figure shows a color coded plot of the logarithm of the Euclidean norm
of (PKP ∗)−1Phz,p as a function of z; the 8× 8 matrix PKP ∗ is nonsingular for this
particular example, but is ill-conditioned with a condition number of the order of 105.

5. Discussion

It is obvious from the proof of our theorem that the same result applies to the
point electrode model utilized in [10]; for the well-posedness of this model see [9],
for example.

As far as the 3D case is concerned we note that in three space dimensions any
linear combination in R(K) will have equipotential level curves on the surface ∂D;
hence, for a given h ∈ R(K) it is easy to select any finite number of electrodes (whether
these are point electrodes or given by bounded one or two-dimensional manifolds) for
which Ph = 0. According to our proposition this means that no connection between
the number N of electrodes and J of inclusions can hold in three space dimensions,
so that Lechleiter’s result may be the best possible achievement in that case.
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