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Abstra
t

The subje
t of this paper is a demonstration of the a

ura
y and robustness of evo-

lution Galerkin s
hemes applied to two-dimensional Riemann problems with �nitely

many 
onstant states. In order to have a test 
ase with known exa
t solution we


onsider a linear �rst order system for the wave equation and test evolution Galerkin

methods as well as other 
ommonly used s
hemes with respe
t to their a

ura
y in


apturing important stru
tural phenomena of the solution. For the two-dimensional

Riemann problems with �nitely many 
onstant states some parts of the exa
t solu-

tion are 
onstru
ted in the following three steps. Using a self-similar transformation

we solve the Riemann problem outside a neighborhood of the origin and then work

inwards. Next a Goursant-type problem has to be solved to des
ribe the intera
tion

of waves up to the soni
 
ir
le. Inside it a system of 
omposite ellipti
-hyperboli


type is obtained, whi
h may not always be solvable exa
tly. There an interesting

lo
al maximum prin
iple 
an be shown. Finally, an exa
t partial solution is used

for numeri
al 
omparisons.
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1 Introdu
tion

This paper is 
on
erned with the a

ura
y of numeri
al approximations for solutions to

systems of hyperboli
 
onservation laws. In order to pre
isely assess the a

ura
y of

numeri
al s
hemes it is of fundamental importan
e to have a wide range of di�erent exa
t

solutions. Only in su
h 
ases one 
an determine the exa
t error of the approximation.

For multidimensional systems of partial di�erential equations this is quite a 
hallenge.

One 
ommonly used possibility to design su
h test 
ases for smooth solutions is to take

some simple, e.g. polynomial, trigonometri
 or exponential, fun
tions. One may insert

them into the di�erential part of the equations and then adjust the right hand side as well

as the data in order to obtain a solution, see e.g. Luk�a�
ov�a et al. [16℄. This is quite ni
e

for a start, but it is diÆ
ult to assess spe
ial properties of s
hemes in general appli
ations,

sin
e these solutions are quite spe
ial and possibly unrealisti
 for true appli
ations.

In designing s
hemes for 
onservation laws it is important to study dis
ontinuous

solutions. Numeri
al diÆ
ulties at 
onta
t dis
ontinuities in nonlinear systems like the

Euler equations of gas dynami
s are quite well known. Therefore, it is useful to study

dis
ontinuous solutions to the two-dimensional Riemann problem for linear systems as a

�rst step. The aim is to obtain as mu
h exa
t information on the solution of test 
ases

as possible in order to 
al
ulate the lo
al error of the s
heme. This will be done in this

paper by 
onsidering a 3 by 3 linear system for the wave equation that is related to the

linearized a

ousti
 part of the Euler equations.

The two-dimensional Riemann problem is given by initial data whi
h 
onsist of pie
e-

wise 
onstant states on a �nite number of se
tors going out from the origin of the plane.

A 
ommon simple example is to take four quadrants obliquely to the mesh. The solution

at a later time 
onsists basi
ally of two main parts. In a small region around the origin,

i.e. inside the soni
 
ir
le, it has a 
ompli
ated stru
ture that is obtained as a solution to

an ellipti
 boundary value problem. This part of the solution is not known exa
tly. Out-

side this region the solution is pie
ewise 
onstant and the lo
ation of the dis
ontinuities

between these states is known exa
tly.

Another important issue for test 
ases is to obtain as mu
h qualitative information

on the spe
i�
, e.g. monotoni
ity or maximum prin
iple type properties, in those lo
al

parts of the solution where it is not known exa
tly. One may then test the s
heme for the

preservation of su
h properties.

The stru
ture of the paper is as follows. First we study the solution near in�nity by

making use of its self-similarity. We obtain a time-independent system in two variables

and demonstrate its solvability. This solution may be extended inwards to a 
ertain region.

Then we have to solve a Goursat-type problem with possibly dis
ountinuous boundary

values to go further inward. Next, we study the boundary value problem for the extension

of the solution to the remaining neighborhood of the origin. We prove the solvability of

this problem using the theory of symmetri
 positive systems due to Friedri
hs [8℄. We

also prove a maximum prin
iple that should be respe
ted by numeri
al approximations.
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In the remaining parts of the paper we give expli
itely the 
onstru
tion of parts of

the solution for an example that we use to 
ompare various s
hemes. We are developing

evolution Galerkin (EG) type s
hemes using the bi
hara
teristi
 
ones of the system in

their 
onstru
tion spe
i�
ally to deal with multidimensional solution features. Variants of

these se
ond order s
hemes based on a �nite volume formulation are applied to this test


ase. Comparisons with a s
heme of Butler, a �nite volume 
ux ve
tor splitting s
heme

and the rotated Ri
htmyer Lax-Wendro� s
heme are made.

The study of the error in lo
al parts of solutions to multidimensional Riemann problems

may be extended also to nonlinear systems. The analysis be
omes quite a bit more

involved. Results of the kind that would be needed may be found in Li et al. [15℄. Sin
e

su
h solutions have been used as numeri
al test 
ases in re
ent years, see e.g. S
hulz-Rinne

[26℄, it would be important to extend the results in this paper to some of the test 
ases

already in use.

2 Constru
tion of two-dimensional Riemann solutions

In this se
tion we 
onstru
t expli
itly Riemann solutions of the two dimensional Riemann

problem for wave equation system

8
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>

>

<

>

>

>

>

:

�

t

+ 
(u

x

+ v

y

) = 0

u

t

+ 
�

x

= 0

v

t

+ 
�

y

= 0

(2:1)

subje
t to the initial data

(�; u; v)(t = 0; x; y) = (�

0

; u

0

; v

0

)(�); (2:2)

where 0 � � < 2� is the polar angle. For the purpose of numeri
al experiments, (�

0

; u

0

; v

0

)

is restri
ted to be a �nite number of 
onstant states, being dis
ontinuous along rays

through the origin.

