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Abstract

We derive and analyze a block diagonal preconditioner for the linear problems arising from
a discontinuous Galerkin finite element discretization. The method can be applied to second-
order self-adjoint elliptic boundary value problems and exploits the natural decomposition of the
discrete function space into a global low-order subsystem and components of higher polynomial
degree. Similar to results for the p-version of the conforming FEM, we prove for the interior
penalty discontinuous Galerkin discretization that the condition number of the preconditioned
system is uniformly bounded with respect to the mesh size of the triangulation. Numerical
experiments demonstrate the performance of the method.
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1. Introduction

The so-called hp-finite element method (hp-FEM) achieves discrete numerical solu-
tions for PDEs of high accuracy by refining the computational grid and/or increasing
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the polynomial degree of the underlying finite element space. The partitioning of the
domain is somewhat coarser than for the classical h-finite element method. Compared
to the p-FEM, however, the hp-FEM uses polynomial shape functions of relatively low
degree. Among the class of hp-FEM, the discontinuous Galerkin methods (AGFEM) for
elliptic PDEs present a nonconforming specialty. The dGFEM use piecewise polynomial
function spaces without continuity constraints on inter-element boundaries. In fact, the
enforcement of the inter-element continuity as well as the imposition of boundary condi-
tions is realized in a weak sense only.

Being originally introduced for hyperbolic problems }, today a variety of methods
for purely elliptic and convection-diffusion type problems can be discretized using dis-
continuous Galerkin methods; a list of existing discretization schemes has been analyzed
in a unified framework in Arnold et al. ﬁ] The discontinuous approach enjoys great
popularity for a wide range of PDEs, in particular due to its flexibility in mesh design
(non-matching grids, hanging nodes, hp-refinement strategies) and a local stencil prop-
erty amenable to parallelization @, @]

As a main drawback, however, the discontinuous Galerkin discretization leads to a rel-
atively large number of degrees of freedom in comparison to other discretization methods.
The corresponding linear systems are large, sparse, and rather ill-conditioned ﬁ] Thus,
there is the need for optimal preconditioning forms to improve the overall efficiency and
performance of the dGFEM.

By the term optimal, we mean the following: Given the bilinear form B(u,v) that arises
from the discretization of the problem, we need to construct a spectrally equivalent form
C(u,v), i.e. there exist constants mq, ms € RT such that there holds for elements uy, of
the discrete function space Vj,

my B(up,up) < Clup,up) < moB(up, up). (1)

Here, the inversion of the expression C(u,v) should be easily obtainable. The overall
objective would be an optimal iterative method where the rate of convergence towards
the exact solution is independent of the number of unknowns. In view of the dGFEM and
equation (1), this means that the constants my, ms are uniformly bounded with respect
to the underlying partition and the local polynomial degree, or less strictly, growing only
moderately with p.

In the context of the hp-FEM, a fundamental idea for the construction of optimal pre-
conditioners is to derive a subsystem based on a suitable low-order discretization. The
solution of this auxiliary problem is then used to develop an iterative solution method for
the original system. The advantage of low-order preconditioning is twofold: For the linear
systems arising from a discretization, for example with bilinear finite elements, efficient
iterative methods, e.g. the h-multigrid method, are known and can be applied to the pre-
conditioning form with low computational cost. Additionally, in terms of implementation,
the low-order preconditioning is also a memory issue: The large, sparse stiffness matrix
grows rapidly with the degree p of the shape functions. Neglecting boundary effects, and
considering the matrix arising from a triangulation with n, elements in a d-dimensional
domain, and with s neighbouring relations in the operator stencil, the upper bound for
the number of nonzero matrix entries is given by nnz = n¢(s+1)(p+1)2? provided a ten-
sor product basis is used to span the local finite element spaces. A preconditioning system
discretized based on bilinear elements is therefore smaller by a factor of (2/(p + 1))
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There exists a great variety of low-order preconditioning techniques in the literature:
One possibility is to exploit the natural hierarchy of the discrete function spaces by
successively decreasing the polynomial degree of the discretization while keeping the
spatial partition unchanged. These historically early approaches, the so-called multi-p
methods, can for example be found in [1 i ﬁ In a more general framework,
related preconditioners are investigated in the field of multilevel domain decomposition
methods |2 ﬁ m B‘] Finally, we note that also algebraic multigrid techniques have been
applied to the dGFEM, a description of two approaches together with applications can
be found in @, .

In this paper we describe another preconditioning approach that is related to the
domain decomposition method: The iterative solver is constructed by substructuring,
where the splitting of the finite element space is based on decomposing internal and
external degrees of freedom on each element, which is possible for specific sets of basis
functions like e.g. hierarchical basis functions. This is a well-known technique for the
conforming p-FEM _ [ .] The goal of this paper is to generalize this technique for
the dGFEM.

In particular, we introduce a dGFEM specific block preconditioning approach and
prove that the condition number of the preconditioned system is uniformly bounded with
respect to the mesh size of the triangulation. The estimate is also explicit with respect to
the polynomial degree p and it is shown that the bound grows as p?(1+log p)?. This result
is less favorable than the corresponding one for the conforming finite element method.
Therefore the preconditioning technique remains limited to dGFEM discretizations where
the polynomial degree is chosen to be relatively small.

The paper is structured as follows: In Section [2] we briefly state the interior penalty
discontinuous Galerkin discretization of a scalar elliptic model problem, along with some
notation and the definition of the finite element spaces. Then, in Section[3, we formulate
the diagonal preconditioners for the Schur complement arising from the dG discretization.
Section [4] is devoted to the generalization of the convergence results from the p-FEM
to the dGFEM non-conforming case. Then, we provide some numerical experiments in
Section[5 demonstrating the feasiblity of the approach for purely diffusive problems and
the case of moderate convection. Finally, we draw some conclusions in Section [6.

