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Abstrat

The subjet of this paper is a demonstration of the auray and robustness of evo-

lution Galerkin shemes applied to two-dimensional Riemann problems with �nitely

many onstant states. In order to have a test ase with known exat solution we

onsider a linear �rst order system for the wave equation and test evolution Galerkin

methods as well as other ommonly used shemes with respet to their auray in

apturing important strutural phenomena of the solution. For the two-dimensional

Riemann problems with �nitely many onstant states some parts of the exat solu-

tion are onstruted in the following three steps. Using a self-similar transformation

we solve the Riemann problem outside a neighborhood of the origin and then work

inwards. Next a Goursant-type problem has to be solved to desribe the interation

of waves up to the soni irle. Inside it a system of omposite ellipti-hyperboli

type is obtained, whih may not always be solvable exatly. There an interesting

loal maximum priniple an be shown. Finally, an exat partial solution is used

for numerial omparisons.
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1 Introdution

This paper is onerned with the auray of numerial approximations for solutions to

systems of hyperboli onservation laws. In order to preisely assess the auray of

numerial shemes it is of fundamental importane to have a wide range of di�erent exat

solutions. Only in suh ases one an determine the exat error of the approximation.

For multidimensional systems of partial di�erential equations this is quite a hallenge.

One ommonly used possibility to design suh test ases for smooth solutions is to take

some simple, e.g. polynomial, trigonometri or exponential, funtions. One may insert

them into the di�erential part of the equations and then adjust the right hand side as well

as the data in order to obtain a solution, see e.g. Luk�a�ov�a et al. [16℄. This is quite nie

for a start, but it is diÆult to assess speial properties of shemes in general appliations,

sine these solutions are quite speial and possibly unrealisti for true appliations.

In designing shemes for onservation laws it is important to study disontinuous

solutions. Numerial diÆulties at ontat disontinuities in nonlinear systems like the

Euler equations of gas dynamis are quite well known. Therefore, it is useful to study

disontinuous solutions to the two-dimensional Riemann problem for linear systems as a

�rst step. The aim is to obtain as muh exat information on the solution of test ases

as possible in order to alulate the loal error of the sheme. This will be done in this

paper by onsidering a 3 by 3 linear system for the wave equation that is related to the

linearized aousti part of the Euler equations.

The two-dimensional Riemann problem is given by initial data whih onsist of piee-

wise onstant states on a �nite number of setors going out from the origin of the plane.

A ommon simple example is to take four quadrants obliquely to the mesh. The solution

at a later time onsists basially of two main parts. In a small region around the origin,

i.e. inside the soni irle, it has a ompliated struture that is obtained as a solution to

an ellipti boundary value problem. This part of the solution is not known exatly. Out-

side this region the solution is pieewise onstant and the loation of the disontinuities

between these states is known exatly.

Another important issue for test ases is to obtain as muh qualitative information

on the spei�, e.g. monotoniity or maximum priniple type properties, in those loal

parts of the solution where it is not known exatly. One may then test the sheme for the

preservation of suh properties.

The struture of the paper is as follows. First we study the solution near in�nity by

making use of its self-similarity. We obtain a time-independent system in two variables

and demonstrate its solvability. This solution may be extended inwards to a ertain region.

Then we have to solve a Goursat-type problem with possibly disountinuous boundary

values to go further inward. Next, we study the boundary value problem for the extension

of the solution to the remaining neighborhood of the origin. We prove the solvability of

this problem using the theory of symmetri positive systems due to Friedrihs [8℄. We

also prove a maximum priniple that should be respeted by numerial approximations.
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In the remaining parts of the paper we give expliitely the onstrution of parts of

the solution for an example that we use to ompare various shemes. We are developing

evolution Galerkin (EG) type shemes using the biharateristi ones of the system in

their onstrution spei�ally to deal with multidimensional solution features. Variants of

these seond order shemes based on a �nite volume formulation are applied to this test

ase. Comparisons with a sheme of Butler, a �nite volume ux vetor splitting sheme

and the rotated Rihtmyer Lax-Wendro� sheme are made.

The study of the error in loal parts of solutions to multidimensional Riemann problems

may be extended also to nonlinear systems. The analysis beomes quite a bit more

involved. Results of the kind that would be needed may be found in Li et al. [15℄. Sine

suh solutions have been used as numerial test ases in reent years, see e.g. Shulz-Rinne

[26℄, it would be important to extend the results in this paper to some of the test ases

already in use.

2 Constrution of two-dimensional Riemann solutions

In this setion we onstrut expliitly Riemann solutions of the two dimensional Riemann

problem for wave equation system
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subjet to the initial data

(�; u; v)(t = 0; x; y) = (�

0

; u

0

; v

0

)(�); (2:2)

where 0 � � < 2� is the polar angle. For the purpose of numerial experiments, (�

0

; u

0

; v

0

)

is restrited to be a �nite number of onstant states, being disontinuous along rays

through the origin.

As the initial data are disontinuous, the solution of (2.1) and (2.2) must be dison-

tinuous and disontinuities propagate along harateristis by the well{known theory of

hyperboli systems. Therefore (2.1) and (2.2) must be understood in L

1

(IR

3

+

), see [27℄.

We prove by a onstrution that the solution is in L

1

. Now we try to �nd out how to

onstrut the expliit solution. For this purpose, we need to understand how the dison-

tinuities propagate and how they interat. For de�niteness, we all these disontinuities

waves.

