
ar
X

iv
:1

60
3.

01
33

9v
5 

 [
m

at
h.

N
A

] 
 7

 D
ec

 2
01

6

Numerical analysis of the Oseen-type Peterlin viscoelastic model by

the stabilized Lagrange–Galerkin method

Part I: A nonlinear scheme

Mária Lukáčová-Medvid’ová1, Hana Mizerová1,

Hirofumi Notsu2,3 and Masahisa Tabata4

1 Institute of Mathematics, University of Mainz, Mainz 55099, Germany
2 Faculty of Mathematics and Physics, Kanazawa University, Kanazawa 920-1192, Japan

3 Japan Science and Technology Agency (JST), PRESTO, Saitama 332-0012, Japan
4 Department of Mathematics, Waseda University, Tokyo 169-8555, Japan

Abstract

We present a nonlinear stabilized Lagrange–Galerkin scheme for the Oseen-type Peterlin viscoelastic model.
Our scheme is a combination of the method of characteristics and Brezzi–Pitkäranta’s stabilization method for
the conforming linear elements, which yields an efficient computation with a small number of degrees of freedom.
We prove error estimates with the optimal convergence order without any relation between the time increment
and the mesh size. The result is valid for both the diffusive and non-diffusive models for the conformation
tensor in two space dimensions. We introduce an additional term that yields a suitable structural property and
allows us to obtain required energy estimate. The theoretical convergence orders are confirmed by numerical
experiments.

In a forthcoming paper, Part II, a linear scheme is proposed and the corresponding error estimates are proved
in two and three space dimensions for the diffusive model.
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1 Introduction

In the daily life we encounter many biological, industrial or geological fluids that do not satisfy the Newtonian
assumption, i.e., the linear dependence between the stress tensor and the deformation tensor. These fluids belong
to the class of the non-Newtonian fluids. In order to describe such complex fluids the stress tensor is represented
as a sum of the viscous (Newtonian) part and the extra stress due to the polymer contribution.

In literature we can find several models that are employed to describe various aspects of complex viscoelastic fluids.
One of the well-known viscoelastic models is the Oldroyd-B model, which is derived from the Hookean dumbbell
model with a linear spring force law. The model is a system of equations for the velocity, the pressure and the
extra stress tensor, cf., e.g., [31, 32].

Numerical schemes for the Oldroyd-B type models have been studied by many authors. For example, we can find
a finite difference scheme based on the reformulation of the equation for the extra stress tensor by using the log-
conformation representation in Fattal and Kupferman [12, 13], free energy dissipative Lagrange–Galerkin schemes
with or without the log-conformation representation in Boyaval et al. [5], finite element schemes using the idea of
the generalized Lie derivative in Lee and Xu [15] and Lee et al. [16], and further related numerical schemes and
computations in [1, 4, 11, 14, 20, 22, 24, 39] and references therein. To the best of our knowledge, however, there are
no results on error estimates of numerical schemes for the Oldroyd-B model. As for the simplified Oldroyd-B model
with no convection terms Picasso and Rappaz [30] and Bonito et al. [3] have given error estimates for stationary
and non-stationary problems, respectively. The development of stable and convergent numerical methods for the
Oldroyd-B type models, especially in the elasticity-dominated case, is still an active research area.
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In this paper, Part I, and the forthcoming paper [18], Part II, we consider the so-called Peterlin viscoelastic model,
which is a system of the flow equations and an equation for the conformation tensor, cf. [31, 32]. In [29] Peterlin
proposed a mean-field closure according to which the average of the elastic force over thermal fluctuations is
replaced by the value of the force at the mean-squared polymer extension. More precisely, instead of the nonlinear
spring force law F (R) = γ(|R|2)R that acts in polymer dumbbells the Peterlin approximation F (R) ≈ γ(〈|R|2〉)R
is applied, where R is the vector connecting the dumbbell beads and γ is the spring constant. That means, that
the length of the spring in the spring constant γ is replaced by the average length of the spring 〈|R|2〉 ≡ trC.
Consequently, we can derive an evolution equation for the conformation tensor C, which is in a closed form,
cf. [19, 23, 31, 32, 34]. Note that in literature one can also find the Peterlin approximation in the context of finitely
extensible nonlinear elastic (FENE) dumbbell model, which was subsequently termed the FENE-P model, cf. [2].
In this model the denominator of the FENE force of the corresponding kinetic model is replaced by the mean
value of the elongation yielding the macroscopic FENE-P model. On the other hand, Renardy recently proposed
a general macroscopic constitutive model, that is motivated by Peterlin dumbbell theories with a nonlinear spring
law for an infinitely extensible spring, see Renardy [33, 34] and a recent paper by Lukáčová-Medviďová et al. [21],
where the global existence of weak solutions has been obtained. The diffusive Peterlin viscoelatisc model studied
in the present paper has been obtained by a particular choice of these general constitutive functions. This model
has been studied analytically by Lukáčová-Medviďová et al. [19], where the global existence of weak solutions and
the uniqueness of regular solutions have been proved. Let us mention that, even when the velocity field is given,
the equation for the conformation tensor in the Peterlin model is still nonlinear, while the Oldroyd-B model is
linear with respect to the extra stress tensor. Hence, we can say that the nonlinearity of the Peterlin model is
stronger than that of the Oldroyd-B model. As a starting point of the numerical analysis of the Peterlin model, we
consider the Oseen-type model, where the velocity of the material derivative is replaced by a known one, in order
to concentrate on the treatment of nonlinear terms arising from the elastic stress.

Our aim is to develop a stabilized Lagrange–Galerkin method for the Peterlin viscoelastic model. It consists of
the method of characteristics and Brezzi–Pitkäranta’s stabilization method [8] for the conforming linear elements.
The method of characteristics yields the robustness in convection-dominated flow problems, and the stabilization
method reduces the number of degrees of freedom in computation. In our recent works by Notsu and Tabata [26–28]
the stabilized Lagrange–Galerkin method has been applied successfully for the Oseen, Navier–Stokes and natural
convection problems and optimal error estimates have been proved.

We establish the numerical analysis of the stabilized Lagrange–Galerkin method for the Oseen-type Peterlin model
in this paper, Part I, and the forthcoming paper [18], Part II. The results of the two papers are summarized in
Tables 1 and 2, where ε is the diffusion coefficient in the equation for the conformation tensor, d is the spatial
dimension, h is the representative mesh size and ∆t is the time increment.

In Part I, a nonlinear stabilized Lagrange–Galerkin scheme for the diffusive (ε > 0) and the non-diffusive (ε = 0)
Peterlin model is presented and error estimates with the optimal convergence order are proved without any relation
between discretization parameters ∆t and h in two dimensions. For the proof we rely on a key lemma, cf. Lemma 5,
in which a special structural property using an additional term (divun

h(C
n
h)

#,Dh) is shown. However, this property
does not hold in three-dimensional case. This is the reason why the convergence result is shown only in two space
dimensions. The theoretical convergence orders are confirmed by numerical experiments. Since the scheme is
nonlinear, the existence and uniqueness of the scheme are studied additionally, and we show that the scheme
has a solution without any relation between h and ∆t and that the solution is unique for the diffusive and the
non-diffusive cases under the conditions ∆t = O(1/(1 + | log h|)2) and ∆t = O(h), respectively, in two dimensions.

In Part II a linear scheme for the diffusive model is presented and optimal error estimates are proved under
mild stability conditions, ∆t = O(1/

√

1 + | log h| ) and ∆t = O(
√
h ), in two and three dimensions, respectively.

Moreover, the existence and uniqueness of its numerical solution are shown as well. The theoretical convergence
orders are again confirmed by numerical experiments.

Let us summarize that in both papers, Part I (nonlinear scheme) and Part II (linear scheme), we present the results
for optimal error estimates (i) for the non-diffusive case (ε = 0) in two space dimensions and (ii) for the diffusive
case (ε > 0) in three space dimensions, respectively.

As mentioned in Boyaval et al. [5], the positive definiteness of the conformation tensor is important in the anal-
ysis of numerical schemes for the Oldroyd-B model and has been overcome by using, e.g., the log-conformation
representation in Fattal and Kupferman [12, 13]. While some schemes preserving the positive definiteness have
been developed, there are, as far as we know, no convergence results of such schemes. In our papers, Part I and
Part II, we have obtained the convergence results without any assumption on the positive definiteness. This is an
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Table 1: Summary of our results in Part I and Part II. (ε is the diffusion coefficient for the conformation tensor
and d is the spatial dimension.)

Part I Part II

Scheme Nonlinear Linear

ε ≥ 0 > 0

d 2 2 and 3

Table 2: Conditions on the time increment ∆t with respect to the mesh size h. (∅ means that no condition is
required.)

Part I, d = 2 Part II, ε > 0

Existence ∅ ∅

Uniqueness

ε > 0 ε = 0

O
( 1

(1 + | log h|)2
)

O(h)
∅

Optimal
error

estimates

∅

d = 2 d = 3

O
( 1
√

1 + | log h|

)

O
(√
h
)

additional feature of our proof.

The paper is organized as follows. In Section 2 the mathematical formulation of the Oseen-type Peterlin viscoelastic
model is described. In Section 3 a nonlinear stabilized Lagrange–Galerkin scheme is presented. The main result on
the convergence with optimal error estimates is stated in Section 4, and proved in Section 5. In Section 6 uniqueness
of the numerical solution is shown. Theoretical order of convergence is confirmed by numerical experiments in
Section 7.