2. Model problem and discretization

In the following we state the model problem and its discretization based on the interior
penalty method as well as introduce the polynomial basis employed.

2.1. Model problem

Let us consider the steady diffusion equation on a bounded domain Q C R¢ with a
sufficiently smooth boundary I':

Lu= -V (aVu) Z() (ai;0;u) = f 1in Q, (2)

7,7=1

where f € L%(2) is a given function and the diffusivity tensor a = {a;;}; jeq € R¥*? is
symmetric and positive definite. The coefficients a;;, (i,j) € d x d, are assumed to be
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bounded and piecewise constant. Here, we use the notation n := {1,2,...,n} C N for
n € N. Problem (2] is supplemented with Dirichlet boundary conditions, u = gp on T,
where gp € HY2(T).

2.2. Meshes, trace operators and finite element spaces

While concentrating on the two-dimensional case d = 2 in later sections, we will first
formulate the discretization scheme for the general case. Let us assume that €2 can be
subdivided into shape-regular meshes 7y, consisting of convex open subsets (elements)
k; # 0, j € nyg, of characteristic size h := maxjey, (diam k;):

Q= U Rj, kiNk; =0 Y(i,j) € ng xng,i #j, ny:=cardTy.
ki €TH

Throughout this paper we confine ourselves to partitionings into quadrilateral elements,
thus each element has n. := 2¢ sides. We define the set £ of all interior and boundary
faces, i. e. the smallest (d — 1)-dimensional intersection between neighbouring elements of
the partition and between elements and the boundary I'. Furthermore, we define the set
of interior faces &y = {e € £ : e C Q} and its union Ty := {x € Q: Je € &y with @ €
e}. As it was pointed out above, the dGFEM admits triangulations containing irregular
vertices, also called hanging nodes, in a natural way.

We define P, (%) as the space of polynomials of degree at most p > 0 in d variables,
restricted to the reference domain & := I, I := [—1, 1]. Furthermore, by Q, (%) we denote
the tensor product space of one-dimensional polynomials of degree p, i.e. the space of
functions on & which are polynomials of degree less than or equal to p in each variable:

d
Qp(’%) = ®Pp(1)'

Together with a unisolvent set of ns := dim Q, () linear independent functionals
Fr = {fla‘FQa"'aan} C (Q;D(’%))*

we obtain the reference finite element (&, Q,(), Fz), see Ciarlet ] We then construct
the isoparametric finite element family on 7, with a sufficiently smooth bijective mapping
0x t R — K, 05 € [Qp(&)]? with a sufficiently smooth inverse o !, and get the local
discrete function space

Q,(k) = {v € L*(k) :voo, € QR)}, w € Th,
and the global discrete function space
VP i={ve L*Q):v|, € Qp(r), Vk € Tp}.

Some additional assumptions on the triangulation 7, and the mapping o, are required
to satisfy an equivalence between bilinear forms defined on the reference element & and
the element k in real space: The deformation of the elements must be bounded, in the
sense that there holds
| det(Vo, )| zoe(zy < Ch?,  |owl1,00,0 = ‘rnla)i (ess supycp |0%0k|) < Ch,
al=
[ det(Vo, )|z < Ch™2 o 1,00s < ChTL (3)
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Given (3), the proof of equivalence between the bilinear forms is based simply on the
chain rule, see @] for more detail.

By H*(73), s € Rt, we denote the broken Sobolev space, i.e. the space of functions on
75, whose restriction to an element k € 75, belong to H*(k). For a function v € H'(7},)
we define v, k € 7j, to be the inner trace of v on dk. The traces of functions in H!(7},)
belong to the vector space

T(CUTw) = [] L*(9r)
KETH

and are double-valued for @ € T, while on the boundary, € T, the value v(x) is
unambiguous . For k € T, with Ok \ T' # () there exists a neighbouring element
k' € T;, that shares a common edge e = K N K’ € &y, with k. The outer trace v, of v on
e is defined as the inner trace v} relative to the element &’.

Furthermore, let us define the following jump and average operators. For v € H*(7j,)
the jump of v on the edge e = K N K’ € &y is given by

[vl, : T(TUTine) — LA U Tig), o], =vint +v . n,,

where n,} and n, denote the unit outward normal vectors to x and x’, respectively.
Additionally, the mean value of v on the edge e is defined as

{0}, : T(T'UTine) — L*(T U Ting), (v}, = % (v} +07).

For element boundaries e € £\ &y, that are part of the global domain boundary T, the
boundary values are defined unambiguously. We set
[v], =v"n, {v},=v" one.