2.1 Planar waves and Rankine{Hugoniot ondition.

Sine system (2.1) is linear, there are no nonlinear rarefation waves or shoks but only

linear waves in solutions. As a �rst step we just onsider a planar wave. We assume suh
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a wave emitted from an initial disontinuity at the line �x+�y = 0 in the diretion (�; �)

with �

2

+ �

2

= 1. The solution takes the form

(�; u; v)(t; x; y) = (�; u; v)((�x+ �y)=t): (2:3)

Let [�℄ be the jump of � aross this disontinuity, and analogously for u and v, and

(��; �; �) the normal of the disontinuity. Then we get the Rankine{Hugoniot ondition,
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� = �

�

= �;

[�℄� (�[u℄ + �[v℄) = 0;

��[u℄ + �[v℄ = 0:

(2:4)

There are three possibilities for planar waves to travel with veloities 0; �. Note

that hoosing an initial data with a jump along �x + �y = 0 leads to a solution with

at most three suh planar wave parts. The �rst system of (2.4) means that the normal

omponents of veloity of (u; v) are idential on both sides of stationary disontinuity with

�

0

= 0. The seond system means that the tangential omponents of veloity are idential

on both sides of the disontinuities moving with speeds �

�

= �. In this sense the ase

�

0

= 0 resembles a ontat disontinuity, i.e. a slip layer, and the ase �

�

= � are

something like shok waves in gas dynamis. Thus for given two initial states separated

by the straight line �x + �y = 0, the solution an be onstruted via the harateristi

analysis method in the phase plane, similar to the onstrution of Riemann solutions

for adiabati gas dynamis, see, e.g., [3℄, [27℄. Spei�ally, we solve this problem in the

(�u+�v; �){plane. Denote by U = ��u+�v and V = �u+�v the tangential and normal

veloity omponents, respetively, along the plane �x+�y = �t with � = �

0

; or �

�

. Then

(2.4) is equivalent to

V

1�

� V

2�

= 0

and

�

1

� �

�

+ (V

1

� V

1�

) = 0;

U

1

� U

�1

= 0; U

2

� U

2�

= 0;

�

2

� �

�

� (V

2

� V

2�

) = 0:

(2:5)

Taking the initial data (2.2) to be two onstant states as

(�; u; v)(t = 0; x; y) =

8

>

<

>

:

(�

1

; u

1

; v

1

); �x + �y < 0;

(�

2

; u

2

; v

2

); �x + �y > 0;

(2:6)

the solution an be expressed expliitly as

(�; u; v)(t; x; y) =

8
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:

(�

1

; u

1

; v

1

); �x + �y < �

�

t;

(�

�

; u

�1

; v

�1

); �

�

t < �x+ �y < 0;

(�

�

; u

�2

; v

�2

); 0 < �x + �y < �

+

t;

(�

2

; u

2

; v

2

); �x + �y > �

+

t:

(2:7)
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where (�

�

; u

�1

; v

�1

) and (�

�

; u

�2

; v

�2

) are solved by using (2.5). We illustrate the onstru-

tion of solutions in Figure 1.

(    ,V  )φ
2φ

X=0

*2φ *2*1*1φ (    ,V  )(    ,V  )

1
(    ,V  )φ2 2

(    ,V  )φ* *

1
1 (    ,V  ) (    ,V  )2φ1

X=−ct X=ct

V X

φ

Figure 1: Ilustration of the onstrution of 2-D Riemann solutions; X = �x+ �y,

V = �u+ �v.

In general, the initial data are onstant in angular domains and the orresponding

solutions will be muh more ompliated. However the invariane of (2.1) and (2.2) under

the dilation (t; x; y)! (�t; �x; �y) (� > 0) enables us to seek self{similar solutions of the

form (�; u; v)(t; x; y) = (�; u; v)(�; �) with � = x=t; � = y=t. Then under this self{similar

transformation system (2.1) beomes

8

>

>

>

>

<

>

>

>

>

:

���

�

� ��

�

+ (u

�

+ v

�
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��u

�

� �u

�

+ �

�

= 0;

��v

�

� �v

�

+ �

�

= 0

(2:8)

and initial data (2.2) are transformed into boundary values at in�nity

lim

�

2

+�

2

!1

(�; u; v) = (�

0

; u

0

; v

0

)(�); (2:9)

where �=� = artan � is kept onstant taking the limit. This is a boundary value problem

for the �rst order system of partial di�erential equations (2.8) with boundary values (2.9)

at in�nity. To solve it, the onepts of harateristis and disontinuities in (�; �){plane

play an essential role. The eigenvalues of the system are

�

0

=

�

�

; and �

�

=

�� � 

p

�

2

+ �

2

� 

2

�

2

� 

2

: (2:10)

The eigenvalue �

0

is always real while �

�

are omplex inside the soni irle S :

�

2

+ �

2

= 

2

and real outside this irle. In other words, the ow is subsoni inside the

irle and supersoni outside the irle but paraboli degenerate on the soni irle.

In the supersoni domain, we de�ne harateristis,

�

i

:

d�

d�

= �

i

; i = 0;+;�: (2:11)

Then it an readily be heked that �

0

passes through the origin, �

�

and �

+

are straight

and always tangent to the irle �

2

+ �

2

= 

2

. Furthermore one an hek that �

+

is
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tangent to S in the lokwise diretion while �

�

is tangent to S in the ounterlokwise

diretion.

