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Abstract We present a new second order energy dissipative numerical scheme to
treat macroscopic equations aiming at the modeling of the dynamics of complex
polymer-solvent mixtures. These partial differential equations are the Cahn-Hilliard
equation for diffuse interface phase fields and the Oldroyd-B equations for the hy-
drodynamics of the polymeric mixture. A second order combined finite volume /
finite difference method is applied for the spatial discretization. A complementary
approach to study the same physical system is realized by simulations of a micro-
scopic model based on a hybrid Lattice Boltzmann / Molecular Dynamics scheme.
These latter simulations provide initial conditions for the numerical solution of the
macroscopic equations. This procedure is intended as a first step towards the devel-
opment of a multiscale method that aims at combining the two models.

1 Introduction

Phase separation in binary fluids is a fundamental process in condensed-matter
physics. For Newtonian fluids the phenomenon of spinodal decomposition is rea-
sonably well understood in terms of the so-called “model H” [10, 3, 15], where
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the hydrodynamic equations of motion for mass and momentum conservation are
coupled to a convection-diffusion equation for the concentration (or in general the
“phase field” variable φ ), and the thermodynamics, which is described by a (free)
energy functional E(φ), gives rise to a driving force, see, e.g., [1, 19, 9, 21]. In
such “diffuse interface” or “phase field” models, the interface between two phases
is a thin layer of finite thickness, across which φ varies continuously. A big advan-
tage of such models is that interfaces are defined implicitly and do not need to be
tracked. Similarly, topological changes of the interface structure are automatically
described correctly. However, phase field models are generally very challenging to
solve numerically.

The physics (and therefore also the mathematics and numerics) becomes much
more involved if one component — or both — is a macromolecular compound. In
this case, the large molecular relaxation time gives rise to a dynamic coupling be-
tween intra-molecular processes and the unmixing on experimentally relevant time
scales, with interesting new phenomena, for which the term “viscoelastic phase sep-
aration” [18] has been coined. Here the construction of physically sound dynamic
equations with suitable constitutive relations to describe the viscoelasticity is al-
ready a challenge in itself. Tanaka [18] made the first attempt in this direction;
however, Zhou et al. [21] showed later that this dynamics violates the second law of
thermodynamics and provided a corrected set of equations that satisfy it. Neverthe-
less, a fully satisfactory solution of the problem is probably still missing. For this
reason, we wish to carefully investigate how well this system describes the physics,
by comparing it with and linking it to a computer experiment that is based upon a mi-
croscopic (molecular) model (see Sec. 4) that can be considered as physically sound
beyond reasonable doubt. We thus study the diffuse-interface viscoelastic equations
put forward in [21] for the case of the unmixing process of a polymer-solvent sys-
tem.

Typically the interfacial region separating the two fluids is very narrow, and a
high spatial resolution is required to accurately capture the interface dynamics.
In fact, the underlying problem is stiff, which necessitates an implicit time dis-
cretization. Moreover, the solution admits several time scales over which it evolves,
cf. [12]. In the literature one can find already several numerical methods that
have been used for the numerical approximation of diffuse interface models, see,
e.g., [4, 9, 12, 13, 19] and the references therein.

In order to describe the dynamics of a complex polymer-solvent mixture, the
Cahn-Hilliard equations for the phase field evolution are coupled with the Oldroyd-
B equations, which consist of the momentum equation for the velocity field, the
continuity equation, and the rheological equation for time evolution of the elastic
stress tensor. We note in passing that there is quite a large number of analytical as
well as numerical results available in the literature for the Oldroyd-B system, see,
e.g., [2, 6, 7, 14]. The main challenge in this field is to obtain a stable approximate
numerical solution for large Weissenberg numbers. The dimensionless Weissenberg
number represents elastic effects; it is large when the molecular relaxation time is
comparable to the time scale of the flow, or even exceeds it significantly. In the
present work we consider the non-critical regime of Weissenberg numbers. Apply-
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ing the techniques from [6, 14], a further generalization using the log-transformation
of the elastic stress tensor and the Lagrange-type approximation of the convective
term is possible.

2 Mathematical Model

Following Zhou, Zhang & E [21] the total energy of the polymer-solvent mixture
consists of the mixing, the polymerization, the elastic and the kinetic energy:

Etot(φ ,q,σ ,u) = Emix(φ)+Epol(q)+Eel(σ)+Ekin(u)

=
∫

Ω

(C0

2
|∇φ |2 +F(φ)

)
+
∫

Ω

1
2
|q|2 +

∫
Ω

1
2

tr(σ)+
∫

Ω

1
2
|u|2. (1)

Here φ is the volume fraction of polymer molecules, q the bulk stress, σ the elastic
shear stress tensor and u the volume averaged velocity. Furthermore, C0 is a positive
constant and F(φ) denotes a double-well potential. In the present paper we work
with the logarithmic potential derived from standard Flory-Huggins theory [16]

F(φ) =
1
np

φ lnφ +
1
ns
(1−φ)ln(1−φ)+χφ(1−φ) (2)

with np and ns the molecular weight of the two components (p: polymer, s: solvent)
and χ = χ0/T the effective Flory interaction which depends on the temperature T .
Consequently, φ ∈ [0,1].