As the initial data are dis
ontinuous, the solution of (2.1) and (2.2) must be dis
on-

tinuous and dis
ontinuities propagate along 
hara
teristi
s by the well{known theory of

hyperboli
 systems. Therefore (2.1) and (2.2) must be understood in L

1

(IR

3

+

), see [27℄.

We prove by a 
onstru
tion that the solution is in L

1

. Now we try to �nd out how to


onstru
t the expli
it solution. For this purpose, we need to understand how the dis
on-

tinuities propagate and how they intera
t. For de�niteness, we 
all these dis
ontinuities

waves.

2.1 Planar waves and Rankine{Hugoniot 
ondition.

Sin
e system (2.1) is linear, there are no nonlinear rarefa
tion waves or sho
ks but only

linear waves in solutions. As a �rst step we just 
onsider a planar wave. We assume su
h
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a wave emitted from an initial dis
ontinuity at the line �x+�y = 0 in the dire
tion (�; �)

with �

2

+ �

2

= 1. The solution takes the form

(�; u; v)(t; x; y) = (�; u; v)((�x+ �y)=t): (2:3)

Let [�℄ be the jump of � a
ross this dis
ontinuity, and analogously for u and v, and

(��; �; �) the normal of the dis
ontinuity. Then we get the Rankine{Hugoniot 
ondition,

8
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>

>
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>

>

>

>

:

� = �

0

= 0;

�[u℄ + �[v℄ = 0;

[�℄ = 0;

or

8

>

>

>

>

<

>

>

>

>

:

� = �

�

= �
;

[�℄� (�[u℄ + �[v℄) = 0;

��[u℄ + �[v℄ = 0:

(2:4)

There are three possibilities for planar waves to travel with velo
ities 0; �
. Note

that 
hoosing an initial data with a jump along �x + �y = 0 leads to a solution with

at most three su
h planar wave parts. The �rst system of (2.4) means that the normal


omponents of velo
ity of (u; v) are identi
al on both sides of stationary dis
ontinuity with

�

0

= 0. The se
ond system means that the tangential 
omponents of velo
ity are identi
al

on both sides of the dis
ontinuities moving with speeds �

�

= �
. In this sense the 
ase

�

0

= 0 resembles a 
onta
t dis
ontinuity, i.e. a slip layer, and the 
ase �

�

= �
 are

something like sho
k waves in gas dynami
s. Thus for given two initial states separated

by the straight line �x + �y = 0, the solution 
an be 
onstru
ted via the 
hara
teristi


analysis method in the phase plane, similar to the 
onstru
tion of Riemann solutions

for adiabati
 gas dynami
s, see, e.g., [3℄, [27℄. Spe
i�
ally, we solve this problem in the

(�u+�v; �){plane. Denote by U = ��u+�v and V = �u+�v the tangential and normal

velo
ity 
omponents, respe
tively, along the plane �x+�y = �t with � = �

0

; or �

�

. Then

(2.4) is equivalent to

V

1�

� V

2�

= 0

and

�

1

� �

�

+ (V

1

� V

1�

) = 0;

U

1

� U

�1

= 0; U

2

� U

2�

= 0;

�

2

� �

�

� (V

2

� V

2�

) = 0:

(2:5)

Taking the initial data (2.2) to be two 
onstant states as

(�; u; v)(t = 0; x; y) =

8

>

<

>

:

(�

1

; u

1

; v

1

); �x + �y < 0;

(�

2

; u

2

; v

2

); �x + �y > 0;

(2:6)

the solution 
an be expressed expli
itly as

(�; u; v)(t; x; y) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(�

1

; u

1

; v

1

); �x + �y < �

�

t;

(�

�

; u

�1

; v

�1

); �

�

t < �x+ �y < 0;

(�

�

; u

�2

; v

�2

); 0 < �x + �y < �

+

t;

(�

2

; u

2

; v

2

); �x + �y > �

+

t:

(2:7)
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where (�

�

; u

�1

; v

�1

) and (�

�

; u

�2

; v

�2

) are solved by using (2.5). We illustrate the 
onstru
-

tion of solutions in Figure 1.

(    ,V  )φ
2φ

X=0

*2φ *2*1*1φ (    ,V  )(    ,V  )

1
(    ,V  )φ2 2

(    ,V  )φ* *

1
1 (    ,V  ) (    ,V  )2φ1

X=−ct X=ct

V X

φ

Figure 1: Ilustration of the 
onstru
tion of 2-D Riemann solutions; X = �x+ �y,

V = �u+ �v.

In general, the initial data are 
onstant in angular domains and the 
orresponding

solutions will be mu
h more 
ompli
ated. However the invarian
e of (2.1) and (2.2) under

the dilation (t; x; y)! (�t; �x; �y) (� > 0) enables us to seek self{similar solutions of the

form (�; u; v)(t; x; y) = (�; u; v)(�; �) with � = x=t; � = y=t. Then under this self{similar

transformation system (2.1) be
omes

8

>

>

>

>

<

>

>

>

>

:

���

�

� ��

�

+ 
(u

�

+ v

�

) = 0;

��u

�

� �u

�

+ 
�

�

= 0;

��v

�

� �v

�

+ 
�

�

= 0

(2:8)

and initial data (2.2) are transformed into boundary values at in�nity

lim

�

2

+�

2

!1

(�; u; v) = (�

0

; u

0

; v

0

)(�); (2:9)

where �=� = ar
tan � is kept 
onstant taking the limit. This is a boundary value problem

for the �rst order system of partial di�erential equations (2.8) with boundary values (2.9)

at in�nity. To solve it, the 
on
epts of 
hara
teristi
s and dis
ontinuities in (�; �){plane

play an essential role. The eigenvalues of the system are

�

0

=

�

�

; and �

�

=

�� � 


p

�

2

+ �

2

� 


2

�

2

� 


2

: (2:10)

The eigenvalue �

0

is always real while �

�

are 
omplex inside the soni
 
ir
le S :

�

2

+ �

2

= 


2

and real outside this 
ir
le. In other words, the 
ow is subsoni
 inside the


ir
le and supersoni
 outside the 
ir
le but paraboli
 degenerate on the soni
 
ir
le.