The disontinuity � = �(�), being a disontinuity surfae y = ty(x=t) with the normal

(� � ��; �;�1) and � = �

0

(�) in (t; x; y){spae, satis�es the Rankine{Hugoniot ondition

expressed in the selfsimilar variables [15℄,
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=

�� � 

p

�

2

+ �

2
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2

�

2

� 

2

;

�

�

[v℄ + [u℄ = 0;

�

�

[�℄ + (� � ��

�

)[u℄ = 0:

(2:12)

The disontinuities � = �(�) de�ned by

d�

d�

= �

i

(i = 0;+;�) have the same properties

as those of �

i

. The omponents of veloity also share the same behaviour as those in the

ase of planar waves above.

For the Riemann problem under onsideration, (2.1) and (2.2) are equivalent to (2.8)

and (2.9). To solve the latter, we �rst need to solve this boundary value problem at

in�nity, whih is due to the following lemma.

Lemma 2.1 If the initial data (2.2) onsist of a �nitely many onstant states, then prob-

lem (2.8) and (2.9) is loally well-posed at in�nity. The solution onsists of planar waves

and onstant states.

The proof of this lemma is similar to that in [5℄. We omit the details.

After getting the solution at in�nity, we have to extend this solution inwards from an

in�nity. The solution an be extended by the method of harateristis until an interation

of waves ours.

2.2 The interation of waves.

As preparation of the onstrution of global solution, the interation of waves is now

studied. We wish to solve a Riemann problem in an angular domain � bounded by two

harateristis in the (�; �){plane, whih originate in a point P , where a wave interation

ours, as illustrated in Figure 2.

Let �

�

and �

+

be two disontinuities, whih interset at P , �

+

separates the state

(�

1

; u

1

; v

1

) from (�

0

; u

0

; v

0

) and �

�

separates (�

2

; u

2

; v

2

) from (�

0

; u

0

; v

0

). Thus our prob-

lem is to solve (2.8) inside the domain � bounded by PP

1

and PP

2

with the boundary

values

(�; u; v)j

PP

1

= (�

1

; u

1

; v

1

) and (�; u; v)j

PP

2

= (�

2

; u

2

; v

2

): (2:13)

This is a Goursat-type problem with a possibly disontinuous boundary value on the

harateristis. Note that if (�

1

; u

1

; v

1

) 6= (�

2

; u

2

; v

2

), the solution annot be expeted to
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be ontinuous. Therefore we attempt to seek disontinuous solutions. Denote P = (�

0

; �

0

),

and onsider a solution of the form

(�; u; v) = (�; u; v)(�); � = �(�; �) =

� � �

0

� � �

0

: (2:14)

v

u

00 vu0(φ   ,     ,      )

(φ   ,     ,      )

v

1 1

∗1∗1∗

∗1∗1∗

v

v

u

u

(φ   ,     ,      )

(φ   ,     ,      )

(φ   ,     ,      )
1u

2 2 2

P

η

Γ−

ξ

+Γ

S 2

1P

P

0

0

Γ

Figure 2: The Riemann problem in an angular domain; the disontinuities �

j

have

the respetive slopes �

j

j = 0;�;+; S : �

2

+ �

2

= 

2

.

The urve � = �(�; �) is atually a surfae y = t(�(x=t��

0

)+�

0

) with the normal (�

0

�

��

0

; �;�1) in (t; x; y){spae. Therefore, the Rankine{Hugoniot ondition of disontinuities

of this form satisfy (2.12) just replaing (� � ��; �;�1) by (�

0

� ��

0

; �;�1). The slopes

of the straight lines PP

2

, PP

1

and PO are exatly �

+

, �

�

and �

0

. �

�

must be real as long

as (�

0

; �

0

) is loated in the supersoni domain. This shows that the solution of the form

(2.14) an always be sought if two waves interat in the supersoni domain.

If (�

1

; u

1

; v

1

) = (�

2

; u

2

; v

2

), then the solution in � is just onstant. Otherwise, let

PP

i

separate (�

i

; u

i

; v

i

) from (�

�

; u

�i

; v

�i

), i = 1; 2, and PO separate (�

�

; u

�1

; v

�1

) and

(�

�

; u

�2

; v

�2

). Then we have the following relations by using the Rankine{Hugoniot on-

dition (2.12):

Aross PP

1

,

8

>

<

>

:

�

�

(v

1

� v

�1

) + (u

1

� u

�1

) = 0;

a(u

1

� u

�1

)� �

�

(�

1

� �

�

) = 0; a = ��

0

+ �

�

�

0

;

(2:15)

aross PP

2

,

8

>

<

>

:

�

+

(v

2

� v

�2

) + (u

2

� u

�2

) = 0;

b(u

2

� u

�2

)� �

+

(�

2

� �

�

) = 0; b = ��

0

+ �

+

�

0

;

(2:16)

and aross PO,

��

0

(u

�1

� u

�2

) + (v

�1

� v

�2

) = 0:

(2:17)