Following standard procedures in non-equilibrium thermodynamics Zhou et
al. [21] split the currents into a reversible and a nonreversible part. The reversible
contributions are obtained through the virtual work principle, while the irreversible
contributions are obtained by analyzing the dissipative process. The corresponding
dynamic model then reads

∂φ

∂ t
+u ·∇φ = ∇ ·

{
φ(1−φ)M

[
φ(1−φ)∇µ−∇(A1(φ)q)

]}
,

∂q
∂ t

+u ·∇q =− 1
τ(φ)

q−A1(φ)∇ ·
{

M
[
φ(1−φ)∇µ−∇(A1(φ)q)

]}
,

∂σ

∂ t
+(u ·∇)σ = (∇u) ·σ +σ · (∇u)T − 1

τs(φ)
σ +B2(φ)

[
∇u+(∇u)T

]
,

∂u
∂ t

+(u ·∇)u =−∇p+∇ ·
{

η(φ)
[
∇u+(∇u)T

]}
+µ∇φ +∇ ·σ ,

∇ ·u = 0 , (3)
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where M > 0 is the mobility coefficient, τ(φ) = τ0 φ 2 and τs(φ) = τ0
s φ 2 are the

relaxation times, B2(φ) = m0
s φ 2 is the relaxation modulus, A1(φ)∈ [1,2] is the bulk

modulus, η(φ) ∈ [0,1] is the viscosity and all relaxation coefficients are positive.
Furthermore, p denotes the pressure and µ , the chemical potential, is given by

µ =
δEmix(φ)

δφ
=−C0∆φ +F ′(φ) . (4)

This model is thermodynamically consistent and dissipates energy over time if
tr(σ) > 0. The latter holds true at any time, if the determinant of the initial value
of the so-called conformation tensor c is greater than one, see Hu & Lelièvre [11].
Here c is defined as c := 1

B2(φ)
σ +1, where 1 is the identity matrix.

Theorem 1. The problem (3) satisfies the following energy law

dEtot(φ ,q,σ ,u)
dt

+
1
τ0

∥∥∥∥ q
φ

∥∥∥∥2

L2(Ω)

+
∫

Ω

M
[
φ(1−φ)∇µ−∇(A1(φ)q)

]2

+
∫

Ω

1
2τs(φ)

tr(σ)+
∫

Ω

η(φ)

2 ∑
i, j

(
∂ui

∂x j
+

∂u j

∂xi

)2

= 0 . (5)

Proof. Multiplying (3)1 by µ and integrating over the computational domain Ω ,
assuming suitable boundary conditions (e.g. periodic boundary conditions), and ap-
plying integration by parts, we obtain∫

Ω

∂φ

∂ t
µ +

∫
Ω

u ·∇φ µ−
∫

Ω

∇ ·
{

φ(1−φ)M
[
φ(1−φ)∇µ−∇(A1(φ)q)

]}
µ

=
∫

Ω

∂φ

∂ t
δEmix(φ)

δφ
+
∫

Ω

u ·∇φ µ +
∫

Ω

{
φ(1−φ)M

[
φ(1−φ)∇µ−∇(A1(φ)q)

]}
∇µ

=
dEmix(φ)

dt
+
∫

Ω

u ·∇φ µ +
∫

Ω

M
[
φ(1−φ)∇µ−∇(A1(φ)q)

][
φ(1−φ)∇µ

]
= 0 .

Now, using the previously explained procedure after multiplying (3)2 by q, and mak-
ing use of ∇ ·u = 0 yield
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Ω

∂q
∂ t

q+
∫

Ω

u ·∇qq+
∫

Ω

1
τ(φ)

q2 +
∫

Ω

A1(φ)∇ ·
{

M
[
φ(1−φ)∇µ−∇(A1(φ)q)

]}
q

=
∫

Ω

1
2

∂

∂ t
q2 +

1
2

∫
Ω

u ·∇q2 +
∫

Ω

1
τ0φ 2 q2

+
∫

Ω

∇ ·
{

M
[
φ(1−φ)∇µ−∇(A1(φ)q)

]}
A1(φ)q

=
d
dt

(∫
Ω

1
2

q2
)
− 1

2

∫
Ω

∇ ·uq2 +
1
τ0

∥∥∥∥ q
φ

∥∥∥∥2

L2(Ω)

−
∫

Ω

M
[
φ(1−φ)∇µ−∇(A1(φ)q)

]
∇(A1(φ)q)

=
dEpol(q)

dt
+

1
τ0

∥∥∥∥ q
φ

∥∥∥∥2

L2(Ω)

+
∫

Ω

M
[
φ(1−φ)∇µ−∇(A1(φ)q)

][
−∇(A1(φ)q)

]
= 0 .