In the supersoni
 domain, we de�ne 
hara
teristi
s,

�

i

:

d�

d�

= �

i

; i = 0;+;�: (2:11)

Then it 
an readily be 
he
ked that �

0

passes through the origin, �

�

and �

+

are straight

and always tangent to the 
ir
le �

2

+ �

2

= 


2

. Furthermore one 
an 
he
k that �

+

is
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tangent to S in the 
lo
kwise dire
tion while �

�

is tangent to S in the 
ounter
lo
kwise

dire
tion.

The dis
ontinuity � = �(�), being a dis
ontinuity surfa
e y = ty(x=t) with the normal

(� � ��; �;�1) and � = �

0

(�) in (t; x; y){spa
e, satis�es the Rankine{Hugoniot 
ondition

expressed in the selfsimilar variables [15℄,

8

>

>

>

>

>

<

>

>

>

>

>

:

�

0

=

�

�

;

�[u℄� [v℄ = 0;

[�℄ = 0;

or

8

>

>

>

>

>

<

>

>

>

>

>

:

�

�

=

�� � 


p

�

2

+ �

2

� 


2

�

2

� 


2

;

�

�

[v℄ + [u℄ = 0;


�

�

[�℄ + (� � ��

�

)[u℄ = 0:

(2:12)

The dis
ontinuities � = �(�) de�ned by

d�

d�

= �

i

(i = 0;+;�) have the same properties

as those of �

i

. The 
omponents of velo
ity also share the same behaviour as those in the


ase of planar waves above.

For the Riemann problem under 
onsideration, (2.1) and (2.2) are equivalent to (2.8)

and (2.9). To solve the latter, we �rst need to solve this boundary value problem at

in�nity, whi
h is due to the following lemma.

Lemma 2.1 If the initial data (2.2) 
onsist of a �nitely many 
onstant states, then prob-

lem (2.8) and (2.9) is lo
ally well-posed at in�nity. The solution 
onsists of planar waves

and 
onstant states.

The proof of this lemma is similar to that in [5℄. We omit the details.

After getting the solution at in�nity, we have to extend this solution inwards from an

in�nity. The solution 
an be extended by the method of 
hara
teristi
s until an intera
tion

of waves o

urs.

2.2 The intera
tion of waves.

As preparation of the 
onstru
tion of global solution, the intera
tion of waves is now

studied. We wish to solve a Riemann problem in an angular domain � bounded by two


hara
teristi
s in the (�; �){plane, whi
h originate in a point P , where a wave intera
tion

o

urs, as illustrated in Figure 2.

Let �

�

and �

+

be two dis
ontinuities, whi
h interse
t at P , �

+

separates the state

(�

1

; u

1

; v

1

) from (�

0

; u

0

; v

0

) and �

�

separates (�

2

; u

2

; v

2

) from (�

0

; u

0

; v

0

). Thus our prob-

lem is to solve (2.8) inside the domain � bounded by PP

1

and PP

2

with the boundary

values

(�; u; v)j

PP

1

= (�

1

; u

1

; v

1

) and (�; u; v)j

PP

2

= (�

2

; u

2

; v

2

): (2:13)

This is a Goursat-type problem with a possibly dis
ontinuous boundary value on the


hara
teristi
s. Note that if (�

1

; u

1

; v

1

) 6= (�

2

; u

2

; v

2

), the solution 
annot be expe
ted to
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be 
ontinuous. Therefore we attempt to seek dis
ontinuous solutions. Denote P = (�

0

; �

0

),

and 
onsider a solution of the form

(�; u; v) = (�; u; v)(�); � = �(�; �) =

� � �

0

� � �

0

: (2:14)

v

u

00 vu0(φ   ,     ,      )

(φ   ,     ,      )

v

1 1

∗1∗1∗

∗1∗1∗

v

v

u

u

(φ   ,     ,      )

(φ   ,     ,      )

(φ   ,     ,      )
1u

2 2 2

P

η

Γ−

ξ

+Γ

S 2

1P

P

0

0

Γ

Figure 2: The Riemann problem in an angular domain; the dis
ontinuities �

j

have

the respe
tive slopes �

j

j = 0;�;+; S : �

2

+ �

2

= 


2

.

The 
urve � = �(�; �) is a
tually a surfa
e y = t(�(x=t��

0

)+�

0

) with the normal (�

0

�

��

0

; �;�1) in (t; x; y){spa
e. Therefore, the Rankine{Hugoniot 
ondition of dis
ontinuities

of this form satisfy (2.12) just repla
ing (� � ��; �;�1) by (�

0

� ��

0

; �;�1). The slopes

of the straight lines PP

2

, PP

1

and PO are exa
tly �

+

, �

�

and �

0

. �

�

must be real as long

as (�

0

; �

0

) is lo
ated in the supersoni
 domain. This shows that the solution of the form

(2.14) 
an always be sought if two waves intera
t in the supersoni
 domain.

If (�

1

; u

1

; v

1

) = (�

2

; u

2

; v

2

), then the solution in � is just 
onstant. Otherwise, let

PP

i

separate (�

i

; u

i

; v

i

) from (�

�

; u

�i

; v

�i

), i = 1; 2, and PO separate (�

�

; u

�1

; v

�1

) and

(�

�

; u

�2

; v

�2

). Then we have the following relations by using the Rankine{Hugoniot 
on-

dition (2.12):

A
ross PP

1

,

8

>

<

>

:

�

�

(v

1

� v

�1

) + (u

1

� u

�1

) = 0;

a(u

1

� u

�1

)� 
�

�

(�

1

� �

�

) = 0; a = ��

0

+ �

�

�

0

;

(2:15)

a
ross PP

2

,

8

>

<

>

:

�

+

(v

2

� v

�2

) + (u

2

� u

�2

) = 0;

b(u

2

� u

�2

)� 
�

+

(�

2

� �

�

) = 0; b = ��

0

+ �

+

�

0

;