We write the system of equations (2.15){(2.17) as

AU

�

= B; (2:18)
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where

A =

0

B

B

B

B

B

B

B

B

B

B

B

�

�1 0 ��

�

0 0

�a 0 0 0 �

�

0 �1 0 ��

+

0

0 �b 0 0 �

+

��

0

�

0

1 �1 0

1

C

C

C

C

C

C

C

C

C

C

C

A

; U

�

=

0

B

B

B

B

B

B

B

B

B

B

B

�

u

�1

u

�2

v

�1

v

�2

�

�

1

C

C

C

C

C

C

C

C

C

C

C

A

; B =

0

B

B

B

B

B

B

B

B

B

B

B

�

��

�

v

1

� u

1

�au

1

+ �

�

�

1

��

+

v

2

� u

2

�bu

2

+ �

+

�

2

0

1

C

C

C

C

C

C

C

C

C

C

C

A

:

(2:19)

Note that

detA = �

�

�

+

(�

+

� �

�

)(�

0

+ �

0

�

0

) 6= 0 (2:20)

if �

�

�

+

6= 0 and by (2.12) �

+

6= �

�

, i.e. (�

0

; �

0

) is not loated on the irle �

2

+ �

2

= 

2

. If

�

�

�

+

= 0, then �

0

= � or �

0

= �. Without loss of generality, we just onsider the ase

�

0

= . Then (2.16) is replaed by

8

>

<

>

:

v

2

� v

�2

= 0;

u

2

� u

�2

� (�� �

�

) = 0

(2:21)

and �

�

=

�

2

0

� 

2

2�

0

. In all, the system (2.15), (2.17), (2.21) has a unique solution when

P is loated outside the soni irle. Thus the Goursat-type problem (2.8) and (2.13) is

uniquely solvable with the struture skethed in Figure 2.

2.3 The subsoni problem.

In order to get the global Riemann solutions, we have to study the subsoni problem

(2.8) inside the soni domain with the boundary value on the soni irle resulting from

the extension of the Riemann solution in the supersoni domain. The soni irle is a

degenerate boundary. The boundary values are pieewise onstant. For simpliity, denote

the subsoni domain by 
 = f(�; �); �

2

+ �

2

< 

2

g.

System (2.8) an be rewritten in the operator form

L(w) = (L

1

(w); L

2

(w); L

3

(w))

T

:= A

1

w

 

+ A

2

w

�

= 0; w = (�; u; v)

T

; (2:22)

where

A

1

:=

0

B

B

B

B

�

��  0

 �� 0

0 0 ��

1

C

C

C

C

A

; A

2

:=

0

B

B

B

B

�

�� 0 

0 �� 0

 0 ��

1

C

C

C

C

A

:

Correspondingly, the adjoint operator of L is denoted by L

�

= (L

�

1

; L

�

2

; L

�

3

)

T

, i.e.

L

�

(�) = (L

�

1

(�); L

�

2

(�); L

�

3

(�))

T

=

0

B

B

B

B

�

(��

1

)

�

+ (��

1

)

�

��

1�

��

1�

��

2�

(��

2

)

�

+ (��

2

)

�

0

��

3�

0 (��

3

)

�

+ (��

3

)

�

1

C

C

C

C

A

;

(2:23)
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where � = (�

1

; �

2

; �

3

), the subsripts \�" and \�" represent the partial derivatives as

before.

Aording to Friedrihs [8℄ a �rst order system of type (2.22) is a symmetri positive

system. Due to regularity of the boundary �
 we have everywhere the outer normal

vetor �eld n = (n

1

; n

2

) and an de�ne the boundary operator

B := A

1

n

1

+ A

2

n

2

:

Thus,

B =

0

B

B

B

B

�

��n

1

� �n

2

n

1

n

2

n

1

��n

1

� �n

2

0

n

2

0 ��n

1

� �n

2

1

C

C

C

C

A

:

Now we take B

�

to be the negative part of the symmetri matrix B, i.e. B

�

is negative

semi-de�nite and B

+

= B�B

�

is positive semi-de�nite. Let g 2 L

2

(�
) be given. Then

aording to Friedrihs [8℄, see also Lax and Phillips [13℄, an admissible boundary ondition

is de�ned via

B

�

w = B

�

g on �
: (2:24)

A weak solution of (2.22) and (2.24) an be de�ned as follows.

De�nition 2.1 Let g be in L

2

(�
). A measurable vetor w = (�; u; v) 2 L

2

(
) is a weak

solution of (2.22) and (2.24) i�

(w;L

�

�) + hB

�

g; �i

�


= 0; (2:25)

for all � 2 C

1

(
) \ C(

�


):

The following theorem is due to Friedrihs [8℄, see also Lax and Phillips [13℄, and gives

the existene and uniqueness of solution in the strong sense.

Theorem 2.1 Let g 2 L

2

(�
). Then the problem (2.22), (2.24) has a unique solution

w = (�; u; v) 2 L

2

(
); s.t.

Lw = 0 a. e. on 


B

�

w = B

�

g on �
:

Note that � satis�es in a weak sense the following di�erential equations of seond

order, whih an be derived from (2.8) for smooth as well as distributional solutions

Q(�) = (

2

� �

2

)�

��

� 2���

��

+ (

2

� �

2

)�

��

� 2(��

�

+ ��

�

) = 0: (2:26)

If this equation has a unique lassial solution, then the solution satis�es the maximum

priniple.
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Lemma 2.2 (MAXIMUM PRINCIPLE) Suppose the solution of (2.26) satis�es � 2

C

2

(
) \ C(

�


). Then the maximum priniple holds, i.e.

k�k

L

p

(
)

�

�



2

�

1=p

k�k

L

p

(�
)

(2:27)

for all 1 � p <1. For p =1, it is

max




j�j � max

�


j�j: (2:28)