For the sake of simplicity, the subscripts x and e are omitted in the following.
2.3. The discontinuous Galerkin discretization

The interior penalty discontinuous Galerkin (IPAG) discretization @] of the steady
diffusion problem (2) is given in the following way: Find u, € V}P such that

Bi(uh,vh) = K(vh) Yoy, € V}f, (4)

where the bilinear form B¥ (-, ) is

:tU'U:: avu-+- Vv dr avVvy - ||ul|l —ysavVuy - ||v|| as
B*(u,0) Z/v Vd*/p 6{aVv} - [u] — {aVu} - [o] d

ReT), ' F int UL
—i—/ ofu] - [v] ds,
DingUI"
L(v) = / 0((aVv) -n)gp ds + / ogpv ds, 6 :==*1. (5)
r r
Here, the sign factor 6 distinguishes between the symmetric (§ = —1) and the non-
symmetric (6 = +1) interior penalty discontinuous Galerkin discretization. The term
o = o(a,h,p) denotes a stabilizing penalty parameter and is chosen for e € & U Eint

as o] = op*h[Vane||7« ., with a given factor § > 0. The weak formulation can be
derived from a flux formulation related to the mixed-type FEM, see for example E, E]
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2.4. Hierarchical basis functions

A discrete function up € V}P can be expanded into the sum

i, Nk
up(x) = Zui¢i(w) = Z ZWW@%

i=1 KETy i=1
where n? := dim V? and n, := dim Q,(k) for x € T;. Here, u = (uy,us,...)T € R™
and u® = (uf,uf,...)T € R", k € Tp, include the coefficients of the discrete function
on Q and on a single element k, respectively. Furthermore, the set B, = {¢'}

k € Ty, consists of the local basis functions of Q, (k). Then, the global basis {¢;}

i€n,.
jeny =
{(bw(n.,i)},{ €T, .ien., of the discrete function space V' is constructed based on B, where

7 Ty, x n, — n} denotes the global numbering of the degrees of freedom. Using this

notation the discrete problem (4) can be translated into an algebraic system Au = f
where the global system matrix A € R™ %" is assembled by summing up the element
stiffness matrices A" € Rn=xnx,

In the p-FEM context a common choice for the basis B,, for Qp(n is the hierarchical
tensor product basis formed by the Babuska-Szabd polynomials [18, @, @] On the
two-dimensional reference element & they are defined as

By modal = {f/ij :0<4,5 < p} C Qu([-1,1]%),

- l—2 . 1+
LO(:I:) = 5 Ll(x) = 9
. 1 x
Lk(x) - —/ Lk*l(é) dgv 2<k< b,
Il Lk—1llr2(=1,1) J-1
Lij(z,y) = Li(z)L;(y), 0 <1,j <p, (6)

where Lj(x) are the Legendre polynomials. The basis Bﬂmodal of the local discrete func-
tion space Q,(x) is termed hierarchical since it satisfies Byp—1 modal C Bp,modal, i.€. the
set of basis functions of V) ~1is a subset of that of VP,

An important feature of the tensor product basis B ‘modal is the fact that the set of
shape functions can be decomposed into a set of external (boundary) modes Ay and the
set of internal shape functions N7.

In the two-dimensional case, where the notions for sides and edges coincide, the
external-internal decomposition is given by

Qp(R) = WP (k) ® I (), (7)
where the vector space of external functions is formed as
WP(R) :=Pi(1h) @ Py(l2) UP, (1) @ Pi(la),
spanned by the external vertex shape functions Ny := {ﬁ” (r,y):0<14,5 < 1}, and
the edge shape functions Ng = {ﬁi,j,ﬁjﬂ- 1=0,1;2<5 < p}. Here, we have I; =

{§ ERI: & e, =0,i+# j}. The vector space spanned by the internal shape functions
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Figure 1. External-internal decomposition on the quadrilateral reference element, p = 4. The different
symbols mark the locations of the degrees of freedom (DoFs). The right picture illustrates the six DoFs
corresponding to a single edge &;.

can be constructed using a bubble function bs(z,y) := 16LooL11 = (1 — 22)(1 — y?),
and is given by
Ip(l%) = {b,g’l) NS Qp_g(l%)}.
After a suitable ordering of the degrees of freedom the elemental stiffness matrix has
the block structure
A7) AR AL AL
AW = AR = ©)
- () g0 |7 T () g0 |
Awr Ay Aye Apy

where the subscripts Z and W correspond to the set of internal and external shape func-
tions, respectively. The subscripts V, € distinguish between the vertex (bilinear) and
edge components of the elemental basis (in three dimensions, the elemental matrix
includes also blocks corresponding to the element faces). Finally, the submatrices are

of the sizes AEQ?M € RMaXmaz = card Ny, for A; € {Z,W,E,V}. We note that

nw = ne +ny and ng, = nz + nyy.

For the symmetric interior penalty dG discretization both the matrices A and the
matrix C;' corresponding to the preconditioning form are n} x n} symmetric positive
definite matrices. The preconditioned conjugate gradient method (PCG) used to solve
the system of linear equations Au = f requires in each step the evaluation of the matrix-
vector product Az for a given vector @ and the solution of the auxiliary problem C' o = r
for a given vector r. This method satisfies the error bound @]

IATf — 2|l < 205 A7 F — 2|4,
where the convergence factor is given by

ko(Cy A) — 1 ©

na =

ro(CtA) +1

The PCG method allows an approximation of the condition number o (Q;lé) due to
its close relationship to the symmetric Lanczos process , @]
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Remark 1 In the examples given in Section |5 we will also investigate the linear sys-
tems arising from nonsymmetric forms such as the monsymmetric interior penalty dG
discretization of the diffusion equation and the dG discretization of convection-diffusion
problems. We then resort to the GMRES method [@/, which is a Krylov subspace method
suitable also for nonsymmetric, indefinite matrices. In this case, however, theoretical
bounds for the convergence of the method are less satisfying and will not be considered
here.

3. Schur complement preconditioner

We now describe a generalization of the p-FEM preconditioner of Babuska et al. B}
for the dG finite element method.

3.1. Schur complement of the stiffness matrix

In a first step we eliminate the unknowns corresponding to the internal shape func-
tions. This concept is widely used in the p-FEM context, where it is denoted by partial
orthogonalization or static condensation. As was pointed out by Sherwin et al. [30], the
elimination procedure can also be applied to the dGFEM when using a C°-type expansion
basis like the one defined in (6).