(2:16)

and a
ross PO,

��

0

(u

�1

� u

�2

) + (v

�1

� v

�2

) = 0:

(2:17)

We write the system of equations (2.15){(2.17) as

AU

�

= B; (2:18)
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where

A =

0

B

B

B

B

B

B

B

B

B

B

B

�

�1 0 ��

�

0 0

�a 0 0 0 
�

�

0 �1 0 ��

+

0

0 �b 0 0 
�

+

��

0

�

0

1 �1 0

1

C

C

C

C

C

C

C

C

C

C

C

A

; U

�

=

0

B

B

B

B

B

B

B

B

B

B

B

�

u

�1

u

�2

v

�1

v

�2

�

�

1

C

C

C

C

C

C

C

C

C

C

C

A

; B =

0

B

B

B

B

B

B

B

B

B

B

B

�

��

�

v

1

� u

1

�au

1

+ �

�


�

1

��

+

v

2

� u

2

�bu

2

+ �

+


�

2

0

1

C

C

C

C

C

C

C

C

C

C

C

A

:

(2:19)

Note that

detA = 
�

�

�

+

(�

+

� �

�

)(�

0

+ �

0

�

0

) 6= 0 (2:20)

if �

�

�

+

6= 0 and by (2.12) �

+

6= �

�

, i.e. (�

0

; �

0

) is not lo
ated on the 
ir
le �

2

+ �

2

= 


2

. If

�

�

�

+

= 0, then �

0

= �
 or �

0

= �
. Without loss of generality, we just 
onsider the 
ase

�

0

= 
. Then (2.16) is repla
ed by

8

>

<

>

:

v

2

� v

�2

= 0;

u

2

� u

�2

� 
(�� �

�

) = 0

(2:21)

and �

�

=

�

2

0

� 


2

2
�

0

. In all, the system (2.15), (2.17), (2.21) has a unique solution when

P is lo
ated outside the soni
 
ir
le. Thus the Goursat-type problem (2.8) and (2.13) is

uniquely solvable with the stru
ture sket
hed in Figure 2.

2.3 The subsoni
 problem.

In order to get the global Riemann solutions, we have to study the subsoni
 problem

(2.8) inside the soni
 domain with the boundary value on the soni
 
ir
le resulting from

the extension of the Riemann solution in the supersoni
 domain. The soni
 
ir
le is a

degenerate boundary. The boundary values are pie
ewise 
onstant. For simpli
ity, denote

the subsoni
 domain by 
 = f(�; �); �

2

+ �

2

< 


2

g.

System (2.8) 
an be rewritten in the operator form

L(w) = (L

1

(w); L

2

(w); L

3

(w))

T

:= A

1

w

 

+ A

2

w

�

= 0; w = (�; u; v)

T

; (2:22)

where

A

1

:=

0

B

B

B

B

�

�� 
 0


 �� 0

0 0 ��

1

C

C

C

C

A

; A

2

:=

0

B

B

B

B

�

�� 0 


0 �� 0


 0 ��

1

C

C

C

C

A

:

Correspondingly, the adjoint operator of L is denoted by L

�

= (L

�

1

; L

�

2

; L

�

3

)

T

, i.e.

L

�

(�) = (L

�

1

(�); L

�

2

(�); L

�

3

(�))

T

=

0

B

B

B

B

�

(��

1

)

�

+ (��

1

)

�

�
�

1�

�
�

1�

�
�

2�

(��

2

)

�

+ (��

2

)

�

0

�
�

3�

0 (��

3

)

�

+ (��

3

)

�

1

C

C

C

C

A

;

(2:23)
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where � = (�

1

; �

2

; �

3

), the subs
ripts \�" and \�" represent the partial derivatives as

before.

A

ording to Friedri
hs [8℄ a �rst order system of type (2.22) is a symmetri
 positive

system. Due to regularity of the boundary �
 we have everywhere the outer normal

ve
tor �eld n = (n

1

; n

2

) and 
an de�ne the boundary operator

B := A

1

n

1

+ A

2

n

2

:

Thus,

B =

0

B

B

B

B

�

��n

1

� �n

2


n

1


n

2


n

1

��n

1

� �n

2

0


n

2

0 ��n

1

� �n

2

1

C

C

C

C

A

:

Now we take B

�

to be the negative part of the symmetri
 matrix B, i.e. B

�

is negative

semi-de�nite and B

+

= B�B

�

is positive semi-de�nite. Let g 2 L

2

(�
) be given. Then

a

ording to Friedri
hs [8℄, see also Lax and Phillips [13℄, an admissible boundary 
ondition

is de�ned via

B

�

w = B

�

g on �
: (2:24)

A weak solution of (2.22) and (2.24) 
an be de�ned as follows.

De�nition 2.1 Let g be in L

2

(�
). A measurable ve
tor w = (�; u; v) 2 L

2

(
) is a weak

solution of (2.22) and (2.24) i�

(w;L

�

�) + hB

�

g; �i

�


= 0; (2:25)

for all � 2 C

1

(
) \ C(

�


):

The following theorem is due to Friedri
hs [8℄, see also Lax and Phillips [13℄, and gives

the existen
e and uniqueness of solution in the strong sense.

Theorem 2.1 Let g 2 L

2

(�
). Then the problem (2.22), (2.24) has a unique solution

w = (�; u; v) 2 L

2

(
); s.t.