Proof: The adjoint operator to Q is

Q

�

(�) = ((

2

� �

2

)�)

��

� (2���)

��

+ ((

2

� �

2

)�)

��

+ 2��

�

+ 2��

�

+ 4�:

Applying Green's formula, we have

Z




wQ

�

(�)d�d� �

Z




�Q(w)d�d� = �

Z

�


w�d�

for w; � 2 C

2

(
) \ C(

�


). Taking � = �1 and w = (�

2

+ Æ)

p=2

for some Æ > 0, we have

Q

�

(�) = 2 and

Q(w) = p(�

2

+ Æ)

p=2�1

�Q(�)

+p(�

2

+ Æ)

p=2�2

((p� 1)�

2

+ Æ) ((

2

� �

2

)�

2

�

� 2���

�

�

�

+ (

2

� �

2

)�

2

�

):

Sine (

2

� �

2

)�

2

�

� 2���

�

�

�

+ (

2

� �

2

)�

2

�

� 0 and Q(�) = 0, we get

2

Z




(�

2

+ Æ)

p=2

� 

Z

�


(�

2

+ Æ)

p=2

d�:

Letting Æ ! 0, we arrived at (2.27). The formula (2.28) is obvious from (2.27). 2

The general boundary value problem for (2.26) is also well{posed. This is very similar

to Theorem 1.5.1 in [24℄. We state this theorem in the following theorem.

Theorem 2.2 There exists a unique solution of (2.26) with a measurable boundary value

�j

�


=

�

� in the sense that

Z




Q

�

(�)�d�d� = �

Z

�


�

��d� (2:29)

for all � 2 C

2

(
) \ C(

�


). This solution satis�es the maximum priniple

j�j � max

�


j

�

�j: (2:30)

The proof of this theorem basially follows that of Theorem 1.5.1 in [24℄. We omit the

details.
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2.4 The onstrution of global Riemann solutions.

Based on the above preparation, we an solve the two dimensional Riemann problem (2.1)

for a �nitely many onstant states in the initial data (2.2). By Lemma 2.2, we onlude

that the solution at in�nity onsists of pieewise onstant states separated by planar

waves. These waves an be ontinued up to the soni irle. In view of the Rankine-

Hugoniot onditions (2.15) - (2.17), these waves annot be urved at interation points,

where the Goursat-type problem an be solved, as explained in Subsetion 2.2. Thus

we an ompletely solve (2.8) and (2.9) outside of subsoni domain using the method of

harateristis. By Theorems 2.1 and 2.2 we obtain the ombination of the solution inside

the subsoni domain. Thus a unique global Riemann solution is onstruted. Similar

onstrution of solutions for gas dynamis an be found in [15℄

3 Evolution Galerkin methods

The evolution Galerkin methods (EG) were proposed by Luk�a�ov�a, Morton and Warneke

in [16℄ as numerial shemes for solving multidimensional systems of hyperboli onser-

vation laws. The main idea of the evolution Galerkin methods is that they evolve the

initial data using the biharateristi one or the Mah one and then projet them onto a

�nite element spae. In [16℄ three new �rst order evolution Galerkin shemes (EG1-EG3)

for a system of hyperboli equations, and partiularly for the wave equation system were

derived and analyzed. It has been shown in [16℄, see also [22℄, that the EG methods

apture very well suh solution properties as irular symmetry, independene of mesh

orientation, vortiity preservation and shoks. The auray of some of these �rst order

shemes, e.g. the EG3 sheme, mathes on oarse meshes that of the ommonly used

seond order shemes, e.g. the Lax-Wendro�.

In [16℄ we proved that the EG shemes are stable upto some CFL number 0 < �

max

< 1

and numerial tests, presented in [19℄, indiate the bounds of �

max

for eah approximate

evolution operator EG1 - EG3.

In order to derive higher order versions of the EG shemes a �nite volume formulation

is used. Thus to ompute uxes on the ell interfaes the approximate solution is evolved

using one of the three approximate evolution operators mentioned above. Then using a

suitable reovery operator and a numerial quadrature for time integral we obtain high

resolution �nite volume evolution Galerkin shemes, see [17℄, [18℄, [20℄, [19℄.

Let us note here that the ommonly used �nite volume methods approximate uxes on

the ell interfaes by solving a Riemann problem in normal diretions to the ell interfaes.

However, it has been shown by many authors, see e.g. [6℄, [7℄, [14℄, [16℄, [23℄, that suh an

approah an lead to strutural de�ienies in the numerial solution. Our �nite volume

evolution Galerkin methods take advantages of both approahes: the simpliity of the

�nite volume formulation and the multidimensionality of the evolution Galerkin shemes.

In fat, they ombine the usually oniting design objetives of using the onservation
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form and following the harateristis, or biharateristis. This is a novel feature of our

method and a genuine multidimensional generalization for systems of Godunov's idea.

In what follows we will desribe expliitly evolution Galerkin shemes, �nite volume

evolution Galerkin shemes and their higher order version. The wave equation system

(2.1) an be written in the form of a general system of hyperboli onservation laws in d

spae dimensions

U

t

+

d

X

k=1

(F

k

(U))

x

k

= 0; x = (x

1

; : : : ; x

d

)

T

2 IR

d

; (3.1)

where F

k

= F

k

(U); k = 1; : : : ; d represent given physial ux funtions and the onser-

vative variables are U = (u

1

; : : : ; u

m

)

T

2 IR

m

. Let us denote by E(s) : [H

k

(IR

d

)℄

m

!