2 The Oseen-type Peterlin viscoelastic model

The function spaces and the notation to be used throughout the paper are as follows. Let Ω be a bounded domain
in R

2, Γ := ∂Ω the boundary of Ω, and T a positive constant. For m ∈ N∪ {0} and p ∈ [1,∞] we use the Sobolev
spaces Wm,p(Ω), W 1,∞

0 (Ω), Hm(Ω) (= Wm,2(Ω)), H1
0 (Ω) and L2

0(Ω) := {q ∈ L2(Ω);
∫

Ω
q dx = 0}. Furthermore,

we employ function spaces Hm
sym(Ω) := {D ∈ Hm(Ω)2×2; D = DT } and Cm

sym(Ω̄) := Cm(Ω̄)2×2∩Hm
sym(Ω), where

the superscript T stands for the transposition. For any normed space S with norm ‖ · ‖S, we define function spaces
Hm(0, T ;S) and C([0, T ];S) consisting of S-valued functions in Hm(0, T ) and C([0, T ]), respectively. We use the
same notation (·, ·) to represent the L2(Ω) inner product for scalar-, vector- and matrix-valued functions. The
dual pairing between S and the dual space S′ is denoted by 〈·, ·〉. The norms on Wm,p(Ω) and Hm(Ω) and their
seminorms are simply denoted by ‖ · ‖m,p and ‖ · ‖m (= ‖ · ‖m,2) and by | · |m,p and | · |m (= | · |m,2), respectively.
The notations ‖ · ‖m,p, | · |m,p, ‖ · ‖m and | · |m are employed not only for scalar-valued functions but also for vector-
and matrix-valued ones. We also denote the norm on H−1(Ω)2 by ‖ · ‖−1. For t0 and t1 ∈ R we introduce the
function space,

Zm(t0, t1) :=
{

ψ ∈ Hj(t0, t1;H
m−j(Ω)); j = 0, . . . ,m, ‖ψ‖Zm(t0,t1) <∞

}
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with the norm

‖ψ‖Zm(t0,t1) :=

{ m
∑

j=0

‖ψ‖2Hj(t0,t1;Hm−j(Ω))

}1/2

,

and set Zm := Zm(0, T ). We often omit [0, T ], Ω, and the superscripts 2 and 2 × 2 for the vector and the matrix
if there is no confusion, e.g., we shall write C(L∞) in place of C([0, T ];L∞(Ω)2×2). For square matrices A and
B ∈ R

2×2 we use the notation A : B =
∑

i,j AijBij .

We consider the system of equations describing the unsteady motion of an incompressible viscoelastic fluid,

Du

Dt
− div

(

2νD(u)
)

+∇p = div [(trC)C] + f in Ω × (0, T ), (1a)

divu = 0 in Ω × (0, T ), (1b)

DC

Dt
− ε∆C = (∇u)C+C(∇u)T − (trC)

2
C+ (trC)I+ F in Ω × (0, T ), (1c)

u = 0, ε
∂C

∂n
= 0, on Γ × (0, T ), (1d)

u = u0, C = C0, in Ω, at t = 0, (1e)

where (u, p,C) : Ω×(0, T ) → R
2×R×R

2×2
sym are the unknown velocity, pressure and conformation tensor, ν > 0 is a

fluid viscosity, ε ∈ [0, 1] is an elastic stress viscosity, (f ,F) : Ω×(0, T ) → R
2×R

2×2 is a pair of given external forces,
∇u is the (matrix-valued) velocity gradient defined by (∇u)ij := ∂ui/∂xj (i, j = 1, 2), D(u) := (1/2)[∇u+(∇u)T ]
is the symmetric part of the velocity gradient, I is the identity matrix, n : Γ → R

2 is the outward unit normal,
(u0,C0) : Ω → R

2 × R
2×2
sym is a pair of given initial functions, and D/Dt is the material derivative defined by

D

Dt
:=

∂

∂t
+w · ∇,

where w : Ω × (0, T ) → R
2 is a given velocity.

Remark 1. (i) In this paper we pay attention to the dependency on ε to include the degenerate case ε = 0. The
upper bound 1 of ε is not essential but replaced by any positive constant ε0, i.e., ε ∈ [0, ε0]. The upper bound is
needed in choosing the constants h0, ∆t0 and c† independent of ε in Theorem 1 below, where it is used for the
estimate (17g) in Lemma 8.

(ii) When ε > 0, under regularity condition on w the global existence of a weak solution of (2) below can be proved
in a similar way to the fully nonlinear case [19].

(iii) When ε = 0, there is neither the diffusion term in (1c) nor the boundary condition on C in (1d). Because
of the loss of the ellipticity, C(t) does not belong to H1(Ω)2×2 in general. If there exists a solution satisfying
Hypothesis 2 below, then we can show the convergence of the finite element solution to the exact one in Theorem 1.

We formulate an assumption for the given velocity w.

Hypothesis 1. The function w satisfies w ∈ C([0, T ];W 1,∞
0 (Ω)2).

Let V := H1
0 (Ω)2, Q := L2

0(Ω) and W := H1
sym(Ω). We define the bilinear forms au on V × V, b on V ×Q, A on

(V ×Q)× (V ×Q) and ac on W ×W by

au (u,v) := 2
(

D(u),D(v)
)

, b(u, q) := −(divu, q), A
(

(u, p), (v, q)
)

:= νau (u,v) + b(u, q) + b(v, p),

ac (C,D) := (∇C,∇D),

respectively. We present the weak formulation of the problem (1); find (u, p,C) : (0, T ) → V ×Q ×W such that
for t ∈ (0, T )

(

Du

Dt
(t),v

)

+A
(

(u, p)(t), (v, q)
)

= − (trC(t)C(t),∇v) + (f(t),v) , (2a)

(

DC

Dt
(t),D

)

+ εac
(

C(t),D
)

= 2
(

(∇u(t))C(t),D
)

−
(

(trC(t))2C(t),D
)

+ (trC(t)I,D) + (F(t),D) , (2b)

∀(v, q,D) ∈ V ×Q×W,

with (u(0),C(0)) = (u0,C0).
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3 A nonlinear stabilized Lagrange–Galerkin scheme

The aim of this section is to present a nonlinear stabilized Lagrange–Galerkin scheme for (1).

Let ∆t be a time increment, NT := ⌊T/∆t⌋ the total number of time steps and tn := n∆t for n = 0, . . . , NT . Let g
be a function defined in Ω × (0, T ) and gn := g(·, tn). For the approximation of the material derivative we employ
the first-order characteristics method,

Dg

Dt
(x, tn) =

gn(x)−
(

gn−1 ◦Xn
1

)

(x)

∆t
+O(∆t), (3)

where Xn
1 : Ω → R

2 is a mapping defined by

Xn
1 (x) := x−wn(x)∆t,

and the symbol ◦ means the composition of functions,

(gn−1 ◦Xn
1 )(x) := gn−1(Xn

1 (x)).

For the details on deriving the approximation (3) of Dg/Dt, see, e.g., [27]. The point Xn
1 (x) is called the upwind

point of x with respect to wn. The next proposition, which is a direct consequence of [35] and [37], presents sufficient
conditions to ensure that all upwind points defined by Xn

1 are in Ω and that its Jacobian Jn := det(∂Xn
1 /∂x) is

around 1.

Proposition 1. Suppose Hypothesis 1 holds. Then, we have the following for n ∈ {0, . . . , NT }.
(i) Under the condition ∆t|w|C(W 1,∞) < 1, Xn

1 : Ω → Ω is bijective.

(ii) Furthermore, under the condition

∆t|w|C(W 1,∞) ≤ 1/4, (4)

the estimate 1/2 ≤ Jn ≤ 3/2 holds.

For the sake of simplicity we suppose that Ω is a polygonal domain. Let Th = {K} be a triangulation of
Ω̄ (=

⋃

K∈Th
K), hK the diameter of K ∈ Th and h := maxK∈Th

hK the maximum element size. We consider
a regular family of subdivisions {Th}h↓0 satisfying the inverse assumption [9], i.e., there exists a positive constant
α0 independent of h such that

h

hK
≤ α0, ∀K ∈ Th, ∀h.

We define the discrete function spaces Xh, Vh, Mh, Qh and Wh by

Xh :=
{

vh ∈ C(Ω̄)2; vh|K ∈ P1(K)2, ∀K ∈ Th
}

, Vh := Xh ∩ V,
Mh :=

{

qh ∈ C(Ω̄); qh|K ∈ P1(K), ∀K ∈ Th
}

, Qh :=Mh ∩Q,
Wh :=

{

Dh ∈ Csym(Ω̄); Dh|K ∈ P1(K)2×2, ∀K ∈ Th
}

,

respectively, where P1(K) is the polynomial space of linear functions on K ∈ Th.

Let δ0 be a small positive constant fixed arbitrarily and (·, ·)K the L2(K)2 inner product. We define the bilinear
forms Ah on (V ×H1(Ω))× (V ×H1(Ω)) and Sh on H1(Ω)×H1(Ω) by

Ah ((u, p), (v, q)) := νau (u,v) + b(u, q) + b(v, p)− Sh(p, q), Sh(p, q) := δ0
∑

K∈Th

h2K(∇p,∇q)K .

For D ∈ R
2×2
sym let D# ∈ R

2×2
sym be the adjugate matrix of D defined by

D# :=

(

D22 −D12

−D12 D11

)

.
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Let (fh,Fh) := ({fnh }NT

n=1, {Fn
h}NT

n=1) ⊂ L2(Ω)2×L2(Ω)2×2 and (u0
h,C

0
h) ∈ Vh×Wh be given. A nonlinear stabilized

Lagrange–Galerkin scheme for (1) is to find (uh, ph,Ch) := {(un
h, p

n
h,C

n
h)}NT

n=1 ⊂ Vh × Qh ×Wh such that, for
n = 1, . . . , NT ,
(

un
h − un−1

h ◦Xn
1

∆t
,vh

)

+Ah

(

(un
h , p

n
h), (vh, qh)

)

= −
(

(trCn
h)C

n
h ,∇vh

)

+ (fnh ,vh), (5a)

(

Cn
h −Cn−1

h ◦Xn
1

∆t
,Dh

)

+ εac (C
n
h,Dh) = 2

(

(∇un
h)C

n
h,Dh

)

+
(

divun
h(C

n
h)

#,Dh

)

−
(

(trCn
h)

2Cn
h,Dh

)

+
(

(trCn
h)I,Dh

)

+ (Fn
h ,Dh), (5b)

∀(vh, qh,Dh) ∈ Vh ×Qh ×Wh.

In Remark 4 below we show that an additional term, the second term on the right-hand side of (5b), is added in
order to derive a desired energy inequality.

4 The main result

In this section we present the main result on error estimates with the optimal convergence order of scheme (5).