Formally, for the dG discretization there exist no edge and vertex shape functions in
the strict sense, since each degree of freedom is associated with a single element only.
Instead, continuity between the elements is enforced in a weak sense by introducing the
inter-element jump terms. However, in the case of an external-internal decomposition (7),
the inter-element jump terms act only on the external shape functions in WP?(&).

After the static condensation procedure the linear system is given by

Az Az ur ) Z A(IKI) A(;;/)v “(IK)
0 S uw k€T 0 E(K) u%)
e f1
Z() 6 a1 |\ 7 (19
weTn \ Fyy' — Awz(A77) "' fr Fw
with the global Schur complement operator
S= AWW - AWIAE%Azwv Se RNWXNW, Ny == ngnwy. (11)

To describe the elemental parts S € R¥W*M we introduce some additional notation:
The discrete formulation of the bilinear form (5), restricted to a particular element x €
Th, can be split into a sum of local terms A™" which consist of the volume integral
term in (5) together with contributions of the face integrals, and face terms A™"2 which
originate from the surface integral terms over an edge e = k1 N k2. The row of the global
stiffness matrix A corresponding to the element « is given by

(Au)l-c :AK’KUK—F Z AK"R’U,E, (12)
RET(K)



where J (k) denotes the set of element neighbours defined by

J(k):={r€Tp : ORNOK € Ent}, kE Ty
The blocks A™" and A™", k € Tj, & € J(k), in (12) are assembled by collecting all
terms including test functions ¢f on the element x, and are given by

(@), = [ a¥ist - Vas5 do

+%/6K9(th¢f)~n¢§—(th¢'j).n¢;;e d5+/aﬁa¢§¢§~ ds,

1

(4%%),, =3 /8 [p@Vier) nd; - (Vi) -nor] ds, ijenme (13
KNOK

Using this notation, S %) can be represented as follows

5= (S58) ke tunogn = (Postib = (455 (42D (453)))

REET(R)U{K}
(14)

The Kronecker symbol ¢;; in (14) avoids summing each element term A”W';/V twice: In
the usual implementation of the dGFEM stiffness matrix assembly, each face e € &y
is considered only once. This is not the case for the element-wise assembly of the Schur
matrix S, where all edges of all elements must be traversed. In the actual implementation
this can be avoided using an intermediate storage.

The submatrix A7 is block diagonal. The inner subproblems A(;I)v = w are equivalent
to the solution of a homogeneous Dirichlet problem, discretized with continuous FE and
restricted to a single element x of the triangulation. Therefore the solution of the second
block row in equation (10) decomposes into a number of local subproblems which can be
inverted at elemental level.

The formulation leads to another observation: The Schur matrix has a less sparse
nonzero structure than the original stiffness matrix, in the sense that the matrix stencil
comprises also neighbour elements of second degree. Its direct assembly therefore should
be avoided. In fact, it is not needed for Krylov iterative methods.

The reduced algebraic system is now given by Suyy = fw, where the matrix S has
block structure:

§£S §£V
S = . (15)
§V€ §VV

For a symmetric form, like e.g. B~ (u,v) in (5)), this matrix is also symmetric.
In view of the original stiffness matrix A, we obtain the decomposition

I 0\ [Azz 0\ (I Az7A7n
A= :
ApAz7 L)\ 0 S)\0 I

which can be verified simply by substituting (11).
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In the case that effective preconditioning matrices ﬁgl for the Schur complement (15),
and for the inner subproblems A7, ﬁ;%, are available, we get a preconditioner for A of
the form
I —B7;A7w )\ [Bz; O 1 0

cyl=
0 I 0 Bs') \~AwzBzz I
In fact, inserting the inverse matrices S ! and AE%, the expression would result into the
expensive but exact preconditioner Q;l = A7, In the next section we describe a more
realistic and efficient choice.
Remark 2 The process of static condensation is equivalent to a change of the elemental
basis. The local edge polynomials are replaced by discrete harmonic shape functions, i. e.

l;’p = Ny UNg, where
span Nz = {v € Ng ® N7 : B(v,w) = 0 Yw € Nz}.

This point of view is particularly useful when establishing energy estimates for a conver-
gence proof. Note that the support of these basis functions is no longer restricted to single
elements of the triangulation.

3.2. Diagonal and edge block preconditioning

This iterative substructuring method is among the earliest low-order preconditioners
for the p-FEM. To apply its idea to the discontinuous discretization we introduce the
canonical restriction operators Rg € R"fixnﬁ, Ry, € R™v %7 along with the prolonga-
tions Eg, EF{C, corresponding to the vector spaces spanned by the side and vertex shape
functions of the discretization. Here, by &; we denote the linear space spanned by those
polynomials in V}” with non-vanishing support on a single edge €; € Eine. An example set
of edge degrees of freedom is illustrated in Figure m

Now we define the preconditioner E;l by means of an additive Schwarz-type method

Bg'= ) Ri(See) 'R + RLSyuRy, (16)
£, e&

i. e. the preconditioning step consists of the solution of a global system §;\1,, that arises
from the discretization with bilinear elements, together with a number of independent
local subproblems.