[H

k

(IR

d

)℄

m

the exat evolution operator assoiated with a time step s ating on Sobolev

spaes for the system (3.1), i.e.

U(�; t+ s) = E(s)U(�; t): (3.2)

We suppose that S

p

h

is a �nite element spae onsisting of pieewise polynomials of

order p � 0. Let U

n

be an approximation in the spae S

p

h

to the exat solution U(�; t

n

)

at a time t

n

> 0 and take E

�

: S

r

h

! [H

k

(IR

d

)℄

m

to be a suitable approximation to

the exat evolution operator E(�), r � 0. We denote by P

h

: [H

k

(IR

d

)℄

m

! S

p

h

an L

2

-

projetion onto ells, and by R

h

: S

p

h

! S

r

h

a reovery operator, r � p � 0 . We limit our

onsiderations to ases of onstant time step �t, i.e. t

n

= n�t, and of a uniform mesh

onsisting of d-dimensional ubes with a uniform mesh size h.

De�nition 3.1 (EG methods) Starting from some initial value U

0

at time t = 0, the

higher order evolution Galerkin sheme (EG) falls into the lass of PERU-shemes and

is reursively de�ned by means of

U

n+1

= P

h

E

�

R

h

U

n

:

De�nition 3.2 (FVEG methods) The reursive update formula for the �nite volume

evolution Galerkin method (FVEG) reads

U

n+1

= U

n

�

1

h

Z

�t

0

d

X

k=1

Æ

x

k

F

k

(U

n+�=�t

) d�; (3.3)

where the spatial entral di�erene v(x + h=2) � v(x � h=2) is denoted by Æ

x

v(x) and

Æ

x

k

F

k

(U

n+�=�t

) represents an approximation to the edge ux di�erene at intermediate

time levels t

n

+ � , � 2℄0;�t[. The ell boundary ux F

k

�

U

n+�=�t

�

is evolved using the

approximate evolution operator E

�

to t

n

+ � and averaged along the ell boundary, i.e.

e.g. on vertial edge for U itself

U

n+�=�t

=

1

h

Z

h

0

E

�

R

h

U

n

dS

y

d�: (3.4)

An analogous formula holds for the horizontal edges.
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Now we will give the approximate evolution operators E

�

for the wave equations system

(2.1) that we have used.

3.1 Approximate evolution operators

Consider the Mah one orresponding to the wave equation system (2.1), see Figure 4.

Let us denote by P = (x; y; t + �t) the apex of the Mah one and by Q = Q(�) =

(x + �t os �; y + �t sin �; t) the base points parametrized by the angle � 2 [0; 2�℄.

Denote by P

0

= (x; y; t) the enter of the base of the one. The lines from Q(�) to P

generating the mantle of the so-alled biharateristi one as well as the enter line are

alled biharateristis.
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.

.

x

y

t

P = (x; t+4t)

P

0

Q(�)

�

Figure 4: Biharateristis along the Mah one through P and Q(�) as well as P

0

.

Using the theory of biharateristis it an be shown that the solution (�; u; v) at the

point P is determined by its values on the base as well as on the mantle of the harateristi

one. An exat integral equation has been derived; for details see e.g. [1℄, [25℄, [16℄. It

should be pointed out that this integral equation is not an integral representation of

the solution in terms of the data, suh as the Kirhho� formula for the wave equation.

Di�erent disretizations with respet to time of this integral equation lead to the following

approximate evolution operators E

�

. For more details on their onstrution see [16℄, [22℄.

3.2 Approximate evolution operator for the EG1 sheme

�

P

=

1

2�

Z

2�

0

�

Q

� 2u

Q

os � � 2v

Q

sin �d� +O(�t

2

) (3.5)

u

P

=

1

�

Z

2�

0

��

Q

os � + u

Q

(3 os

2

� � 1) + 3v

Q

sin � os �d� +O(�t

2

) (3.6)

v

P

=

1

�

Z

2�

0

��

Q

sin � + 3u

Q

sin � os � + v

Q

(3 sin

2

� � 1)d� +O(�t

2

) (3.7)
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3.3 Approximate evolution operator for the EG2 sheme

�

P

=

1

�

Z

2�

0

�

Q

� u

Q

os � � v

Q

sin �d� � �

P

0

+O(�t

3

) (3.8)

u

P

=

1

�

Z

2�

0

��

Q

os � + u

Q

(2 os

2

� �

1

2

) + 2v

Q

sin � os �d� +O(�t

3

) (3.9)

v

P

=

1

�

Z

2�

0

��

Q

sin � + 2u

Q

sin � os � + v

Q

(2 sin

2

� �

1

2

)d� +O(�t

3

) (3.10)

3.4 Approximate evolution operator for the EG3 sheme

�

P

=

1

2�

Z

2�

0

�

Q

� 2u

Q

os � � 2v

Q

sin �d� +O(�t

2

) (3.11)

u

P

=

1

2

u

P

0

+

1

2�

Z

2�

0

�2�

Q

os � + u

Q

(3 os

2

� � 1) + 3v

Q

sin � os �d�

+ O(�t

2

) (3.12)

v

P

=

1

2

v

P

0

+

1

2�

Z

2�

0

�2�

Q

sin � + 3u

Q

sin � os � + v

Q

(3 sin

2

� � 1)d�

+ O(�t

2

) (3.13)

Denote by P

h

an L

2

- projetion onto a spae of pieewise onstant funtions S

0

h

and

apply P

h

to the approximate evolution operators (3.5)-(3.7), (3.8)-(3.10), (3.11)-(3.13).