We use c to represent a generic positive constant independent of the discretization parameters h and ∆t. We also
use constants cw and cs independent of h and ∆t but dependent on w and the solution (u, p,C) of (2), respectively,
and cs often depends on w additionally. c, cw and cs may be dependent on ν but are independent of ε. The symbol
“ ′ (prime)” is sometimes used in order to distinguish two constants, e.g., cs and c′s, from each other. We use the
following notation for the norms and seminorms, ‖·‖V = ‖·‖Vh

:= ‖·‖1, ‖·‖Q = ‖·‖Qh
:= ‖·‖0,

‖(u,C)‖Z2(t0,t1)
:=

{

‖u‖2Z2(t0,t1)
+ ‖C‖2Z2(t0,t1)

}1/2

, ‖u‖ℓ∞(X) := max
n=0,...,NT

‖un‖X ,

‖u‖ℓ2(X) :=

{

∆t

NT
∑

n=1

‖un‖2X
}1/2

, |u|ℓ2(X) :=

{

∆t

NT
∑

n=1

|un|2X
}1/2

,

|p|h :=

{

∑

K∈Th

h2K(∇p,∇p)K
}1/2

, |p|ℓ2(|.|h) :=
{

∆t

NT
∑

n=1

|pn|2h
}1/2

,

for X = L2(Ω) or H1(Ω). D∆t is the backward difference operator defined by D∆tu
n := (un − un−1)/∆t.

The existence of the solution of scheme (5) is guaranteed by the next proposition whose proof is given in the next
section.

Proposition 2 (existence). Suppose Hypothesis 1 holds. Then for any h > 0 and ∆t ∈ (0, 1/2) satisfying (4),
there exists a solution (uh, ph,Ch) ⊂ Vh ×Qh ×Wh of scheme (5).

We state the main result after preparing a projection and a hypothesis.

Definition 1 (Stokes projection). For (u, p) ∈ V ×Q we define the Stokes projection (ûh, p̂h) ∈ Vh ×Qh of (u, p)
by

Ah ((ûh, p̂h), (vh, qh)) = A ((u, p), (vh, qh)) , ∀(vh, qh) ∈ Vh ×Qh. (6)

The Stokes projection derives an operator ΠS
h : V × Q → Vh × Qh defined by ΠS

h(u, p) := (ûh, p̂h). The first
component ûh of ΠS

h(u, p) is denoted by [ΠS
h(u, p)]1. Let Πh : L2(Ω) → Mh be the Clément interpolation

operator [10]. The Clément operators on L2(Ω)2 and L2(Ω)2×2 are denoted by the same symbol Πh.

Remark 2. The Clément operator is defined for functions from L2(Ω). When a function belongs to C(Ω̄), we can
replace the Clément operator by the Lagrange operator ΠL

h : C(Ω̄) →Mh.

Hypothesis 2. The solution (u, p,C) of (2) satisfies u ∈ Z2(0, T )2∩H1(0, T ;V ∩H2(Ω)2)∩C([0, T ];W 1,∞(Ω)2),
p ∈ H1(0, T ;Q ∩H1(Ω)) and

C ∈
{

Z2(0, T )2×2 ∩ L2(0, T ;W ) ∩ C([0, T ];H2(Ω)2×2) (ε > 0),

Z2(0, T )2×2 ∩ L2(0, T ;W ) ∩ C([0, T ];L∞(Ω)2×2) (ε = 0).
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We now impose the conditions

(u0
h,C

0
h) = ([ΠS

h(u
0, 0)]1, ΠhC

0), (fh,Fh) = (f ,F). (7)

Theorem 1 (error estimates). Suppose Hypotheses 1 and 2 hold. Then, there exist positive constants h0, ∆t0 and
c† independent of ε such that, for any pair (h,∆t) satisfying

h ∈ (0, h0], ∆t ∈ (0,∆t0], (8)

and any solution (uh, ph,Ch) of scheme (5) with (7), it holds that

‖uh − u‖ℓ∞(L2),
√
ν‖uh − u‖ℓ2(H1), |ph − p|ℓ2(|.|h),

‖Ch −C‖ℓ∞(L2),
√
ε|Ch −C|ℓ2(H1),

∥

∥tr (Ch −C)(Ch −C)
∥

∥

ℓ2(L2)
≤ c†(h+∆t). (9)

Remark 3. (i) The estimates (9) hold even for ε = 0. Then, of course, the fifth term of the left-hand side of (9)
vanishes.

(ii) Here we do not need uniqueness of the solution of scheme (5). Uniqueness of the numerical solution will be
discussed later in Proposition 3.

(iii) The positive definiteness of the exact and numerical solutions is not required for the above error estimates.

5 Proofs

In what follows we prove Proposition 2 and Theorem 1.

5.1 Preliminaries

Let us list lemmas directly employed below in the proofs. In the lemmas, αi, i = 1, . . . , 4, are numerical constants.
They are independent of h, ∆t, ν and ε but may depend on Ω.

Lemma 1 ( [25] ). Let Ω be a bounded domain with a Lipschitz-continuous boundary. Then, the following inequal-
ities hold.

‖D(v)‖0 ≤ ‖v‖1 ≤ α1‖D(v)‖0, ∀v ∈ H1
0 (Ω)2.

We introduce the function

D(h) := (1 + | log h|)1/2, (10)

which is used in the sequel.

Lemma 2 ( [6, 9, 10] ). The following inequalities hold.

‖Πhg‖0,∞ ≤ ‖g‖0,∞ , ∀g ∈ L∞(Ω)s, (11)

‖Πhg‖1,∞ ≤ α20 ‖g‖1,∞ , ∀g ∈ W 1,∞(Ω)s,

‖Πhg − g‖0 ≤ α21h ‖g‖1 , ∀g ∈ H1(Ω)s ∩ L∞(Ω)s,

‖Πhg − g‖1 ≤ α22h ‖g‖2 , ∀g ∈ H2(Ω)s,

‖gh‖0,∞ ≤ α23h
−1 ‖gh‖0 , ∀gh ∈ Sh,

‖gh‖0,∞ ≤ α24D(h) ‖gh‖1 , ∀gh ∈ Sh,

‖gh‖1,∞ ≤ α25h
−1 ‖gh‖1 , ∀gh ∈ Sh,

‖gh‖1 ≤ α26h
−1 ‖gh‖0 , ∀gh ∈ Sh,

where s = 2 or 2× 2 and Sh = Vh or Wh.
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Lemma 3 ( [7] ). Assume (u, p) ∈ (V ∩H2(Ω)2)× (Q ∩H1(Ω)). Let (ûh, p̂h) ∈ Vh ×Qh be the Stokes projection
of (u, p) by (6). Then, the following inequalities hold,

‖ûh − u‖1 , ‖p̂h − p‖0 , |p̂h − p|h ≤ α3h ‖(u, p)‖H2×H1 .

Lemma 4 ( [18] ). Under Hypothesis 1 and the condition (4) the following inequality holds for any n ∈ {0, . . . , NT }
‖g ◦Xn

1 ‖0 ≤ (1 + α4|wn|1,∞∆t) ‖g‖0 , ∀g ∈ L2(Ω)s,

where s = 2 or 2× 2.

We present a key lemma in order to deal with the nonlinear terms.

Lemma 5. For E ∈ R
2×2 and D ∈ R

2×2
sym it holds that

(trD)D : E−ED : D− 1

2
(trE)D# : D = 0. (12)

Proof. The direct calculation yields the result, see also Remark 4.

Remark 4. Let (u, p,C) be a solution of (1). Multiplying (1a) and (1c) by u and C/2, respectively, and adding
them, we can obtain an energy inequality on (u,C) since the term derived from the nonlinear terms of (1a) and (1c)
vanishes,

(div [(trC)C],u) +
1

2
((∇u)C +C(∇u),C) = 0. (13)

Identity (13) is proved as follows. The left-hand side is equal to

− ((trC)C,∇u) + ((∇u)C,C) = (∇u,CCT − (trC)C)

=

∫

Ω

2
∑

i,j=1

∂ui
∂xj

2
∑

k=1

(CikCjk − CkkCij) dx

=

∫

Ω

(∂u1
∂x1

+
∂u2
∂x2

)

(C12C12 − C11C22) dx = −1

2

(

(divu)C#,C
)

(14)

Since divu = 0, (14) implies (13). In the approximate solution (uh, ph,Ch) the exact incompressibility divuh = 0
does not hold. Hence, (13) is not true, in general, for (uh,Ch). On the other hand, (14) is always valid regardless
of the property of u. Therefore, by adding the second term of the right-hand side in (5b), (divun

h(C
n
h)

#,Dh), we
can obtain the corresponding equation to (13) for (un

h,C
n
h),

−((trCn
h)C

n
h,∇un

h) + ((∇un
h)C

n
h ,C

n
h) +

1

2
(divun

h(C
n
h)

#,Cn
h) = 0,

which plays a key role in the following stability analysis. Identity (12) is proved similarly to (14) by replacing C

and ∇u by D and E, respectively.

Remark 5. (i) Lemma 5 does not hold in three-dimensional case. This is the reason why we consider two-
dimensional case in this paper.

(ii) By virtue of the term (divun
h(C

n
h)

#,Dh) in scheme (5), we can prove the error estimates for ε = 0, which is
an advantage of the nonlinear scheme. In Part II, we propose a linear scheme for the model (1) and prove error
estimates for ε > 0, where the presence of ∆C in (1c) is essentially employed. It is, therefore, not easy to show
error estimates of the linear scheme in a similar way for ε = 0. On the other hand, the linear scheme has an
advantage that the proof of the error estimates can be extended to three-dimensional problems.

Lemma 6 ( [36] ). Let ai, i = 1, 2, be non-negative number, ∆t a positive number, and {xn}n≥0, {yn}n≥1 and
{bn}n≥1 non-negative sequences. Assume ∆t ∈ (0, 1/(2a0)] for a0 6= 0. Suppose

D∆tx
n + yn ≤ a0x

n + a1x
n−1 + bn, ∀n ≥ 1.

Then, it holds that

xn +∆t

n
∑

i=1

yi ≤ exp[(2a0 + a1)n∆t]

(

x0 +∆t

n
∑

i=1

bi
)

, ∀n ≥ 1.