Translated into a matrix-vector notation, the procedure is the following: We obtain
the preconditioning matrix by simply eliminating the off-diagonal blocks in (15) that
connect the unknowns from the vertex and edge spaces. We further drop the subblocks
representing the coupling between all pairs of edges &;, 1 < ¢ < ne, which leads to the
block-diagonal structure

See 0
Bg = See = blockdiag (S, ¢,)- (17)

=, )

0 Sy
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Babuska et al. B] have shown for the two-dimensional Laplace equation discretized by
the conforming p-FEM, that the following condition number estimate holds:

k2(Bg'S) < C(1+logp)®. (18)

Remark 3 In three dimensions the degrees of freedom associated with the element faces
have to be considered as well. The direct approach (16) does not lead to a result comparable
to equation (18). Special wire basket preconditioners have to be constructed instead, see
for example Pavarino and Widlund /

It is possible to simplify the preconditioner described above in the following way: The
subproblems (Sg ¢ )~! can be replaced by single diagonal entries of the Schur matrix,

=—1 . _
Sge = diag (ﬁgigi) h (19)

This reduces greatly the computational effort. However, for the p-FEM it has been shown
by Casarin [6?, that this particular variant leads to a slight deterioration of the conver-
gence properties, in fact the condition number grows faster than polylogarithmically with
p. In the numerical experiments for the discontinuous case in Section [5 we investigate

=1
also the reduced version of the preconditioner By .
4. Theoretical bounds

In this section we establish theoretical bounds for the factors m;, ms in the precondi-
tioning inequality (I)). This happens along the lines of H, @], but we have to take special
care of the interior face and boundary terms arising in the dG discretization (5).

We focus on the Poisson problem, i.e. @ = 1. First, we consider the decomposition of
the global bilinear form into elemental parts

BF(u,v) = Z BE(u,v).
wke€Th
The choice of BX(-,-) is not unambiguous. Here, instead of the form which naturally
arises by collecting all terms in equation (1) containing a test function local to x, we use
an edge-centred formulation similar to [19]:

1
BF(u,v) ::/ Vu-Vu de + 5 Z/ cvtnT+vn7) - (utnt +unT) ds
" s=1"6s

1
+ 3 Z/ Vet - (utnt +unT) - (vTnT +vn7) Vu'] ds, (20)
s=1"Y¢s

where n. denotes the number of element sides. The specific feature of this formulation
is the fact that derivatives occur on the cell x only, while neighbouring cells contribute
through their values on the cell boundary dx. Furthermore, we note that constant func-
tions lie within the kernel of B (u,u), in contrast to the bilinear form given in (13). It
is noteworthy to mention that an alternative formulation like in (20) is possible for only
some of the dG methods collected in e.g. ﬁ], including the interior penalty variants. We
point out that the proof given below does not rely on a uniform polynomial degree.

To avoid abundant notation, we identify the restriction matrices Ry, Rg , Ry with
their function space counterparts. For a given function u;, € V¥, we define uy = Ryup,
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ug; = Re up, i € ne, and ur = Rzuy. Note, that uhLi = uv|N + Zieneu&ih + UI|N'
Then the block diagonal preconditioner C' = diag (Bz7, Bg) is given by

C*(u,v) = Z CE(u,v), CF(u,v) = B (uy,uy) + Z B (ug i, ug i) + B (uz,uz).
wke€Th 1=1
(21)

Under the assumption of a regular subdivision 7}, of €2 into shape-regular elements (possi-
bly containing hanging nodes), and a sufficiently smooth and bounded bilinear mapping
o, to the reference cell &, see equation (3), it is sufficient to focus on the elemental
preconditioning inequality

11 BE (up, up) < CF (up, up) < maBE (up,up), (22)

for all discrete functions u; € Vj,. Note, that in the following the superscript £ will be
omitted, if possible.
Below, we state sufficient requirements for the preconditioning inequality. The state-
ment can be proven by summing over the individual parts of uy,.
Theorem 1 Assume that for the bilinear form By(-,-) the following assumptions hold.
(i) For any two vectors a,b € VP, the form B, satisfies a general triangle inequality

Bi(a+b,a+b) < C(Bi(a,a) + Bi(b, b)) (23)

with C' > 0 independent of the mesh size h and the polynomial degree p.
(is) For a given function up € V', the vertex, side, and interior components satisfy
energy bounds

B (uy,uy) < b1 Bg(un, up),
B,g(u‘gmu‘g)i) < bng(uh, uh), 1=1,...,n,
B,g(’u,z, ’U,I) S bgB,%(uh, uh), (24)
with factors b; > 0, i € {1,2,3}.

Then the elemental preconditioning inequality (22), and thus the global property (1), is
fulfilled with bounds

@ < C(by 4+ neba +b3) .
mi

Proof: The result follows immediately from the substitution of equations (23), (24) into
the definition of the preconditioning form (16]). O

The first inequality can be deduced from the proof of boundedness and coercivity
of By(-,-) with respect to the norm [|-|3; on the space VI = {ve V! : [Lv=0}
defined as

Ne . Ne -
lull3g = |u|§{1(,{) + Z/ 5[[u]]2 ds + Z/ o (Vu-n)? ds. (25)
s=1"6€s s=1"¢€s

Except for the third term, this expression is a localized version of the one defined in @],
and it is the natural norm for proving boundedness of the bilinear form Bi(-,-). Note
that the first two summands in equation (25) are identical to the expression B (u,u),
which implies that the inequality (23) is trivially fulfilled for the nonsymmetric TPdG
variant. The following lemma is particularly useful for the symmetric IPdG version.
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Lemma 2
(i) The form By(-,-) is bounded with respect to the norm ||-||ac, i. e. there exists Cg > 0
independent of h, p, such that

|Bi(un, vn)| < Cpllunllacllvellac  Yun,vn € V. (26a)

(ii) The form By(-,-) is coercive on VP with respect to the norm ||-|ag, i. e. there eists
8o > 0, such that for § = chp=2 > &y there exists a > 0 independent of h, p, with

B (un,up) > aflunl3e  Vun € VP (26Db)
Proof: The proof is a slight modification of the Theorems 3.3, 3.5 in [ﬂ] O

Before presenting the main result of this section, we collect some discrete inverse
inequalities for later use. They can be found, for example, in the monograph by Schwab
@] Here and in the following by C we denote a generic constant.