This yields the �rst order shemes U

n+1

= P

h

E

�

U

n

; whih in [16℄ are referred to as

the EG1, EG2 and EG3 shemes. Spae integrals oming from the projetion step are

omputed exatly, i.e. no numerial quadrature is used. The resulting �nite di�erene

formulation on equidistant retangular meshes an be found in [16℄, where the oeÆients

of the EG shemes in �nite di�erene formulation are given expliitly.

3.5 Seond order �nite volume evolution Galerkin shemes

There are many possible reovery shemes, whih ould be used. We only presribe that

the following onservativity property holds

P

h

R

h

V = V for all V 2 S

p

h

: (3.14)

For our omputations we hoose a disontinuous bilinear reovery using a �nite di�er-

ene approximation to derivatives, but others ould be used and were tested as well. The

formula for the reovery on eah ell is
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R

h

U j




ij

= U

ij

+

(x� x

i

)

4h

�

�

0x

U

ij+1

+ 2�

0x

U

ij

+�

0x

U

ij�1

�

+

(y � y

j

)

4h

�

�

0y

U

i+1j

+ 2�

0y

U

ij

+�

0y

U

i�1j

�

+

(x� x

i

)(y � y

j

)

h

2

�

0y

�

0x

U

ij

;

where �

0x

v(x) =

1

2

[v(x+ h)� v(x� h)℄ =

1

2

(v

i+1

� v

i�1

), an analogous notation is used

for �

0y

.

For the omputation of uxes through ell edges the ell interfae value of U has to be

determined. Instead of the exat time integration the seond order midpoint rule is used.

Thus, the �nite volume evolution Galerkin sheme (3.3) now is written as

U

n+1

= U

n

�

�t

h

d

X

k=1

Æ

x

k

F

k

(U

n+�

); (3.15)

where

F

k

(U

n+�

) =

1

h

Z

h

0

F

k

(E

�t=2

R

h

U

n

)dS: (3.16)

The resulting two-dimensional spae integrals of the bilinear funtion R

h

U

n

with re-

spet to � and ell edges are omputed exatly without any numerial quadrature and

thus all of the in�nitely many diretions of propagation of ow information are taken

expliitly into aount. Examples of stenils an be found in [18℄. The above onstrution

leads for every approximate evolution operator (3.5)-(3.7), (3.8)-(3.10), (3.11)-(3.13) to

an overall seond order sheme. Numerial experiments show, see [17℄, [18℄, that these

shemes give very aurate results in regions were the solution is smooth, e.g. even 7 times

more aurate than the ommonly used seond order shemes of Lax-Wendro� and �nite

volume ux vetor splitting sheme using the MUSCL approah. In what follows we will

test the quality of the numerial solution for a disontinous genuinely multidimensional

test ase.

4 Numerial results

The goal of this setion is to solve numerially a two-dimensional Riemann problem with

the initial data onsisting of �nitely many onstant states. Using the results from the

Setion 2 the exat analytial solution outside the subsoni region an be found. The

exat solution will be ompared with the numerial solution obtained by the evolution

Galerkin shemes as well as by other ommonly used numerial shemes. Thus, we will

get a good insight into the performane of our shemes and the possibility to ompare

the numerial solutions with the exat disontinuous solution, whih in ertain ases are

available.

In what follows, let us onsider the following Riemann problem
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�(x; 0) = 0;

v(x; 0) = u(x; 0) =

1

p

2

8

>

<

>

:

1; jyj < jxj;

�1; elsewhere.

(4.1)

The omputational domain is taken to be [�1; 1℄� [�1; 1℄ and the �nal time set to be

T = 0:4. Aording to the results from the Setion 2 we �nd out that from eah of the

initial disontinuities x = �y planar waves propagate with the speeds �

0

= 0 or �

�

= �.

For eah initial disontinuity a orresponding Riemann problem has to be solved in order

to �nd the intermediate onstant states (�

�

; u

�1

; v

�1

) and (�

�

; u

�2

; v

�2

) up to the region

where the waves interat, i.e. up to the points P;Q as depited in Figure 5.
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33 41
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43

ξ

Figure 5: Constrution of solution of the Riemann problem (4.1).

For our test ase these onstant states of the solution are as follows. In the regions

denoted in Figure 5 by (1) - (4) � = 0; further u = v = 1=

p

2 in (1),(3) and u = v =

�1=

p

2 in (2),(4). In the region between the rays l

21

and l

23

one has � = 1 and u = v = 0.

Analogously, between l

41

and l

43

we have � = �1 and u = v = 0. Further, in the region

between the rays l

31

and l

33

the values are � = 0, but u = v = 1=

p

2 in the region l

31

� l

32

,

and u = v = �1=

p

2 in the region l

32

� l

33

. Similar results with opposite signs hold in

the region l

11

� l

13

. Further, there are four regions orresponding to the Goursat-type

problems, f. Setion 2.2. In two of them between the rays l

11

� l

43

and l

33

� l

41

we

have � = �1 and u = v = 0 and analogously in the next two Goursat-type regions, whih

are bounded by the rays l

13

� l

21

and l

23

� l

31

, the solution is � = 1 and u = v = 0.