Lemma 7 ( [38, Chap. II, Lemma 1.4], [17, Chap. I, Lemme 4.3] ). Let X be a finite dimensional Hilbert space with
inner product (·, ·)X and norm ‖·‖X and let P be a continuous mapping from X into itself such that (P(ξ), ξ)X > 0
for ‖ξ‖X = ρ0 > 0. Then, there exists ξ ∈ X, ‖ξ‖X ≤ ρ0, such that P(ξ) = 0.
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5.2 Proof of Proposition 2

We apply Lemma 7 for the proof. Let n ∈ {1, . . . , NT } be a fixed number and (un−1
h ,Cn−1

h ) ∈ Vh×Wh a pair of given
functions. We set µ0 := (1− 2∆t)/2 > 0. We define a finite dimensional inner product space X := Vh ×Qh ×Wh

equipped with the inner product,

(

(uh, ph,Ch), (vh, qh,Dh)
)

X
:=

1

∆t
(uh,vh) + 4ν

(

D(uh),D(vh)
)

+ 2δ0
∑

K∈Th

h2K(ph, qh)K +
µ0

∆t
(Ch,Dh) + ε(∇Ch,∇Dh),

which induces the norm ‖ · ‖X for any ε ≥ 0. Let P : Vh ×Qh ×Wh → Vh ×Qh ×Wh be a mapping defined by

(

P(uh, ph,Ch), (vh, qh,Dh)
)

X
=

(

uh − un−1
h ◦Xn

1

∆t
,vh

)

+Ah

(

(uh, ph), (vh,−qh)
)

+
(

(trCh)Ch,∇vh

)

− (fnh ,vh) +
1

2

(

Ch −Cn−1
h ◦Xn

1

∆t
,Dh

)

+
ε

2
ac(Ch,Dh)−

(

(∇uh)Ch,Dh

)

− 1

2

(

(divuh)C
#
h ,Dh

)

+
1

2

(

(trCh)
2Ch,Dh

)

− 1

2

(

(trCh)I,Dh

)

− 1

2
(Fn

h ,Dh), ∀(uh, ph,Ch), (vh, qh,Dh) ∈ Vh ×Qh ×Wh. (15)

Obviously P is continuous. Substituting (uh, ph,Ch) into (vh, qh,Dh) in (15) and using the inequality ‖trCh‖0 ≤√
2‖Ch‖0, we have

(

P(uh, ph,Ch), (uh, ph,Ch)
)

X

=

(

uh − un−1
h ◦Xn

1

∆t
,uh

)

+ 2ν‖D(uh)‖20 + δ0|ph|2h − (fnh ,uh)

+
1

2

(

Ch −Cn−1
h ◦Xn

1

∆t
,Ch

)

+
ε

2
|Ch|21 +

1

2
‖(trCh)Ch‖20 −

1

2
‖trCh‖20 −

1

2
(Fn

h ,Ch)

≥ 1

∆t

(

‖uh‖20 − ‖un−1
h ◦Xn

1 ‖0‖uh‖0) + 2ν‖D(uh)‖20 + δ0|ph|2h − ‖fnh ‖0‖uh‖0

+
1

2∆t

(

‖Ch‖20 − ‖Cn−1
h ◦Xn

1 ‖0‖Ch‖0
)

+
ε

2
|Ch|21 − ‖Ch‖20 −

1

2
‖Fn

h‖0‖Ch‖0 (by Schwarz’ inequality)

≥ 1

2∆t

{

2‖uh‖20 − β0‖uh‖20 −
1

β0
‖un−1

h ◦Xn
1 ‖20 + ‖Ch‖20 − β1‖Ch‖20 −

1

4β1
‖Cn−1

h ◦Xn
1 ‖20

}

+ 2ν‖D(uh)‖20 + δ0|ph|2h − β2
2∆t

‖uh‖20 −
∆t

2β2
‖fnh ‖20 +

ε

2
|Ch|21 − ‖Ch‖20 −

β3
2∆t

‖Ch‖20 −
∆t

8β3
‖Fn

h‖20

(by ab ≤ β
2 a

2 + 1
2β b

2)

≥ 1

2∆t

{

(2− β0 − β2)‖uh‖20 + (1 − β1 − 2∆t− β3)‖Ch‖20
}

+ 2ν‖D(uh)‖20 + δ0|ph|2h

+
ε

2
|Ch|21 −

1

2β0∆t
‖un−1

h ◦Xn
1 ‖20 −

1

8β1∆t
‖Cn−1

h ◦Xn
1 ‖20 −

∆t

2β2
‖fnh ‖20 −

∆t

8β3
‖Fn

h‖20 (by Lemma 4)

for any βi > 0. Choosing β0 = β2 = 1/2 and β1 = β3 = µ0/2, we get

(

P(uh, ph,Ch), (uh, ph,Ch)
)

X
≥ 1

2

[{

1

∆t
‖uh‖20 + 4ν‖D(uh)‖20 + 2δ0|ph|2h +

µ0

∆t
‖Ch‖20 + ε|Ch|21

}

−
{

2‖un−1
h ◦Xn

1 ‖20
∆t

+
‖Cn−1

h ◦Xn
1 ‖20

2µ0∆t
+ 2∆t‖fnh ‖20 +

∆t‖Fn
h‖20

2µ0

}]

=
1

2

[

‖(uh, ph,Ch)‖2X − β2
∗

]

,

where

β∗ :=

{

2‖un−1
h ◦Xn

1 ‖20
∆t

+
‖Cn−1

h ◦Xn
1 ‖20

2µ0∆t
+ 2∆t‖fnh ‖20 +

∆t‖Fn
h‖20

2µ0

}1/2

.
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The right-hand side is, therefore, positive on the sphere of radius ρ0 = β∗ + 1. From Lemma 7 there exists an
element (uh, ph,Ch) ∈ Vh×Qh×Wh such that P(uh, ph,Ch) = 0, which is nothing but a solution of equations (5).

5.3 A system of equations for the error and the estimate of remainder terms

In this subsection we prepare a system of equations for the error and a lemma for the estimate of remainder terms
in the system before starting the proof of Theorem 1.

Let (ûh, p̂h)(t) := ΠS
h(u, p)(t) ∈ Vh ×Qh and Čh(t) := ΠhC(t) ∈Wh for t ∈ [0, T ] and let

enh := un
h − ûn

h , ǫnh := pnh − p̂nh, En
h := Cn

h − Čn
h, η(t) := (u− ûh)(t), Ξ(t) := (C− Čh)(t).

Then, from (5), (6) and (2), we have for n ≥ 1

(

enh − en−1
h ◦Xn

1

∆t
,vh

)

+Ah

(

(enh, ǫ
n
h), (vh, qh)

)

= −
(

(trEn
h)E

n
h,∇vh

)

+ V ′

h
〈rnh ,vh〉Vh

, (16a)

(

En
h −En−1

h ◦Xn
1

∆t
,Dh

)

+ εac(E
n
h,Dh) = 2

(

(∇enh)E
n
h,Dh

)

+
(

(div enh)(E
n
h)

#,Dh

)

+ W ′

h
〈Rn

h,Dh〉Wh
, (16b)

∀(vh, qh,Dh) ∈ Vh ×Qh ×Wh,

where

rnh :=

4
∑

i=1

rnhi ∈ V ′
h, Rn

h :=

11
∑

i=1

Rn
hi ∈ W ′

h,

(rnh1,vh) :=

(

Dun

Dt
− un − un−1 ◦Xn

1

∆t
,vh

)

,

(rnh2,vh) :=
1

∆t

(

η
n − η

n−1 ◦Xn
1 ,vh

)

,

V ′

h
〈rnh3,vh〉Vh

:= −
(

(tr Čn
h)E

n
h + (trEn

h)Č
n
h,∇vh

)

,

V ′

h
〈rnh4,vh〉Vh

:=
(

(tr Čn
h)Ξ

n + (trΞn)Cn,∇vh

)

,

(Rn
h1,Dh) :=

(

DCn

Dt
− Cn −Cn−1 ◦Xn

1

∆t
,Dh

)

,

(Rn
h2,Dh) :=

1

∆t

(

Ξn −Ξn−1 ◦Xn
1 ,Dh

)

,

W ′

h
〈Rn

h3,Dh〉Wh
:= εac(Ξ

n,Dh),

(Rn
h4,Dh) := 2

(

(∇ûn
h)E

n
h + (∇enh)Č

n
h,Dh

)

,

(Rn
h5,Dh) := −2

(

(∇ûn
h)Ξ

n + (∇η
n)Cn,Dh

)

,

(Rn
h6,Dh) :=

(

(div ûn
h)(E

n
h)

# + (div enh)(Č
n
h)

#,Dh

)

,

(Rn
h7,Dh) := −

(

(div ûn
h)(Ξ

n)# + (divηn)(Cn)#,Dh

)

,

(Rn
h8,Dh) := −

(

[tr (En
h + Čn

h)]
2En

h,Dh

)

,

(Rn
h9,Dh) := −

(

[tr (En
h + 2Čn

h)](trE
n
h)Č

n
h ,Dh

)

,

(Rn
h10,Dh) :=

(

(tr Čn
h)

2Ξn + [tr (Cn + Čn
h)](trΞ

n)Cn,Dh

)

,

(Rn
h11,Dh) := ([tr (En

h −Ξn)]I,Dh) .

The remainder terms are evaluated by the next lemma.

Lemma 8. Suppose Hypotheses 1 and 2 hold. Let n ∈ {1, . . . , NT } be any fixed number. Then, under the
condition (4) it holds that

‖rnh1‖0 ≤ cw
√
∆t‖u‖Z2(tn−1,tn), (17a)

‖rnh2‖0 ≤
cwh√
∆t

‖(u, p)‖H1(tn−1,tn;H2×H1), (17b)
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‖rnh3‖−1 ≤ cs‖En
h‖0, (17c)

‖rnh4‖−1 ≤ csh, (17d)

‖Rn
h1‖0 ≤ cw

√
∆t‖C‖Z2(tn−1,tn), (17e)

‖Rn
h2‖0 ≤

cwh√
∆t

‖C‖H1(tn−1,tn;H1)∩L2(tn−1,tn;H2), (17f)

W ′

h

〈

Rn
h3,

1

2
En

h

〉

Wh

≤ ε

4
|En

h|21 + csh
2, (17g)

‖Rn
h4‖0 ≤ cs(‖enh‖1 + ‖En

h‖0), (17h)

‖Rn
h5‖0 ≤ csh, (17i)

‖Rn
h6‖0 ≤ cs

(

‖enh‖1 + ‖En
h‖0

)

, (17j)

‖Rn
h7‖0 ≤ csh, (17k)

(

Rn
h8,

1

2
En

h

)

≤ −3

8
‖(trEn

h)E
n
h‖20 + cs‖En

h‖20, (17l)

(

Rn
h9,

1

2
En

h

)

≤ 1

8
‖(trEn

h)E
n
h‖20 + cs‖En

h‖20, (17m)

‖Rn
h10‖0 ≤ csh, (17n)

‖Rn
h11‖0 ≤ cs(‖En

h‖0 + h), (17o)

where cw and cs are the constants given in the beginning of Section 4.