Lemma 3 For a given polynomial function v € Qp(k) on the reference element i and

one of its sides e; C Ok, 1 =1,...,ne, we have
[vllzee(en) < CpllvllL2(es), (27a)
1
[v][Lo(z) < C(1+logp)2[|v]| g1 (), (27b)
[vllz2(e;) < Cpllvllrzcs)- (27¢c)

In the following we now state the main theoretical result.
Theorem 4 For the block diagonal preconditioner (21) applied to the statically con-
densed linear system, both the assumptions (23) and (24) in Theorem [1 are satisfied
with

bi < Cp*(1 +logp)?, i€ {1,2,3}. (28)

Remark 4 The estimate exhibits a strong p-dependency of the block diagonal pre-
conditioner, in contrast to the conforming case [3] where, with the exception of the
serendipity FE space, we have an estimate of the form (18). The p-dependence is due
to the presence of the additional terms introduced by the inter-element boundaries, and
limits its use for p-adaptive variants of the discontinuous Galerkin method. However, the
independence from the spatial refinement h is still satisfied.

Proof:[Thm. 4] We begin by considering the inequality (23). For nonconstant functions
a,be f/f we use the bilinearity of Bz and Lemma [2]and obtain

Bi(a +b,a+b) < Bi(a,a) + Bx(b,b) + Cpllallaclblac
1
< Bi(a,0) + Bx(b,b) + 5C (lallic + Ib13c)
< C (Bi(a,a) + Bi(b,b)).

Now it remains to show (24).

Let uy, € f/,f be a given nonconstant function. The elemental bilinear form (20) remains
unchanged when adding a constant A € R to the function wj. Therefore, we may choose
A such that on the element & a local Poincaré inequality

Nlunll g1 (z)y < Clun|m iz (29)
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is satisfied. This cannot be fulfilled on the neighbouring cells at the same time. However,
we make extensive use of (29) when estimating the cell integral term in (25) similar to [3).
Beginning with a bilinear function uy we have, due to (26a) and uy € V),

o 1 s
B (uy,uy) = |uv|§{1(;@) + ||§[[UVHH%2(8&) + 3 Z/ OVuy - [uv],, — [uw]., Vuy ds
s=1"Y¢s

MNe o Ne B
< Cluyliie = Cluvlingy +C Y [ STvlE, ds+CY [ o7 (Vuy -2
s=1"v€s s=1"¢s

For the cell term, we can resort to the proof for the conforming p-FEM @, @‘] Thus,
applying the discrete Sobolev inequality (27b)), we have

v [F iy < Clluvl|foezy < C(L+logp)|unlF -

Now only the boundary integrals of the dG formulation require special treatment. For
the penalization term using the discrete inverse inequalities (27a) we get

Muvlllzege,) < Cllluvlliie,) < Cllunllli.)
< Cp?|[un]llize,): 5 € ne. (30)
The remaining boundary terms are treated as follows.

/ (Vuy -n)* ds = [Vuy - 0|72y < CP?|[Vuylli2a) < Co*[Vuy |7 sy

< CPP[|upllf e ry < CP*(1 + logp)|unli s)- (31)

All results obtained so far occur in the elemental norm ||-| 4. Thus, the discrete Schwarz
inequality can be applied, and with the coercivity of the bilinear form we get the result

Bi(uy, uy) < Cp*(1 + log p) B (un, un),

i.e. by :=p2(1 +logp) in (24).

For the second energy bound, we consider the difference function @y, := u —uy, which
vanishes on the element vertices. Babuska et al. [3] utilize a polynomial trace lifting ¢ ;
to arrive at

lug ilin(zy < Cliie il 3 zy < C(1+logp)*|unlin sy,
under the assumption that the side functions are discretely harmonic, cf. Remark (3] This
estimate can be used for the dGFEM as well. Here, we construct g ; from the trace

lifting and the side functions uf ;, & € J(k). Since the interior part uz vanishes on the
element boundary Ok, there holds

IlandllLze,y = [lueddlliacen, s=1,... ne. (32)

Furthermore, we have for i = 1,... n,,
Z/ (Viig,i-m)? ds < Cp°||(Vie,i - )| 725y < CP°I Ve illZ2(n) = CP°lte.ili (s
s=1"Y¢€s

Thus, we obtain for the side components the result
Bg(fig i, g ;) < Cp*(1 + log p)?Bi(Gn, ), i € ne.

Finally, the last energy estimate in (24) follows from the bound for the side components
and the triangle inequality (23) applied to uz = @y, — >0 Gg ;- O

14
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Remark 5 Due to the special bilinear form (20), the proof of Theorem ] is similar to the
conforming case ﬁ?] The upper bounds for the inter-element boundary terms, however,
introduce a strong p-dependency, since they are established via the L°°-norm, see the
equations - (82). This dG-specific drawback renders the block Jacobi preconditioner

useful only for discretizations with bounded polynomial degree.

5. Numerical examples

In the following we present numerical results for two test examples in order to demon-
strate the feasibility of the proposed approach. All computations have been performed
using the DG solver PADGE [%’)] based on the deal.II library [4, 5.