In what follows we will ompare these values of the exat solution with the orrespond-

ing parts of the numerial solutions obtained by the evolution Galerkin methods as well

as by other numerial shemes. We divide the omputational domain into N � N mesh

ells with N = 400. For the CFL ondition �t=h � �, we set the CFL-number � = 0:55

and take the �nal time T = 0:4.

In Figures 6 and 7 the isolines of x�omponent of veloity omputed by several nu-

merial shemes are shown. We see that two disontinuities propagate in the positive and

negative diretion of the diagonal x = �y and an additional steady disontinuity ours

16



along the main diagonal x = y. This is in a full agreement with the struture of the exat

solution as derived above.

In Figure 6 the omparison between the �rst order FVEG3 and the �rst order FV ux

vetor splitting (FV-FVS) method is shown. It an be seen very well that the diretional

splitting an spoil the struture of the solution if the disontinuity is not aligned with the

mesh orientation.

Figure 7 shows the omparison of the seond order FVEG3 method with the ommonly

known Lax-Wendro� (rotated Rihtmyer) sheme. We an see that the resolution by the

FVEG method is generally better without produing osillations. Moreover omparing

results of the �rst order and the seond order FVEG3 method, Figures 6 and 7, it an

be seen very well that the disontinuities are sharper and better resolved by the seond

order method.
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Figure 6: Isolines of veloity obtained by the �rst order FVEG3 and FV-FVS shemes.

Having outside the subsoni domain the analytial formulae for the exat solution,

we are moreover able to ompare errors between the exat and approximate solutions.

Atually, as alreday pointed out one an use the Kirhho� formula to obtain the exat

solution in the subsoni domain also, see [10℄ for details. We have refrained from using

it, beause the auray at the oblique disontinuities was the main objetive of our

omparisons.

The CFL-number is set to 0:55, but numerial tests for several other values of CFL

number and �nal time T on�rm the behaviour of the shemes as depited in Tables 1

and 2, where the errors between the exat and the approximate solution measured in the

disrete L

2

-norm are shown. The omputational domain is divided into N � N mesh

ells with N = 50; 100.

Similarly, as we have reported in [16℄, [18℄ for the ontinuous data ase, the EG3 sheme

is the most favourable among the �rst order EG-shemes due to its lower numerial

di�usion, see [21℄. On the other hand, the ommonly used dimensional splitting �nite
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Figure 7: Isolines of veloity obtained by the seond order FVEG3 and the Lax-Wendro�

shemes.

volume ux vetor splitting sheme (FV-FVS) has not only a relatively large amount of

di�usion, but an also spoil a solution onsiderably, see Figure 6 and Table 1.

As illustrated in Table 2 the auray of the seond order FVEG1 and FVEG3 shemes

is omparable with the auray of the seond order Butler sheme [1℄, and it is even better

than the auray of the Lax-Wendro� sheme. This feature has already been notied

for ontinuous data problems in our previous papers [17℄, [18℄, where we have shown that

the auray of the seond order FVEG shemes, namely the FVEG3 and the FVEG1, is

relatively high, in omparison to other ommonly used seond order methods, e.g. the Lax-

Wendro� sheme or the FV-FVS (MUSCL). Moreover, also the qualitative phenomena in

the exat solutions are resolved better by the EG shemes as demonstrated in Figures 6 -

7. Note that although we an see some improvements in L

2

-errors if the number of mesh

ells inreases, i.e. N = 50; 100, as well as if the order of method inreases, we annot

atually obtain experimentally the full order of onvergene in the disontinuous data

ase. This is a well-known fat for disontinuous data problems.

In Table 3 we show that the L

2

-error omputed only on the Goursat-type domain, i.e.

the domain where the waves emitted from the original disontinuities start to interat.

We an see the superiority of the FVEG shemes. Atually, the solution in this domain,

whih is lose to the subsoni part, i.e. partially ellipti part, of the solution is muh

better and more stably approximated by the FVEG shemes than by the other seond

order methods that we have tested.

Table 1: L

2

error: omparison of �rst order methods outside the subsoni domain.

N EG1 EG2 EG3 FVEG3 FV-FVS

50 0.659197 0.748516 0.588118 0.688988 0.710322

100 0.558413 0.640843 0.472754 0.582529 0.639134
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Table 2: L

2

error: omparison of seond order methods outside the subsoni domain.

N FVEG1 FVEG2 FVEG3 LW Butler

50 0.517610 0.590799 0.528176 0.565938 0.531510

100 0.404097 0.512992 0.409156 0.427599 0.408781

Finally, we present in Figure 8 an example of a ross setion of the � omponent

showing that for the subsoni domain the loal maximum priniple, derived in Setion 2.3,

is maintained by our shemes. We an see that the EG-shemes, the �rst order EG3 as

well as the seond order FVEG3, provide monotone solutions on the interval [�0:4; 0:4℄,

whih orresponds to the subsoni domain. For the Lax-Wendro� method this is not the

ase.
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Figure 8: Comparison of the EG-shemes and the Lax-Wendro� method on the ross

setion y = 0, CFL=0.55, N = 200.

Table 3: L

2

error: omparison of seond order methods in the Goursat-type domain.

N FVEG1 FVEG2 FVEG3 LW Butler

50 0.093271 0.079240 0.099798 0.127834 0.116926

100 0.060055 0.053268 0.066472 0.093554 0.081193
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