Lw = 0 a. e. on 


B

�

w = B

�

g on �
:

Note that � satis�es in a weak sense the following di�erential equations of se
ond

order, whi
h 
an be derived from (2.8) for smooth as well as distributional solutions

Q(�) = (


2

� �

2

)�

��

� 2���

��

+ (


2

� �

2

)�

��

� 2(��

�

+ ��

�

) = 0: (2:26)

If this equation has a unique 
lassi
al solution, then the solution satis�es the maximum

prin
iple.
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Lemma 2.2 (MAXIMUM PRINCIPLE) Suppose the solution of (2.26) satis�es � 2

C

2

(
) \ C(

�


). Then the maximum prin
iple holds, i.e.

k�k

L

p

(
)

�

�




2

�

1=p

k�k

L

p

(�
)

(2:27)

for all 1 � p <1. For p =1, it is

max




j�j � max

�


j�j: (2:28)

Proof: The adjoint operator to Q is

Q

�

(�) = ((


2

� �

2

)�)

��

� (2���)

��

+ ((


2

� �

2

)�)

��

+ 2��

�

+ 2��

�

+ 4�:

Applying Green's formula, we have

Z




wQ

�

(�)d�d� �

Z




�Q(w)d�d� = �


Z

�


w�d�

for w; � 2 C

2

(
) \ C(

�


). Taking � = �1 and w = (�

2

+ Æ)

p=2

for some Æ > 0, we have

Q

�

(�) = 2 and

Q(w) = p(�

2

+ Æ)

p=2�1

�Q(�)

+p(�

2

+ Æ)

p=2�2

((p� 1)�

2

+ Æ) ((


2

� �

2

)�

2

�

� 2���

�

�

�

+ (


2

� �

2

)�

2

�

):

Sin
e (


2

� �

2

)�

2

�

� 2���

�

�

�

+ (


2

� �

2

)�

2

�

� 0 and Q(�) = 0, we get

2

Z




(�

2

+ Æ)

p=2

� 


Z

�


(�

2

+ Æ)

p=2

d�:

Letting Æ ! 0, we arrived at (2.27). The formula (2.28) is obvious from (2.27). 2

The general boundary value problem for (2.26) is also well{posed. This is very similar

to Theorem 1.5.1 in [24℄. We state this theorem in the following theorem.

Theorem 2.2 There exists a unique solution of (2.26) with a measurable boundary value

�j

�


=

�

� in the sense that

Z




Q

�

(�)�d�d� = �


Z

�


�

��d� (2:29)

for all � 2 C

2

(
) \ C(

�


). This solution satis�es the maximum prin
iple

j�j � max

�


j

�

�j: (2:30)

The proof of this theorem basi
ally follows that of Theorem 1.5.1 in [24℄. We omit the

details.
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2.4 The 
onstru
tion of global Riemann solutions.

Based on the above preparation, we 
an solve the two dimensional Riemann problem (2.1)

for a �nitely many 
onstant states in the initial data (2.2). By Lemma 2.2, we 
on
lude

that the solution at in�nity 
onsists of pie
ewise 
onstant states separated by planar

waves. These waves 
an be 
ontinued up to the soni
 
ir
le. In view of the Rankine-

Hugoniot 
onditions (2.15) - (2.17), these waves 
annot be 
urved at intera
tion points,

where the Goursat-type problem 
an be solved, as explained in Subse
tion 2.2. Thus

we 
an 
ompletely solve (2.8) and (2.9) outside of subsoni
 domain using the method of


hara
teristi
s. By Theorems 2.1 and 2.2 we obtain the 
ombination of the solution inside

the subsoni
 domain. Thus a unique global Riemann solution is 
onstru
ted. Similar


onstru
tion of solutions for gas dynami
s 
an be found in [15℄

3 Evolution Galerkin methods

The evolution Galerkin methods (EG) were proposed by Luk�a�
ov�a, Morton and Warne
ke

in [16℄ as numeri
al s
hemes for solving multidimensional systems of hyperboli
 
onser-

vation laws. The main idea of the evolution Galerkin methods is that they evolve the

initial data using the bi
hara
teristi
 
one or the Ma
h 
one and then proje
t them onto a

�nite element spa
e. In [16℄ three new �rst order evolution Galerkin s
hemes (EG1-EG3)

for a system of hyperboli
 equations, and parti
ularly for the wave equation system were

derived and analyzed. It has been shown in [16℄, see also [22℄, that the EG methods


apture very well su
h solution properties as 
ir
ular symmetry, independen
e of mesh

orientation, vorti
ity preservation and sho
ks. The a

ura
y of some of these �rst order

s
hemes, e.g. the EG3 s
heme, mat
hes on 
oarse meshes that of the 
ommonly used

se
ond order s
hemes, e.g. the Lax-Wendro�.

In [16℄ we proved that the EG s
hemes are stable upto some CFL number 0 < �

max

< 1

and numeri
al tests, presented in [19℄, indi
ate the bounds of �

max

for ea
h approximate

evolution operator EG1 - EG3.

In order to derive higher order versions of the EG s
hemes a �nite volume formulation

is used. Thus to 
ompute 
uxes on the 
ell interfa
es the approximate solution is evolved

using one of the three approximate evolution operators mentioned above. Then using a

suitable re
overy operator and a numeri
al quadrature for time integral we obtain high

resolution �nite volume evolution Galerkin s
hemes, see [17℄, [18℄, [20℄, [19℄.

Let us note here that the 
ommonly used �nite volume methods approximate 
uxes on

the 
ell interfa
es by solving a Riemann problem in normal dire
tions to the 
ell interfa
es.

However, it has been shown by many authors, see e.g. [6℄, [7℄, [14℄, [16℄, [23℄, that su
h an

approa
h 
an lead to stru
tural de�
ien
ies in the numeri
al solution. Our �nite volume

evolution Galerkin methods take advantages of both approa
hes: the simpli
ity of the

�nite volume formulation and the multidimensionality of the evolution Galerkin s
hemes.

In fa
t, they 
ombine the usually 
on
i
ting design obje
tives of using the 
onservation

11



form and following the 
hara
teristi
s, or bi
hara
teristi
s. This is a novel feature of our

method and a genuine multidimensional generalization for systems of Godunov's idea.

In what follows we will des
ribe expli
itly evolution Galerkin s
hemes, �nite volume

evolution Galerkin s
hemes and their higher order version. The wave equation system

(2.1) 
an be written in the form of a general system of hyperboli
 
onservation laws in d

spa
e dimensions

U

t

+

d

X

k=1

(F

k

(U))

x

k

= 0; x = (x

1

; : : : ; x

d

)

T

2 IR

d

; (3.1)

where F

k

= F

k

(U); k = 1; : : : ; d represent given physi
al 
ux fun
tions and the 
onser-

vative variables are U = (u

1

; : : : ; u

m

)

T

2 IR

m

. Let us denote by E(s) : [H

k

(IR

d

)℄

m

!