Problem 1 Consider the Poisson equation on the unit square domain Q = [0,1]? with
homogeneous Dirichlet boundary conditions, and constant data f = 1.
Problem 2 Consider the linear advection-diffusion problem

Logu=-V-(aVu)+ V- (bu)=0 (33)

on the unit square. For the advection direction we choose the vector field b(xy,x9) =
[—xo,21]7, the diffusivity tensor is set to a = €l, € > 0, cf. Figure W Here, the
interesting limit case will be ¢ < 1. The description of the boundary conditions as well
as the dGFEM formulation of the hyperbolic part is given below.

The tests will be performed on three different partitionings of the domain. The first
family of tesselations Thl, i = 0,1,2,..., is constructed by successively dividing each
element x € 7,!  into four quadrilaterals of equal size to obtain 7, i.e. we have

ho =1,h1 = %, ..., and discretization sizes ny0 = 1,141 = 4,...,n.,6 = 4096. Besides,
we consider also a second tesselation of , 7,2, with 448 elements containing hanging
nodes originating from a local refinement process in the vicinity of the origin. The third
test partitioning 7, is a so-called B-type grid [ﬁ] obtained by distributing half of the
(N + 1)? grid points equidistantly in a region [r,1] x [0, 1], and locating the remaining
nodes at x; := —yeln(1 — 2(1 — 6)%), yi = %, i = 0,1,...,%7 with given constants
€, 7. The transition point for the boundary layer region thus lies at 7 := ve|lne|. We
choose here v = 10, e = 1072, N = 50. The maximum aspect ratio is therefore given by
max;en N~ Hz; — 2i-1) 7" & 49.043 for € = 1072, Note that we use this triangulation in
spite of the fact that anisotropic partitionings violate the assumption (3). Examples of

all three test partitionings are shown in Figure [2]

In Example 1, the stabilizing parameter o is taken as o(p,h) = 2.5”—h2 for all grids.
Here the cell diameter h is computed element-wise. We choose o = 2.56% in Example 2.
The linear problems for p = 1 are solved directly using the LU decomposition for small
triangulation sizes. The subproblems for the larger test cases are solved inexactly using an
inner GMRES iteration with block SSOR preconditioning. The global Schur complement
matrix is not explicitly assembled, since it is less sparse than the original stiffness matrix.

5.1. Scalar elliptic model problem

First, we compare the estimated spectral condition number of the original stiffness
matrix with that of the condensed system. For this test, we solve the Poisson problem
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(a) Grid 1, T, (b) Grid 2, T,2 (c) Grid 3, T,
Figure 2. Partitionings of Q = [0, 1]2 for the numerical examples in Section [5.

1e+06 T T

condenced sfiess mate o w2 ldmwr@fdin )

209216 | 8192 1024
s 3|16384| 12288 4096
: 4[25600| 16384 9216
536864 20480 16384
650176| 24576 | 25600

100 . Ry e (b) Subspace dimensions for the triangula-

polynomial degree p tion 7).

(a) Condition numbers.

Figure 3. Comparison of the (approximated) condition numbers (left) and subspace dimensions for
the original stiffness matrix and the statically condensed system, discretized with different polynomial
degrees.

on a uniform triangulation 7',114. Similar to the statement in M] for the Bassi-Rebay and
Local dGFEM, we observe a beneficial effect of the static condensation procedure. In
Figure w the spectral condition number of the condensed stiffness matrix exhibits a
cubic growth with respect to the polynomial degree p, while the original system seems
to grow like p°.

Next, we apply the preconditioners constructed in Section[3 to the Poisson model prob-
lem. Here it is of particular interest, whether the preconditioned system is independent
of the characteristic mesh size h. To verify this, the linear systems corresponding to a
nested hierarchy of partitionings 7,.,..., 7, are solved while keeping the polynomial
degree p = 3 constant. First the unpreconditioned conjugate gradient algorithm is ap-
plied to the symmetric positive systems. As it is illustrated in Figure @, the problem
exhibits strong dependence on the grid size, which can be seen by the fast growing num-
ber of linear iterations needed to converge the linear residual | S~ £y, — k|2 to a given
accuracy. In contrast, for the PCG iterations that are preconditioned using the block
diagonal method (17) or the simplified diagonal edge version (19), no h-dependency is
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1 1 1 1 1 1
Thl Thz Ths ‘TM ‘Ths ‘T’LG
CG 116.449 |364.383 |698.234 [2496.45 [9783.96 |38952.0
PCG, block diagonal E;l 23.2378 |24.0041 |24.1668 [24.2069 |24.2678 [24.3506
PCG, diagonal B;l 55.5739 |64.7979 |67.8921 |68.6512 |69.1475 [69.3022
2 2 2

Thl 7—h2 Thg
CG 3105.19 |12158.3 [48345.0
PCG, block diagonal E;l 94.86 94.98 105.10
PCG, diagonal B;l 105.88 105.87 111.90
Table 1

Approximated condition numbers k2 (Q;lﬁ) for the (preconditioned) Schur complement system. Hier-
archy of triangulations, Problem [1] p = 3.

Thll Thl2 Thl3 Th14 Thls 7,

unpreconditioned 12 |66 [136|216|352|> 500

block diagonal preconditioner|24 |32 |33 |32 (31 |33

diagonal preconditioner 34 |59 |69 |70 |70 |67

Table 2
Tteration counts of the GMRES method for the solution of the Schur complement system for the non-
symmetric IPdG discretization B* (u,v) of Problem/[Il
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Figure 4. Solution process of CG method for the Schur complement system arising from Problem [1. No
preconditioning, iterations vs. residual norm.

observed, see Figures and respectively. Note that for all iteration plots, the
graphs are scaled to coincide at the beginning of the iterations.