Proof. Let t(s) := tn−1 + s∆t (s ∈ [0, 1]) and y(x, s) := x− (1− s)wn(x)∆t.

We prove (17a). We have that

rnh1(x) =
{( ∂

∂t
+wn(x) · ∇

)

u
}

(x, tn)− 1

∆t

[

u
(

y(x, s), t(s)
)

]1

s=0

=
{( ∂

∂t
+wn(x) · ∇

)

u
}

(x, tn)−
∫ 1

0

{( ∂

∂t
+wn(x) · ∇

)

u
}

(

y(x, s), t(s)
)

ds

= ∆t

∫ 1

0

ds

∫ 1

s

{( ∂

∂t
+wn(x) · ∇

)2

u
}

(

y(x, s1), t(s1)
)

ds1

= ∆t

∫ 1

0

s1

{( ∂

∂t
+wn(x) · ∇

)2

u
}

(

y(x, s1), t(s1)
)

ds1,

which implies

‖rnh1‖0 ≤ ∆t

∫ 1

0

s1

∥

∥

∥

{( ∂

∂t
+wn(·) · ∇

)2

u
}

(

y(·, s1), t(s1)
)

∥

∥

∥

0
ds1 ≤ cw

√
∆t‖u‖Z2(tn−1,tn),

where for the last inequality we have changed the variable from x to y and used the evaluation det(∂y(x, s1)/∂x) ≥
1/2 (∀s1 ∈ [0, 1]) from Proposition 1-(ii).

We prove (17b). From the equalities,

rnh2 =
1

∆t

[

η
(

y(·, s), t(s)
)

]1

s=0
=

∫ 1

0

{( ∂

∂t
+wn(·) · ∇

)

η

}

(

y(·, s), t(s)
)

ds,

we have

‖rnh2‖0 ≤
∫ 1

0

∥

∥

∥

{( ∂

∂t
+wn(·) · ∇

)

η

}

(

y(·, s), t(s)
)

∥

∥

∥

0
ds ≤

∫ 1

0

(
∥

∥

∥

∂η

∂t

(

y(·, s), t(s)
)

∥

∥

∥

0
+ cw

∥

∥∇η
(

y(·, s), t(s)
)
∥

∥

0

)

ds

≤
√
2

∫ 1

0

{
∥

∥

∥

∂η

∂t

(

·, t(s)
)

∥

∥

∥

0
+ cw

∥

∥∇η
(

·, t(s)
)∥

∥

0

}

ds ≤
√

2

∆t

(
∥

∥

∥

∂η

∂t

∥

∥

∥

L2(tn−1,tn;L2)
+ cw

∥

∥∇η

∥

∥

L2(tn−1,tn;L2)

)

≤
√

2

∆t
α31h(1 + cw)‖(u, p)‖H1(tn−1,tn;H2×H1) ≤

c′wh√
∆t

‖(u, p)‖H1(tn−1,tn;H2×H1),

11



which leads to (17b), where Proposition 1-(ii) has been used for the third inequality.

From Lemmas 2 and 3, (17c) and (17d) are obtained as follows:

‖rnh3‖−1 ≤ ‖(tr Čn
h)E

n
h + (trEn

h)Č
n
h‖0 ≤ c‖Čn

h‖0,∞‖En
h‖0 ≤ c‖C‖C(L∞)‖En

h‖0 ≤ cs‖En
h‖0,

‖rnh4‖−1 ≤ ‖(tr Čn
h)Ξ

n + (trΞn)Cn‖0 ≤ c‖Čn
h‖0,∞‖Ξn

h‖0 ≤ c‖C‖C(L∞)α21h‖C‖C(H1) ≤ csh.

The estimate (17e) is obtained by replacing u with C in the proof of (17a).

We prove (17f). Replacing η with Ξ in the estimate of ‖rnh2‖0 above, we have

‖Rn
h2‖0 ≤

√

2

∆t

(∥

∥

∥

∂Ξ

∂t

∥

∥

∥

L2(tn−1,tn;L2)
+ cw

∥

∥∇Ξ
∥

∥

L2(tn−1,tn;L2)

)

≤
√

2

∆t
h
(

α21‖C‖H1(tn−1,tn;H1) + cwα22‖C‖L2(tn−1,tn;H2)

)

≤ c′wh√
∆t

‖C‖H1(tn−1,tn;H1)∩L2(tn−1,tn;H2),

which implies (17f).

The estimate (17g) is obtained from

W ′

h

〈

Rn
h3,

1

2
En

h

〉

Wh

≤ ε

2
|Ξn|1|En

h|1 ≤ ε

4
(|En

h|21 + |Ξn|21) (by ab ≤ (a2 + b2)/2)

≤ ε

4
(|En

h |21 + α2
3h

2‖C‖2C(H2)) ≤
ε

4
|En

h|21 + csh
2.

In order to prove estimates (17h)–(17k) we prepare the boundedness of ‖∇ûn
h‖0,∞. Let ǔh(t) := (Πhu)(t) for

t ∈ [0, T ]. We have

‖∇ûn
h‖0,∞ ≤ ‖ûn

h‖1,∞ ≤ ‖ûn
h − ǔn

h‖1,∞ + ‖ǔn
h‖1,∞ ≤ α25h

−1‖ûn
h − ǔn

h‖1 + α20‖un‖1,∞
≤ α25h

−1
(

‖ûn
h − un‖1 + ‖un − ǔn

h‖1
)

+ α20‖un‖1,∞
≤ α25h

−1
(

α3h‖(u, p)n‖H2×H1 + α22h‖un‖2
)

+ α20‖un‖1,∞
≤ α25(α22 + α3)‖(u, p)‖C(H2×H1) + α20‖u‖C(W 1,∞) ≤ cs. (18)

We prove (17h)–(17k) by using (18) and (11) as follows.

‖Rn
h4‖0 ≤ 2(‖(∇ûn

h)E
n
h‖0 + ‖(∇enh)Č

n
h‖0) ≤ c(cs‖En

h‖0 + ‖C‖C(L∞)‖∇enh‖0) ≤ c′s(‖enh‖1 + ‖En
h‖0),

‖Rn
h5‖0 ≤ 2(‖(∇ûn

h)Ξ
n‖0 + ‖(∇η

n)Cn‖0) ≤ c(‖∇ûn
h‖0,∞‖Ξn‖0 + ‖C‖C(L∞)‖∇η

n‖0)
≤ cs(‖Ξn‖0 + ‖ηn‖1) ≤ csh(α21‖C‖C(H1) + α3‖(u, p)‖C(H2×H1)) ≤ c′sh,

‖Rn
h6‖0 ≤ ‖∇ûn

h‖0,∞‖En
h‖0 + ‖Čn

h‖0,∞‖enh‖1 ≤ cs‖En
h‖0 + ‖C‖C(L∞)‖enh‖1 ≤ c′s(‖En

h‖0 + ‖enh‖1),
‖Rn

h7‖0 ≤ ‖∇ûn
h‖0,∞‖Ξn‖0 + ‖Cn‖0,∞‖ηn‖1 ≤ cs(‖Ξn‖0 + ‖ηn‖1)

≤ csh(α21‖C‖C(H1) + α3‖(u, p)‖C(H2×H1)) ≤ c′sh.

The remainder estimates (17l)–(17o) are obtained from

(

Rn
h8,

1

2
En

h

)

= −1

2

(

[(trEn
h)

2 + 2(trEn
h)(tr Č

n
h) + (tr Čn

h)
2]En

h,E
n
h

)

≤ −1

2
‖(trEn

h)E
n
h‖20 −

(

(trEn
h)E

n
h , (tr Č

n
h)E

n
h

)

≤ −1

2
‖(trEn

h)E
n
h‖20 +

1

8
‖(trEn

h)E
n
h‖20 + 2‖(tr Čn

h)E
n
h‖20

≤ −3

8
‖(trEn

h)E
n
h‖20 + c‖C‖2C(L∞)‖En

h‖20 ≤ −3

8
‖(trEn

h)E
n
h‖20 + cs‖En

h‖20 (by (11)),

(

Rn
h9,

1

2
En

h

)

= −1

2

(

(trEn
h)Č

n
h, (trE

n
h)E

n
h

)

−
(

(tr Čn
h)(trE

n
h)Č

n
h,E

n
h

)

12



≤ 1

8
‖(trEn

h)E
n
h‖20 + c‖C‖2C(L∞)‖En

h‖20 ≤ 1

8
‖(trEn

h)E
n
h‖20 + cs‖En

h‖20,

‖Rn
h10‖0 ≤ c

[

‖Čn
h‖20,∞ + ‖Cn‖0,∞(‖Cn‖0,∞ + ‖Čn

h‖0,∞)
]

‖Ξn‖0
≤ c′‖C‖C(L∞)

(

1 + ‖C‖C(L∞)

)

‖Ξn‖0 (by (11))

≤ cs‖Ξn‖0 ≤ csα21h‖Cn‖1 ≤ c′sh,

‖Rn
h11‖0 ≤ c(‖En

h‖0 + ‖Ξn‖0) ≤ c(‖En
h‖0 + α21h‖C‖C(H1)) ≤ cs(‖En

h‖0 + h).