[H

k

(IR

d

)℄

m

the exa
t evolution operator asso
iated with a time step s a
ting on Sobolev

spa
es for the system (3.1), i.e.

U(�; t+ s) = E(s)U(�; t): (3.2)

We suppose that S

p

h

is a �nite element spa
e 
onsisting of pie
ewise polynomials of

order p � 0. Let U

n

be an approximation in the spa
e S

p

h

to the exa
t solution U(�; t

n

)

at a time t

n

> 0 and take E

�

: S

r

h

! [H

k

(IR

d

)℄

m

to be a suitable approximation to

the exa
t evolution operator E(�), r � 0. We denote by P

h

: [H

k

(IR

d

)℄

m

! S

p

h

an L

2

-

proje
tion onto 
ells, and by R

h

: S

p

h

! S

r

h

a re
overy operator, r � p � 0 . We limit our


onsiderations to 
ases of 
onstant time step �t, i.e. t

n

= n�t, and of a uniform mesh


onsisting of d-dimensional 
ubes with a uniform mesh size h.

De�nition 3.1 (EG methods) Starting from some initial value U

0

at time t = 0, the

higher order evolution Galerkin s
heme (EG) falls into the 
lass of PERU-s
hemes and

is re
ursively de�ned by means of

U

n+1

= P

h

E

�

R

h

U

n

:

De�nition 3.2 (FVEG methods) The re
ursive update formula for the �nite volume

evolution Galerkin method (FVEG) reads

U

n+1

= U

n

�

1

h

Z

�t

0

d

X

k=1

Æ

x

k

F

k

(U

n+�=�t

) d�; (3.3)

where the spatial 
entral di�eren
e v(x + h=2) � v(x � h=2) is denoted by Æ

x

v(x) and

Æ

x

k

F

k

(U

n+�=�t

) represents an approximation to the edge 
ux di�eren
e at intermediate

time levels t

n

+ � , � 2℄0;�t[. The 
ell boundary 
ux F

k

�

U

n+�=�t

�

is evolved using the

approximate evolution operator E

�

to t

n

+ � and averaged along the 
ell boundary, i.e.

e.g. on verti
al edge for U itself

U

n+�=�t

=

1

h

Z

h

0

E

�

R

h

U

n

dS

y

d�: (3.4)

An analogous formula holds for the horizontal edges.
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Now we will give the approximate evolution operators E

�

for the wave equations system

(2.1) that we have used.

3.1 Approximate evolution operators

Consider the Ma
h 
one 
orresponding to the wave equation system (2.1), see Figure 4.

Let us denote by P = (x; y; t + �t) the apex of the Ma
h 
one and by Q = Q(�) =

(x + 
�t 
os �; y + 
�t sin �; t) the base points parametrized by the angle � 2 [0; 2�℄.

Denote by P

0

= (x; y; t) the 
enter of the base of the 
one. The lines from Q(�) to P

generating the mantle of the so-
alled bi
hara
teristi
 
one as well as the 
enter line are


alled bi
hara
teristi
s.

.
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.

.

.

x

y

t

P = (x; t+4t)

P

0

Q(�)

�

Figure 4: Bi
hara
teristi
s along the Ma
h 
one through P and Q(�) as well as P

0

.

Using the theory of bi
hara
teristi
s it 
an be shown that the solution (�; u; v) at the

point P is determined by its values on the base as well as on the mantle of the 
hara
teristi



one. An exa
t integral equation has been derived; for details see e.g. [1℄, [25℄, [16℄. It

should be pointed out that this integral equation is not an integral representation of

the solution in terms of the data, su
h as the Kir
hho� formula for the wave equation.

Di�erent dis
retizations with respe
t to time of this integral equation lead to the following

approximate evolution operators E

�

. For more details on their 
onstru
tion see [16℄, [22℄.

3.2 Approximate evolution operator for the EG1 s
heme

�

P

=

1

2�

Z

2�

0

�

Q

� 2u

Q


os � � 2v

Q

sin �d� +O(�t

2

) (3.5)

u

P

=

1

�

Z

2�

0

��

Q


os � + u

Q

(3 
os

2

� � 1) + 3v

Q

sin � 
os �d� +O(�t

2

) (3.6)

v

P

=

1

�

Z

2�

0

��

Q

sin � + 3u

Q

sin � 
os � + v

Q

(3 sin

2

� � 1)d� +O(�t

2

) (3.7)
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3.3 Approximate evolution operator for the EG2 s
heme

�

P

=

1

�

Z

2�

0

�

Q

� u

Q


os � � v

Q

sin �d� � �

P

0

+O(�t

3

) (3.8)

u

P

=

1

�

Z

2�

0

��

Q


os � + u

Q

(2 
os

2

� �

1

2

) + 2v

Q

sin � 
os �d� +O(�t

3

) (3.9)

v

P

=

1

�

Z

2�

0

��

Q

sin � + 2u

Q

sin � 
os � + v

Q

(2 sin

2

� �

1

2

)d� +O(�t

3

) (3.10)

3.4 Approximate evolution operator for the EG3 s
heme

�

P

=

1

2�

Z

2�

0

�

Q

� 2u

Q


os � � 2v

Q

sin �d� +O(�t

2

) (3.11)

u

P

=

1

2

u

P

0

+

1

2�

Z

2�

0

�2�

Q


os � + u

Q

(3 
os

2

� � 1) + 3v

Q

sin � 
os �d�

+ O(�t

2

) (3.12)

v

P

=

1

2

v

P

0

+

1

2�

Z

2�

0

�2�

Q

sin � + 3u

Q

sin � 
os � + v

Q

(3 sin

2

� � 1)d�

+ O(�t

2

) (3.13)

Denote by P

h

an L

2

- proje
tion onto a spa
e of pie
ewise 
onstant fun
tions S

0

h

and

apply P

h

to the approximate evolution operators (3.5)-(3.7), (3.8)-(3.10), (3.11)-(3.13).