As stated in equation (9) the convergence rate of the conjugate gradient method is
directly related to the condition number of the matrix product Q;lé. In fact, all obser-
vations made above find their counterpart in the condition number estimates obtained
during the CG iteration, see the first part of Table[I. The approximate condition num-
ber ko of the unpreconditioned system increases rapidly for smaller mesh sizes h, as it
is shown in the first row of Table [I. On the other hand, listed in the second row, the
block diagonal preconditioner yields an asymptotically bounded condition number for the
uniformly refined tesselations 7;!. For the case of the reduced, diagonal preconditioning
matrix, there seems to be a moderate h-dependence, however, as the condition number
estimates stated in the third row slightly deteriorate.

Furthermore, we test the preconditioners for the problem discretized on the uniform
partitioning 7;115 with 1024 elements with respect to its p-dependency. Results are less
favorable here: Both, the unpreconditioned system as well as the diagonal edge precon-
ditioner require a growing number of linear iterations with increasing polynomial degree
p=2,...,6, cf. Figures and @, while the block diagonal preconditioner does not
give a clear picture for the small test case considered, see Figure @ Nevertheless, to il-
lustrate the advantage of the static condensation procedure in terms of memory efficiency,
Table W provides a list of the subspace dimensions for varying polynomial degree. In
particular it shows the savings by elimination of the bubble function components.

The behavior of the block diagonal preconditioner with respect to the polynomial
degree p is in agreement with the theoretical bound obtained in Theorem 4l Figure [7]
shows the development of the condition number, which seems to grow like Cp?(1+logp).
This is slightly better than the analytical result (28).

We now address the scalability of the proposed preconditioners applied to the nonsym-
metric interior penalty discretization. Table[2 shows the number of steps for the GMRES
method required to converge the solution to an absolute residual norm tolerance of 10719,
Similar to the symmetric case, the block diagonal preconditioner seems to scale optimally
with respect to the grid size.

To conclude this section, we consider the second family of test partitions, 7,2, containing
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Figure 5. Solution process of PCG method for the Schur complement system arising from Problem [1]
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Figure 6. Solution process of PCG method for the Schur complement system arising from Problem
Block diagonal preconditioning E;l, iterations vs. residual norm.

irregular vertices. For these, the block diagonal preconditioner was modified in a way
such that edges between elements of a different refinement level give rise to two edge
blocks instead of a single one. The second part of Table[I!lists the approximate condition
numbers for a hierarchy of uniformly refined grids. Shown in the first row, the condition
number estimates for the unpreconditioned system grow rapidly with decreasing mesh
size h. The estimates for the block preconditioner and the diagonal variant, listed in the
second and third row, respectively, are again bounded. Compared to the diagonal edge
variant, the block preconditioner still performs better.

5.2. Advection-diffusion equation

We examine the applicability of the presented preconditioner for a nonsymmetric sys-
tem and consider the linear advection-diffusion problem (33]) on the unit square domain
Q) = [0,1]2. Equation (33) is equipped with the Dirichlet boundary conditions except for
x2 = 1, where a Neumann boundary condition
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Figure 7. Approximated condition numbers of the PCG method for the Schur complement system arising
from Problem|[1 with block diagonal preconditioning E;l. Varying polynomial degree p on Thll_).

(aVu) n=gn=0 (34)

is applied. The data gp on the Dirichlet boundary I'p, which contains the inflow part
T'_, is given by

5(x1 —0.2) for 0.2<x <04,29 =0,

. 1 0.4 <x1 <0.6,22 =0,
=125 —06) 0.6 <z <0820 =0,
0 elsewhere.

For the hyperbolic part of equation the standard upwind discretization with discon-
tinuous finite elements is given by [15

>, /(b-Vu)vd:c— > /(9K\F(b-n)[u]v+ ds

r€TH K r€TH
- Z / (b-n)utovt ds = — Z / govT(b-m)ds, (35)
weTh O_ kNI weTh O_kN(C_-Ul'p)
where [v] := v} — v denotes the jump of the discrete solution function across the

elemental inflow boundary 0_x = {x € 9k : b(x) - n(z) < 0}.

The upwind discretization of the advection term leads to a nonsymmetric stiffness
matrix A, therefore the GMRES method is used for the iterative solution. Figure m
shows an example solution of the discrete linear system for a value of e = 1072 on the
triangulation 7,. The preconditioning approach described in this paper works reasonably
well for moderate values of e. As illustrated in Figure[8(c), the behavior deteriorates for
stronger perturbations of the elliptic term.
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Figure 8. Numerical results for the advection-diffusion test Problem [2] polynomial degree p = 2.
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Figure 9. p-Dependency of the iterative solution process for the advection-diffusion Problem [2.
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6. Concluding remarks

The concept of low-order preconditioning for the finite element method has been suc-
cessfully applied to the case of an interior penalty discontinuous Galerkin discretization.
The numerical experiments support the results obtained from the analysis for elliptic
problems and exhibit a convergence rate independent of the mesh refinement. The pre-
conditioning method is amenable to parallelization and reduces the task of solving the
linear equation system to an efficient solution of a global subproblem based on a dis-
cretization with bilinear elements.

Finally, we point out some restrictions of this class of preconditioners. The discussed
iterative substructuring method requires a basis allowing a decomposition into external
and internal degrees of freedom, see equation (8). The extension of the method from
the two-dimensional case to three dimensions is nontrivial analogous to the conforming
p-FEM [6] Finally, the underlying theory was derived for the elliptic case. It should
be clarified in how far the preconditioning technique can be generalized to indefinite,
nonsymmetric problems, particularly to the convection dominated case.
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