5.4 Proof of Theorem 1

The constant h0 can be chosen arbitrarily, say, h0 = 1. We fix ∆t0 by

∆t0 = min

{

1

4|w|C(W 1,∞)
,
1

2cs

}

, (19)

where cs is the constant appearing in (23) below. We consider any pair (h,∆t) satisfying (8) and any solu-
tion (uh, ph,Ch) of scheme (5) with (7). We return to the argument in the previous subsection. Substitut-
ing (enh ,−ǫnh, 12En

h) into (vh, qh,Dh) in (16) and noting that

(

enh − en−1
h ◦Xn

1

∆t
, enh

)

≥ 1

2∆t

[

‖enh‖20 − (1 + α4|wn|1,∞∆t)2‖en−1
h ‖20

]

≥ D∆t

(1

2
‖enh‖20

)

− cw‖en−1
h ‖20 (20)

(by (b − a)b ≥ (b2 − a2)/2 and Lemma 4),

Ah

(

(enh, ǫ
n
h), (e

n
h,−ǫnh)

)

= 2ν‖D(enh)‖20 + δ0|ǫnh|2h ≥ 2ν

α2
1

‖enh‖21 + δ0|ǫnh|2h (by Lemma 1),

V ′

h
〈rnh , enh〉Vh

≤ ‖rnh‖−1‖enh‖1 ≤
α2
1

4ν
‖rnh‖2−1 +

ν

α2
1

‖enh‖21 (by ab ≤ (β/4)a2 + (1/β)b2),

(

En
h −En−1

h ◦Xn
1

∆t
,
1

2
En

h

)

≥ D∆t

(1

4
‖En

h‖20
)

− cw‖En−1
h ‖20 (cf. (20)),

εac

(

En
h,

1

2
En

h

)

=
ε

2
|En

h|21,

and Lemma 5, we have

D∆t

(1

2
‖enh‖20 +

1

4
‖En

h‖20
)

+
ν

α2
1

‖enh‖21 + δ0|ǫnh|2h +
ε

2
|En

h|21

≤ cw(‖en−1
h ‖20 + ‖En−1

h ‖20) +
α2
1

4ν
‖rnh‖2−1 +

W ′

h

〈

Rn
h,

1

2
En

h

〉

Wh

. (21)

Since the condition (4) is satisfied, Lemma 8 implies that

‖rnh‖2−1 ≤ cs‖En
h‖20 + c′s

[

∆t‖u‖2Z2(tn−1,tn) + h2
( 1

∆t
‖(u, p)‖2H1(tn−1,tn;H2×H1) + 1

)]

, (22a)

W ′

h

〈

Rn
h,

1

2
En

h

〉

Wh

≤ cs‖En
h‖20 +

ν

2α2
1

‖enh‖21 +
ε

4
|En

h|21 −
1

4
‖(trEn

h)E
n
h‖20

+ c′s

[

∆t‖C‖2Z2(tn−1,tn) + h2
( 1

∆t
‖C‖2Z2(tn−1,tn) + 1

)]

. (22b)

Combining (22) with (21), we obtain

D∆t

(1

2
‖enh‖20 +

1

4
‖En

h‖20
)

+
ν

2α2
1

‖enh‖21 + δ0|ǫnh|2h +
ε

4
|En

h|21 +
1

4
‖(trEn

h)E
n
h‖20

≤ cs

(1

2
‖en−1

h ‖20 +
1

4
‖En−1

h ‖20 +
1

4
‖En

h‖20
)

+ c′s

[

∆t‖(u,C)‖2Z2(tn−1,tn) + h2
{ 1

∆t

(

‖(u, p)‖2H1(tn−1,tn;H2×H1) + ‖C‖2Z2(tn−1,tn)

)

+ 1
}]

. (23)

From (8) and (19) it holds that ∆t ∈ (0, 1/(2cs)]. As for the initial value we have

(e0h,E
0
h) = (u0

h,C
0
h)− (û0

h, Č
0
h) = ([ΠS

h(0,−p0)]1,0) = ([(I −ΠS
h)(0, p

0)]1,0),

13



which derives the estimates,

‖e0h‖0 ≤ α3h‖(0, p0)‖H2×H1 = α3h‖p‖C(H1), ‖E0
h‖0 = 0. (24)

By applying Lemma 6 to (23) with

xn =
1

2
‖enh‖20 +

1

4
‖En

h‖20, yn =
ν

2α2
1

‖enh‖21 + δ0|ǫnh|2h +
ε

4
|En

h|21 +
1

4
‖(trEn

h)E
n
h‖20, a0 = a1 = cs,

bn = c′s

[

∆t‖(u,C)‖2Z2(tn−1,tn) + h2
{ 1

∆t

(

‖(u, p)‖2H1(tn−1,tn;H2×H1) + ‖C‖2Z2(tn−1,tn)

)

+ 1
}]

,

and (24), there exists a positive constant

c̃† = c exp(3csT/2)
[

‖p‖C(H1) +
√

c′s
(

‖(u,C)‖Z2 + ‖(u, p)‖H1(H2×H1) +
√
T
)]

independent of ε such that

‖eh‖ℓ∞(L2),
√
ν‖eh‖ℓ2(H1), |ǫh|ℓ2(|.|h), ‖Eh‖ℓ∞(L2) ,

√
ε|Eh|ℓ2(H1),

∥

∥(trEh)Eh

∥

∥

ℓ2(L2)
≤ c̃†(h+∆t). (25)

Hence, we obtain (9) from (25) and the estimates,

‖un
h − un‖k ≤ ‖enh‖k + ‖ηn‖1 ≤ ‖enh‖k + α3h‖(u, p)‖C(H2×H1),

|pnh − pn|h ≤ |ǫnh|h + |p̂nh − pn|h ≤ |ǫnh|h + α3h‖(u, p)‖C(H2×H1),

‖Cn
h −Cn‖k ≤ ‖En

h‖k + ‖Ξn‖k ≤ ‖En
h‖k + α2(k+1)h‖C‖C(Hk+1),

‖tr (Cn
h −Cn)(Cn

h −Cn)‖0 = ‖tr (En
h −Ξn)(En

h −Ξn)‖0
≤ ‖(trEn

h)E
n
h‖0 + ‖(trΞn)En

h‖0 + ‖(trEn
h)Ξ

n‖0 + ‖(trΞn)Ξn‖0
≤ ‖(trEn

h)E
n
h‖0 + csh(‖En

h‖0 + 1),

for k = 0 and 1.

When ε = 0, (9) is still valid, since Rn
h3 vanishes and c† is independent of ε.

6 Uniqueness of the solution

In this section we present and prove the result on the uniqueness of the solution of scheme (5). Let us remind that
the function D(h) has been defined in (10).

Proposition 3 (uniqueness). Suppose Hypotheses 1 and 2 hold. Then, for any pair (h,∆t) satisfying the following
condition (26) or (27), the solution of scheme (5) with (7) is unique.
(i) When ε > 0,

h ∈ (0, h⋆], ∆t ≤ D(h)−2, (26)

where the constant h⋆ is defined by (39) below.
(ii) When ε = 0,

h ∈ (0, h̄⋆], ∆t ≤ c̄⋆h, (27)

where the constants h̄⋆ and c̄⋆ are defined by (40) and (43) below.

The proof is given after preparing the next lemma.

Lemma 9. Suppose Hypotheses 1 and 2 hold. Then, for any pair (h,∆t) satisfying the following condition (29)
or (30), any solution (uh, ph,Ch) of scheme (5) with (7) satisfies

‖Ch‖ℓ∞(L∞) ≤ cc, ‖uh‖ℓ∞(L∞) ≤ cu, (28)

where cc and cu are positive constants independent of h and ∆t defined just below.
(i) When ε > 0,

h ∈ (0, h†], ∆t ≤ D(h)−2, (29)

14



where h† is defined by (31d) below. Furthermore, cc = c†c and cu = c†u, which are defined by (31e) and (31f).
(ii) When ε = 0,

h ∈ (0, h̄†], ∆t ≤ h, (30)

where h̄† is defined by (31a) below. Furthermore, cc = c̄†c and cu = c̄†u, which are defined by (31b) and (31c).

Proof. Let n ∈ {0, . . . , NT } be fixed arbitrarily, and let h0, ∆t0 and c̃† be the positive constants in the statement
of Theorem 1 and in (25). We fix a positive constant h1 ∈ (0, 1] such that

h1 ≤ D(h1)
−2 ≤ ∆t0.

We prepare the following constants to be used in the proof:

h̄† := min
{

h0,∆t0
}

, (31a)

c̄†c := 2α23c̃† + ‖C‖C(L∞), (31b)

c̄†u := α23

[

2c̃† + (α21 + α3)‖(u, p)‖C(H2×H1)

]

+ ‖u‖C(L∞), (31c)

c1 := c̃† max
{

1, (T + ε−1)1/2, ν−1/2
}

,

h† := min{h̄†, h1}, (31d)

c†c := max
{

2α24c1 + ‖C‖C(L∞), c̄†c
}

, (31e)

c†u := max
{

α24

[

2c1 + (α22 + α3)‖(u, p)‖C(H2×H1)

]

+ ‖u‖C(L∞), c̄†u
}

. (31f)

Firstly, we prove (28) in case (ii). Since condition (30) implies (8), Theorem 1 ensures (25). Then, the boundedness
of ‖Cn

h‖0,∞ is obtained as follows:

‖Cn
h‖0,∞ ≤ ‖En

h‖0,∞ + ‖Čn
h‖0,∞ ≤ α23h

−1‖En
h‖0 + ‖C‖C(L∞)

≤ α23h
−1c̃†(∆t+ h) + ‖C‖C(L∞) ≤ 2α23c̃† + ‖C‖C(L∞)

= c̄†c.

Let ǔh(t) := (Πhu)(t) for t ∈ [0, T ]. The boundedness of ‖un
h‖0,∞ is obtained as follows:

‖un
h‖0,∞ ≤ ‖enh‖0,∞ + ‖ûn

h − ǔn
h‖0,∞ + ‖ǔn

h‖0,∞ ≤ α23h
−1

[

‖enh‖0 + ‖ûn
h − ǔn

h‖0
]

+ ‖u‖C(L∞)

≤ α23h
−1

[

‖enh‖0 + ‖ûn
h − un‖0 + ‖un − ǔn

h‖0
]

+ ‖u‖C(L∞)

≤ α23h
−1

[

c̃†(∆t+ h) + α3h‖(u, p)‖C(H2×H1) + α21h‖u‖C(H1)

]

+ ‖u‖C(L∞)

≤ α23

[

2c̃† + (α21 + α3)‖(u, p)‖C(H2×H1)

]

+ ‖u‖C(L∞)

= c̄†u.

Secondly, we prove (28) in case (i). Since condition (29) implies (8), the estimates (25) and the definition of c1 lead
to

‖eh‖ℓ∞(L2), ‖eh‖ℓ2(H1), ‖Eh‖ℓ∞(L2), ‖Eh‖ℓ2(H1) ≤ c1(∆t+ h).