This yields the �rst order s
hemes U

n+1

= P

h

E

�

U

n

; whi
h in [16℄ are referred to as

the EG1, EG2 and EG3 s
hemes. Spa
e integrals 
oming from the proje
tion step are


omputed exa
tly, i.e. no numeri
al quadrature is used. The resulting �nite di�eren
e

formulation on equidistant re
tangular meshes 
an be found in [16℄, where the 
oeÆ
ients

of the EG s
hemes in �nite di�eren
e formulation are given expli
itly.

3.5 Se
ond order �nite volume evolution Galerkin s
hemes

There are many possible re
overy s
hemes, whi
h 
ould be used. We only pres
ribe that

the following 
onservativity property holds

P

h

R

h

V = V for all V 2 S

p

h

: (3.14)

For our 
omputations we 
hoose a dis
ontinuous bilinear re
overy using a �nite di�er-

en
e approximation to derivatives, but others 
ould be used and were tested as well. The

formula for the re
overy on ea
h 
ell is
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R

h

U j




ij

= U

ij

+

(x� x

i

)

4h

�

�

0x

U

ij+1

+ 2�

0x

U

ij

+�

0x

U

ij�1

�

+

(y � y

j

)

4h

�

�

0y

U

i+1j

+ 2�

0y

U

ij

+�

0y

U

i�1j

�

+

(x� x

i

)(y � y

j

)

h

2

�

0y

�

0x

U

ij

;

where �

0x

v(x) =

1

2

[v(x+ h)� v(x� h)℄ =

1

2

(v

i+1

� v

i�1

), an analogous notation is used

for �

0y

.

For the 
omputation of 
uxes through 
ell edges the 
ell interfa
e value of U has to be

determined. Instead of the exa
t time integration the se
ond order midpoint rule is used.

Thus, the �nite volume evolution Galerkin s
heme (3.3) now is written as

U

n+1

= U

n

�

�t

h

d

X

k=1

Æ

x

k

F

k

(U

n+�

); (3.15)

where

F

k

(U

n+�

) =

1

h

Z

h

0

F

k

(E

�t=2

R

h

U

n

)dS: (3.16)

The resulting two-dimensional spa
e integrals of the bilinear fun
tion R

h

U

n

with re-

spe
t to � and 
ell edges are 
omputed exa
tly without any numeri
al quadrature and

thus all of the in�nitely many dire
tions of propagation of 
ow information are taken

expli
itly into a

ount. Examples of sten
ils 
an be found in [18℄. The above 
onstru
tion

leads for every approximate evolution operator (3.5)-(3.7), (3.8)-(3.10), (3.11)-(3.13) to

an overall se
ond order s
heme. Numeri
al experiments show, see [17℄, [18℄, that these

s
hemes give very a

urate results in regions were the solution is smooth, e.g. even 7 times

more a

urate than the 
ommonly used se
ond order s
hemes of Lax-Wendro� and �nite

volume 
ux ve
tor splitting s
heme using the MUSCL approa
h. In what follows we will

test the quality of the numeri
al solution for a dis
ontinous genuinely multidimensional

test 
ase.

4 Numeri
al results

The goal of this se
tion is to solve numeri
ally a two-dimensional Riemann problem with

the initial data 
onsisting of �nitely many 
onstant states. Using the results from the

Se
tion 2 the exa
t analyti
al solution outside the subsoni
 region 
an be found. The

exa
t solution will be 
ompared with the numeri
al solution obtained by the evolution

Galerkin s
hemes as well as by other 
ommonly used numeri
al s
hemes. Thus, we will

get a good insight into the performan
e of our s
hemes and the possibility to 
ompare

the numeri
al solutions with the exa
t dis
ontinuous solution, whi
h in 
ertain 
ases are

available.

In what follows, let us 
onsider the following Riemann problem
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�(x; 0) = 0;

v(x; 0) = u(x; 0) =

1

p

2

8

>

<

>

:

1; jyj < jxj;

�1; elsewhere.

(4.1)

The 
omputational domain is taken to be [�1; 1℄� [�1; 1℄ and the �nal time set to be

T = 0:4. A

ording to the results from the Se
tion 2 we �nd out that from ea
h of the

initial dis
ontinuities x = �y planar waves propagate with the speeds �

0

= 0 or �

�

= �
.

For ea
h initial dis
ontinuity a 
orresponding Riemann problem has to be solved in order

to �nd the intermediate 
onstant states (�

�

; u

�1

; v

�1

) and (�

�

; u

�2

; v

�2

) up to the region

where the waves intera
t, i.e. up to the points P;Q as depi
ted in Figure 5.

13

0
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η
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33 41

42

43

ξ

Figure 5: Constru
tion of solution of the Riemann problem (4.1).

For our test 
ase these 
onstant states of the solution are as follows. In the regions

denoted in Figure 5 by (1) - (4) � = 0; further u = v = 1=

p

2 in (1),(3) and u = v =

�1=

p

2 in (2),(4). In the region between the rays l

21

and l

23

one has � = 1 and u = v = 0.

Analogously, between l

41

and l

43

we have � = �1 and u = v = 0. Further, in the region

between the rays l

31

and l

33

the values are � = 0, but u = v = 1=

p

2 in the region l

31

� l

32

,

and u = v = �1=

p

2 in the region l

32

� l

33

. Similar results with opposite signs hold in

the region l

11

� l

13

. Further, there are four regions 
orresponding to the Goursat-type

problems, 
f. Se
tion 2.2. In two of them between the rays l

11

� l

43

and l

33

� l

41

we

have � = �1 and u = v = 0 and analogously in the next two Goursat-type regions, whi
h

are bounded by the rays l

13

� l

21

and l

23

� l

31

, the solution is � = 1 and u = v = 0.