When ∆t ≤ h, we have ‖Cn
h‖0,∞ ≤ c̄†c ≤ c†c and ‖un

h‖0,∞ ≤ c̄†u ≤ c†u from the proof in case (ii) above. When
(D(h)2h2 ≤) h ≤ ∆t ≤ D(h)−2, we have

‖Cn
h‖0,∞ ≤ ‖En

h‖0,∞ + ‖C‖C(L∞) ≤ α24D(h)‖En
h‖1 + ‖C‖C(L∞) ≤ α24D(h)∆t−1/2‖Eh‖ℓ2(H1) + ‖C‖C(L∞)

≤ α24c1D(h)(∆t1/2 +∆t−1/2h) + ‖C‖C(L∞) ≤ 2α24c1 + ‖C‖C(L∞)

≤ c†c,

‖un
h‖0,∞ ≤ ‖enh‖0,∞ + ‖ûn

h − ǔn
h‖0,∞ + ‖ǔn

h‖0,∞ ≤ α24D(h)
[

‖enh‖1 + ‖ûn
h − ǔn

h‖1
]

+ ‖u‖C(L∞)

≤ α24D(h)
[

∆t−1/2‖eh‖ℓ2(H1) + ‖ûn
h − un‖1 + ‖un − ǔn

h‖1
]

+ ‖u‖C(L∞)

≤ α24D(h)
[

c1(∆t
1/2 +∆t−1/2h) + (α22 + α3)h‖(u, p)‖C(H2×H1)

]

+ ‖u‖C(L∞)

≤ α24

[

2c1 + (α22 + α3)‖(u, p)‖C(H2×H1)

]

+ ‖u‖C(L∞)

≤ c†u.

Thus, we obtain (28).
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Proof of Proposition 3. The definitions (39), (40) and (43) below of the constants h⋆, h̄⋆ and c⋆ imply h⋆ ≤ h†,
h̄⋆ ≤ h̄† and c̄⋆ ≤ 1. Hence any pair of (h,∆t) in Proposition 3 satisfies the assumptions of Lemma 9 for ε ≥ 0.

Suppose (ũh, p̃h, C̃h) and (uh, ph,Ch) are any two solutions of scheme (5) with (7). Let (ẽh, ǫ̃h, Ẽh) := (ũh, p̃h, C̃h)−
(uh, ph,Ch) be the difference. Since both of (ũh, p̃h, C̃h) and (uh, ph,Ch) satisfy scheme (5) with (7), we have

(

ẽnh − ẽn−1
h ◦Xn

1

∆t
,vh

)

+Ah

(

(ẽnh, ǫ̃
n
h), (vh, qh)

)

= −
(

(tr Ẽn
h)Ẽ

n
h,∇vh

)

+ V ′

h
〈r̃nh ,vh〉Vh

, (32a)

(

Ẽn
h − Ẽn−1

h ◦Xn
1

∆t
,Dh

)

+ εac(Ẽ
n
h,Dh) = 2

(

(∇ẽnh)Ẽ
n
h,Dh

)

+
(

(div ẽnh)(Ẽ
n
h)

#,Dh

)

+ W ′

h
〈R̃n

h,Dh〉Wh
, (32b)

∀(vh, qh,Dh) ∈ Vh ×Qh ×Wh,

where

r̃nh ∈ V ′
h, R̃n

h :=

5
∑

i=1

R̃n
hi ∈W ′

h,

V ′

h
〈r̃nh ,vh〉Vh

:= −
(

(trCn
h)Ẽ

n
h + (tr Ẽn

h)C
n
h ,∇vh

)

,

(R̃n
h1,Dh) := 2

(

(∇un
h)Ẽ

n
h + (∇ẽnh)C

n
h,Dh

)

,

(R̃n
h2,Dh) :=

(

(divun
h)(Ẽ

n
h)

# + (div ẽnh)(C
n
h)

#,Dh

)

,

(R̃n
h3,Dh) := −

(

[tr (Ẽn
h +Cn

h)]
2Ẽn

h,Dh

)

,

(R̃n
h4,Dh) := −

(

[tr (Ẽn
h + 2Cn

h)](tr Ẽ
n
h)C

n
h,Dh

)

,

(R̃n
h5,Dh) :=

(

(tr Ẽn
h)I,Dh

)

,

and (ẽ0h, Ẽ
0
h) = (0,0). Substituting (ẽnh,−ǫ̃nh, 12 Ẽn

h) into (vh, qh,Dh) in (32) and using Lemma 5 and similar
estimates in the derivation of (21), we have

D∆t

(1

2
‖ẽnh‖20 +

1

4
‖Ẽn

h‖20
)

+
ν

α2
1

‖ẽnh‖21 + δ0|ǫ̃nh|2h +
ε

2
|Ẽn

h|21

≤ cw(‖ẽn−1
h ‖20 + ‖Ẽn−1

h ‖20) +
α2
1

4ν
‖r̃nh‖2−1 +

(

R̃n
h,

1

2
Ẽn

h

)

. (33)

The following estimates are obtained for the functionals r̃nh and R̃n
h:

‖r̃nh‖−1 ≤ c‖Cn
h‖0,∞‖Ẽn

h‖0, (34)
(

R̃n
h1,

1

2
Ẽn

h

)

,
(

R̃n
h2,

1

2
Ẽn

h

)

≤ c‖Ẽn
h‖0

(

‖un
h‖0,∞|Ẽn

h|1 + ‖Cn
h‖0,∞|ẽnh|1

)

, (35a)

(

R̃n
h3,

1

2
Ẽn

h

)

≤ −3

8
‖(tr Ẽn

h)Ẽ
n
h‖20 + c‖Cn

h‖20,∞‖Ẽn
h‖20, (35b)

(

R̃n
h4,

1

2
Ẽn

h

)

≤ 1

8
‖(tr Ẽn

h)Ẽ
n
h‖20 + c‖Cn

h‖20,∞‖Ẽn
h‖20, (35c)

‖R̃n
h5‖0 ≤ c‖Ẽn

h‖0. (35d)

We note that the estimates (35a) are proved by the integration by parts,

(

R̃n
h1,

1

2
Ẽn

h

)

=
(

(∇un
h)Ẽ

n
h, Ẽ

n
h

)

+
(

(∇ẽnh)C
n
h, Ẽ

n
h

)

= −
(

un
h,∇(Ẽn

hẼ
n
h)
)

+
(

(∇ẽnh)C
n
h , Ẽ

n
h

)

≤ c
(

‖un
h‖0,∞‖Ẽn

h‖0|Ẽn
h|1 + ‖Cn

h‖0,∞|ẽnh|1‖Ẽn
h‖0

)

,
(

R̃n
h2,

1

2
Ẽn

h

)

=
1

2

(

(divun
h)(Ẽ

n
h)

#, Ẽn
h

)

+
1

2

(

(div ẽnh)(C
n
h)

#, Ẽn
h

)

= −1

2

(

un
h∇(Ẽn

h)
#, Ẽn

h

)

− 1

2

(

(Ẽn
h)

#,un
h∇Ẽn

h

)

+
1

2

(

(div ẽnh)(C
n
h)

#, Ẽn
h

)

≤ c
(

‖un
h‖0,∞|Ẽn

h|1‖Ẽn
h‖0 + ‖Cn

h‖0,∞|ẽnh|1‖Ẽn
h‖0

)

,

and that the other estimates (34), (35b), (35c) and (35d) are obtained similarly to (17c), (17l), (17m) and (17o),
respectively. Applying Lemma 9 to (34), we have

‖r̃nh‖−1 ≤ ccc‖Ẽn
h‖0. (36)
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We consider case (i). The estimates (35) and Lemma 9 lead to

(

R̃n
h,

1

2
Ẽn

h

)

≤ c

ε
(c2c + c2u + 1)‖Ẽn

h‖20 +
ν

2α2
1

‖ẽnh‖21 +
ε

4
|Ẽn

h|21 −
1

4
‖(tr Ẽn

h)Ẽ
n
h‖20. (37)

Combining (36) and (37) with (33), we have

D∆t

(1

2
‖ẽnh‖20 +

1

4
‖Ẽn

h‖20
)

+
ν

2α2
1

‖ẽnh‖21 + δ0|ǫ̃nh|2h +
ε

4
|Ẽn

h|21 +
1

4
‖(tr Ẽn

h)Ẽ
n
h‖20

≤ c

ε
(c2c + c2u + 1)

(1

4
‖Ẽn

h‖20
)

+ cw

(1

2
‖ẽn−1

h ‖20 +
1

4
‖Ẽn−1

h ‖20
)

. (38)

Let ∆t⋆ := ε/[2c(c2c + c
2
u+1)], and we fix a positive constant h2 ∈ (0, 1] such that D(h2)

−2 ≤ ∆t⋆. We define h⋆ by

h⋆ := min{h†, h2}. (39)

Condition (26) implies ∆t ≤ D(h2)
−2 ≤ ε/[2c(c2c + c2u + 1)] (= ∆t⋆). Applying Lemma 6 to (38) with

xn =
1

2
‖ẽnh‖20 +

1

4
‖Ẽn

h‖20, yn =
ν

2α2
1

‖ẽnh‖21 + δ0|ǫ̃nh|2h +
ε

4
|Ẽn

h|21 +
1

4
‖(tr Ẽn

h)Ẽ
n
h‖20,

a0 =
c

ε
(c2c + c2u + 1), a1 = 0, bn = cw

(1

2
‖ẽn−1

h ‖20 +
1

4
‖Ẽn−1

h ‖20
)

,

and using the fact (ẽ0h, Ẽ
0
h) = (0,0), we get (ẽh, ǫ̃h, Ẽh) = (0, 0,0).

We prove (ii). In place of (35a) we use the estimates,

(

R̃n
h1,

1

2
Ẽn

h

)

,
(

R̃n
h2,

1

2
Ẽn

h

)

≤ c‖Ẽn
h‖0

(

α26h
−1‖un

h‖0,∞‖Ẽn
h‖0 + ‖Cn

h‖0,∞|ẽnh|1
)

. (35a′ )

We define h̄⋆ by

h̄⋆ := min
{

h̄†, 1/cu, cu/c
2
c

}

. (40)

For any h ∈ (0, h̄⋆] the estimates (35), Lemma 9 and (40) lead to

(

R̃n
h,

1

2
Ẽn

h

)

≤ c
(cu
h

+ c2c + 1
)

‖Ẽn
h‖20 +

ν

2α2
1

‖ẽnh‖21 −
1

4
‖(tr Ẽn

h)Ẽ
n
h‖20

≤ c′cu
h

‖Ẽn
h‖20 +

ν

2α2
1

‖ẽnh‖21 −
1

4
‖(tr Ẽn

h)Ẽ
n
h‖20. (41)

Combining (36) and (41) with (33), we have

D∆t

(1

2
‖ẽnh‖20 +

1

4
‖Ẽn

h‖20
)

+
ν

2α2
1

‖ẽnh‖21 + δ0|ǫ̃nh|2h +
1

4
‖(tr Ẽn

h)Ẽ
n
h‖20 ≤

ccu
h

(1

4
‖Ẽn

h‖20
)

+ cw

(1

2
‖ẽn−1

h ‖20 +
1

4
‖Ẽn−1

h ‖20
)

.

(42)

We define c̄⋆ by

c̄⋆ := min
{

1, 1/(2ccu)
}

. (43)

Since condition (27) implies ∆t ≤ h/(2ccu), applying Lemma 6 to (42) with

xn =
1

2
‖ẽnh‖20 +

1

4
‖Ẽn

h‖20, yn =
ν

2α2
1

‖ẽnh‖21 + δ0|ǫ̃nh|2h +
1

4
‖(tr Ẽn

h)Ẽ
n
h‖20,

a0 =
ccu
h
, a1 = 0, bn = cw

(1

2
‖ẽn−1

h ‖20 +
1

4
‖Ẽn−1

h ‖20
)

,

and using the fact (ẽ0h, Ẽ
0
h) = (0,0), we obtain (ẽh, ǫ̃h, Ẽh) = (0, 0,0), which completes the proof of (ii).
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7 Numerical experiments

In this section we present numerical results by scheme (5) in order to confirm the theoretical convergence order.
For the detailed description of the algorithm we refer to [23].

Example. In problem (1) we set Ω = (0, 1)2 and T = 0.5, and we consider three cases for the pair of ν and ε,

(ν, ε) = (10−1, 10−1), (10−1, 10−3), (1, 0).

The functions f , F, u0 and C0 are given such that the exact solution to (1) is as follows:

u(x, t) =

(

∂ψ

∂x2
(x, t),− ∂ψ

∂x1
(x, t)

)

, p(x, t) = sin{π(x1 + 2x2 + t)},

C11(x, t) =
1

2
sin2(πx1) sin

2(πx2) sin{π(x1 + t)}+ 1,

C22(x, t) =
1

2
sin2(πx1) sin

2(πx2) sin{π(x2 + t)}+ 1,

C12(x, t) =
1

2
sin2(πx1) sin

2(πx2) sin{π(x1 + x2 + t)} (= C21(x, t)),

ψ(x, t) :=

√
3

2π
sin2(πx1) sin

2(πx2) sin{π(x1 + x2 + t)}.

(44)

Note that we set w ≡ u in the material derivative D/Dt.

Since Theorem 1 holds for any fixed positive constant δ0, we simply fix δ0 = 1. Let N be the division number of
each side of the square domain. We set N = 32, 64, 128 and 256, and (re)define h := 1/N . The time increment is
set as ∆t = h/2.

Let us recall that ΠL
h : C(Ω̄) → Mh is the Lagrange interpolation operator. We use the same symbol ΠL

h to
represent the Lagrange operators on C(Ω̄)2 and C(Ω̄)2×2. We apply the scheme (5) with the initial conditions (7),
where ΠL

h is employed in place of Πh for the choice of the initial value C0
h in (7). Let us note that when the exact

conformation tensor C(t) belongs to C(Ω̄)2, the error estimates (9) in Theorem 1 hold true also for the choice of
initial value with ΠL

h . For the solution (uh, ph,Ch) of scheme (5) and the exact solution (u, p,C) given by (44) we
define the relative errors Er i, i = 1, . . . , 6, by

Er 1 =
‖uh −ΠL

h u‖ℓ∞(L2)

‖ΠL
h u‖ℓ∞(L2)

, Er 2 =
‖uh −ΠL

h u‖ℓ2(H1)

‖ΠL
h u‖ℓ2(H1)

,

Er 3 =
‖ph −ΠL

h p‖ℓ2(L2)

‖ΠL
h p‖ℓ2(L2)

, Er 4 =
|ph −ΠL

h p|ℓ2(|·|h)
‖ΠL

h p‖ℓ2(L2)

,

Er 5 =
‖Ch −ΠL

h C‖ℓ∞(L2)

‖ΠL
hC‖ℓ∞(L2)

, Er 6 =
‖Ch −ΠL

hC‖ℓ2(H1)

‖ΠL
hC‖ℓ2(H1)

.

In the following we show three pairs of table and figure. Table 3 summarizes the symbols used in the figures. Ta-
bles & Figures 1, 2 and 3 present the results for the cases (ν, ε) = (10−1, 10−1), (10−1, 10−3) and (1, 0), respectively.
In the tables the values of the errors and the slopes are presented, and in the figures the graphs of the errors versus
h in logarithmic scale are shown. In each figure the slope of the triangle is equal to 1, which shows the convergence
order O(h).

We can see that all the errors except Er 6 for (ν, ε) = (1, 0) are almost of the first order in h for all the cases.
These results support Theorem 1. In the case of (ν, ε) = (1, 0) there is no diffusion for C in equation (1c) and the
error estimate of the conformation tensor in ℓ2(H1)-seminorm disappear from (9). It is, therefore, natural that the
slope of Er 6 does not attain 1. Although we do not have any theoretical result for Er 3 at present, scheme (5) has
produced convergence results also in this norm.

18



Table 3: Symbols used in the figures.

uh ph Ch

◦ • △ N � �

Er 1 Er 2 Er 3 Er 4 Er 5 Er 6

h Er 1 slope Er 2 slope

1/32 2.07× 10−2 – 2.91× 10−2 –
1/64 8.29× 10−3 1.32 1.21× 10−2 1.27

1/128 3.72× 10−3 1.16 5.85× 10−3 1.05
1/256 1.77× 10−3 1.07 2.60× 10−3 1.17

h Er 3 slope Er 4 slope

1/32 6.73× 10−2 – 5.08× 10−2 –
1/64 2.06× 10−2 1.71 1.86× 10−2 1.45

1/128 6.80× 10−3 1.60 8.38× 10−3 1.15
1/256 2.59× 10−3 1.39 3.68× 10−3 1.19

h Er 5 slope Er 6 slope

1/32 1.12× 10−2 – 4.80× 10−1 –
1/64 4.33× 10−3 1.37 1.66× 10−2 1.54

1/128 1.92× 10−3 1.18 6.56× 10−3 1.34
1/256 9.09× 10−4 1.08 2.90× 10−3 1.18
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10
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Table & Figure 1: Errors and slopes for (ν, ε) = (10−1, 10−1).

h Er 1 slope Er 2 slope

1/32 1.75× 10−2 – 2.71× 10−2 –
1/64 6.74× 10−3 1.37 1.12× 10−2 1.28

1/128 2.91× 10−3 1.21 5.49× 10−3 1.03
1/256 1.37× 10−3 1.09 2.44× 10−3 1.17

h Er 3 slope Er 4 slope

1/32 9.77× 10−2 – 6.56× 10−2 –
1/64 3.17× 10−2 1.62 2.22× 10−2 1.56

1/128 1.02× 10−2 1.63 9.01× 10−3 1.30
1/256 3.62× 10−3 1.50 3.78× 10−3 1.25

h Er 5 slope Er 6 slope

1/32 2.06× 10−2 – 2.76× 10−1 –
1/64 7.36× 10−3 1.49 1.16× 10−1 1.25

1/128 2.93× 10−3 1.33 4.40× 10−2 1.40
1/256 1.31× 10−3 1.17 1.51× 10−2 1.54

10
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Table & Figure 2: Errors and slopes for (ν, ε) = (10−1, 10−3).

8 Conclusions

We have presented a nonlinear stabilized Lagrange–Galerkin scheme (5) for the Oseen-type Peterlin viscoelastic
model. The scheme employs the conforming linear finite elements for all unknowns, velocity, pressure and confor-
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h Er 1 slope Er 2 slope

1/32 1.36× 10−2 – 2.30× 10−2 –
1/64 4.26× 10−3 1.67 9.68× 10−3 1.25

1/128 1.40× 10−3 1.60 4.84× 10−3 1.00
1/256 5.15× 10−4 1.44 2.08× 10−3 1.22

h Er 3 slope Er 4 slope

1/32 2.03× 10−1 – 9.39× 10−2 –
1/64 6.98× 10−2 1.54 3.00× 10−2 1.65

1/128 2.16× 10−2 1.69 1.19× 10−2 1.34
1/256 6.86× 10−3 1.66 5.05× 10−3 1.23

h Er 5 slope Er 6 slope

1/32 2.13× 10−2 – 6.71× 10−1 –
1/64 7.64× 10−3 1.48 5.89× 10−1 0.19

1/128 2.81× 10−3 1.44 4.51× 10−1 0.38
1/256 1.11× 10−3 1.37 3.08× 10−1 0.55
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Table & Figure 3: Errors and slopes for (ν, ε) = (1, 0).

mation tensor, together with Brezzi–Pitkäranta’s stabilization method. In Theorem 1 we have established error
estimates with the optimal convergence order, which remain true even for ε = 0. We have also presented the
result on the uniqueness of the solution of the scheme in Proposition 3. It is noted that any solution of the scheme
converges to the exact solution without any relation between h and ∆t, while the condition (26) or (27) is needed
for the uniqueness of the solution. Theoretical convergence order has been confirmed by two-dimensional numerical
experiments.

Although we have dealt with the stabilized scheme to reduce the number of degrees of freedom, the extension of
the results to the combination of stable pairs for the velocity and the pressure, and conventional elements for the
conformation tensor, e.g., P2/P1/P2 element, is straightforward. Note that our analysis of the stabilized Lagrange-
Galerkin method does not require to deal with the dissipation of the discrete free energy and positive definiteness of
the conformation tensor Ch, as it was the case of the characteristic-based scheme of Boyaval et al. [5] applied to the
dissipative Oldroyd-B viscoelastic model. Since the strong solution of the Peterlin model (1) indeed satisfies these
properties, cf. [23], they may be a useful tool in order to extend our numerical analysis to the Peterlin viscoelastic
model with the nonlinear convective terms in future.

The extension of the presented scheme to the three-dimensional case is not straightforward due to Lemma 5. Three-
dimensional problems are fully treated in a forthcoming paper, Part II, by a linear scheme, where the convergence
with the best possible order is proved for any of ε > 0.
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