In what follows we will 
ompare these values of the exa
t solution with the 
orrespond-

ing parts of the numeri
al solutions obtained by the evolution Galerkin methods as well

as by other numeri
al s
hemes. We divide the 
omputational domain into N � N mesh


ells with N = 400. For the CFL 
ondition 
�t=h � �, we set the CFL-number � = 0:55

and take the �nal time T = 0:4.

In Figures 6 and 7 the isolines of x�
omponent of velo
ity 
omputed by several nu-

meri
al s
hemes are shown. We see that two dis
ontinuities propagate in the positive and

negative dire
tion of the diagonal x = �y and an additional steady dis
ontinuity o

urs

16



along the main diagonal x = y. This is in a full agreement with the stru
ture of the exa
t

solution as derived above.

In Figure 6 the 
omparison between the �rst order FVEG3 and the �rst order FV 
ux

ve
tor splitting (FV-FVS) method is shown. It 
an be seen very well that the dire
tional

splitting 
an spoil the stru
ture of the solution if the dis
ontinuity is not aligned with the

mesh orientation.

Figure 7 shows the 
omparison of the se
ond order FVEG3 method with the 
ommonly

known Lax-Wendro� (rotated Ri
htmyer) s
heme. We 
an see that the resolution by the

FVEG method is generally better without produ
ing os
illations. Moreover 
omparing

results of the �rst order and the se
ond order FVEG3 method, Figures 6 and 7, it 
an

be seen very well that the dis
ontinuities are sharper and better resolved by the se
ond

order method.
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Figure 6: Isolines of velo
ity obtained by the �rst order FVEG3 and FV-FVS s
hemes.

Having outside the subsoni
 domain the analyti
al formulae for the exa
t solution,

we are moreover able to 
ompare errors between the exa
t and approximate solutions.

A
tually, as alreday pointed out one 
an use the Kir
hho� formula to obtain the exa
t

solution in the subsoni
 domain also, see [10℄ for details. We have refrained from using

it, be
ause the a

ura
y at the oblique dis
ontinuities was the main obje
tive of our


omparisons.

The CFL-number is set to 0:55, but numeri
al tests for several other values of CFL

number and �nal time T 
on�rm the behaviour of the s
hemes as depi
ted in Tables 1

and 2, where the errors between the exa
t and the approximate solution measured in the

dis
rete L

2

-norm are shown. The 
omputational domain is divided into N � N mesh


ells with N = 50; 100.

Similarly, as we have reported in [16℄, [18℄ for the 
ontinuous data 
ase, the EG3 s
heme

is the most favourable among the �rst order EG-s
hemes due to its lower numeri
al

di�usion, see [21℄. On the other hand, the 
ommonly used dimensional splitting �nite

17
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Figure 7: Isolines of velo
ity obtained by the se
ond order FVEG3 and the Lax-Wendro�

s
hemes.

volume 
ux ve
tor splitting s
heme (FV-FVS) has not only a relatively large amount of

di�usion, but 
an also spoil a solution 
onsiderably, see Figure 6 and Table 1.

As illustrated in Table 2 the a

ura
y of the se
ond order FVEG1 and FVEG3 s
hemes

is 
omparable with the a

ura
y of the se
ond order Butler s
heme [1℄, and it is even better

than the a

ura
y of the Lax-Wendro� s
heme. This feature has already been noti
ed

for 
ontinuous data problems in our previous papers [17℄, [18℄, where we have shown that

the a

ura
y of the se
ond order FVEG s
hemes, namely the FVEG3 and the FVEG1, is

relatively high, in 
omparison to other 
ommonly used se
ond order methods, e.g. the Lax-

Wendro� s
heme or the FV-FVS (MUSCL). Moreover, also the qualitative phenomena in

the exa
t solutions are resolved better by the EG s
hemes as demonstrated in Figures 6 -

7. Note that although we 
an see some improvements in L

2

-errors if the number of mesh


ells in
reases, i.e. N = 50; 100, as well as if the order of method in
reases, we 
annot

a
tually obtain experimentally the full order of 
onvergen
e in the dis
ontinuous data


ase. This is a well-known fa
t for dis
ontinuous data problems.

In Table 3 we show that the L

2

-error 
omputed only on the Goursat-type domain, i.e.

the domain where the waves emitted from the original dis
ontinuities start to intera
t.

We 
an see the superiority of the FVEG s
hemes. A
tually, the solution in this domain,

whi
h is 
lose to the subsoni
 part, i.e. partially ellipti
 part, of the solution is mu
h

better and more stably approximated by the FVEG s
hemes than by the other se
ond

order methods that we have tested.

Table 1: L

2

error: 
omparison of �rst order methods outside the subsoni
 domain.

N EG1 EG2 EG3 FVEG3 FV-FVS

50 0.659197 0.748516 0.588118 0.688988 0.710322

100 0.558413 0.640843 0.472754 0.582529 0.639134
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Table 2: L

2

error: 
omparison of se
ond order methods outside the subsoni
 domain.

N FVEG1 FVEG2 FVEG3 LW Butler

50 0.517610 0.590799 0.528176 0.565938 0.531510

100 0.404097 0.512992 0.409156 0.427599 0.408781

Finally, we present in Figure 8 an example of a 
ross se
tion of the � 
omponent

showing that for the subsoni
 domain the lo
al maximum prin
iple, derived in Se
tion 2.3,

is maintained by our s
hemes. We 
an see that the EG-s
hemes, the �rst order EG3 as

well as the se
ond order FVEG3, provide monotone solutions on the interval [�0:4; 0:4℄,

whi
h 
orresponds to the subsoni
 domain. For the Lax-Wendro� method this is not the


ase.
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Figure 8: Comparison of the EG-s
hemes and the Lax-Wendro� method on the 
ross

se
tion y = 0, CFL=0.55, N = 200.

Table 3: L

2

error: 
omparison of se
ond order methods in the Goursat-type domain.

N FVEG1 FVEG2 FVEG3 LW Butler

50 0.093271 0.079240 0.099798 0.127834 0.116926

100 0.060055 0.053268 0.066472 0.093554 0.081193
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