For the next step we remind that for all A∈Rn×n, n∈N : tr(A)= tr(A ·1T )=A : 1.
Hence, applying the aforementioned computational steps after multiplying (3)3 by
1
2 1 implies∫

Ω

1
2

tr
(

∂σ

∂ t

)
+
∫

Ω

1
2

tr((u ·∇)σ)−
∫

Ω

1
2
(
∇u : σ

T +σ : ∇u
)
+
∫

Ω

1
2τs(φ)

tr(σ)

−
∫

Ω

B2(φ)tr(∇u)

=
∫

Ω

1
2

∂

∂ t
tr(σ)−

∫
Ω

1
2

tr((∇ ·u)σ)−
∫

Ω

σ : ∇u+
∫

Ω

1
2τs(φ)

tr(σ)−
∫

Ω

B2(φ)(∇ ·u)

=
d
dt

∫
Ω

1
2

tr(σ)−
∫

Ω

σ : ∇u+
∫

Ω

1
2τs(φ)

tr(σ) = 0 .

Multiplying (3)4 by u (scalar product), and again applying the same procedure give∫
Ω

∂u
∂ t
·u+

1
2

∫
Ω

(u ·∇)|u|2 +
∫

Ω

{
η(φ)

[
∇u+(∇u)T

]}
: ∇u−

∫
Ω

p(∇ ·u)

−
∫

Ω

µ∇φ ·u−
∫

Ω

∇ ·σ ·u

=
∫

Ω

1
2

∂ |u|2

∂ t
− 1

2

∫
Ω

(∇ ·u)|u|2 +
∫

Ω

{
η(φ)

[
|∇u|2 + tr

(
(∇u)2)]}

−
∫

Ω

u ·∇φ µ +
∫

Ω

σ : ∇u

=
d
dt

∫
Ω

1
2
|u|2 +

∫
Ω

η(φ)

2 ∑
i, j

(
∂ui

∂x j
+

∂u j

∂xi

)2

−
∫

Ω

u ·∇φ µ +
∫

Ω

σ : ∇u = 0 .
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Summing up all four equations yields the energy law (5). We refer a reader also to
[21], where analogous energy dissipation property has stated. ut

3 Numerical Scheme

In this section we present a new combined finite volume-finite difference method
for the numerical solution of the macroscopic equations (3). We consider a uniform
partition of the time interval [0,T ] with constant time step size ∆ t. In the first step
we propose to apply a linear second order time discretizaton in order to approximate
the crucial phase field variables (φ ,q) of the Cahn-Hilliard type equations.

Step 1. Find (φ n+1,qn+1), such that

φ n+1−φ n

∆ t
+ ũn ·∇φ̃

n = ∇ ·
{

φ̃
n(1− φ̃

n)M
[
φ̃

n(1− φ̃
n)∇µ

n+ 1
2 −∇(A1(φ̃

n)qn+ 1
2 )
]}

,

µ
n+ 1

2 =−C0∆φ
n+ 1

2 + f (φ n+1,φ n) ,

qn+1−qn

∆ t
+un ·∇qn+ 1

2 =

=− 1
τ(φ̃ n)

qn+ 1
2 −A1(φ̃

n)∇ ·
{

M
[
φ̃

n(1− φ̃
n)∇µ

n+ 1
2 −∇(A1(φ̃

n)qn+ 1
2 )
]}

,

(6)
where φ n+ 1

2 = 1
2 (φ

n+1 +φ n) and qn+ 1
2 = 1

2 (q
n+1 +qn). Further,

ũn := un +∆ t µ
n+ 1

2 ∇φ̃
n , (7)

to split the phase field part from the hydrodynamic part and φ̃ n = 1
2 (3φ n− φ n−1)

to keep the second order time discretization while staying linear, see Gonzáles,
Tierra [19]. For the approximation of the derivative of the double-well potential
we set

f (φ n+1,φ n) = f (φ n)+
1
2

f ′(φ n)(φ n+1−φ
n).

This discretization is the so called optimal dissipation approximation which ensures
a second order approximation for smooth phase fields and entropy dissipation [19].

In the second step we approximate the fluid equations as follows.
Step 2. Denote by D(un+1) = 1

2

[
∇un+1 + (∇un+1)T

]
the symmetric velocity

gradient. Applying the Chorin pressure projection method we find (un+1, pn+1),
such that

un+1− ũn

∆ t
+(un ·∇)un+1 = ∇ ·

{
η(φ n+ 1

2 )2D(un+1)
}
−∇pn+1 +∇ ·σn ,

∇ ·un+1 = 0 .
(8)
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Note that (8) yields a first order time implicit discretization. Generalization to higher
orders is possible by applying, e.g., the fractional θ -scheme [20].

Finally, in the third step we approximate the Oldroyd-B equation for the time
evolution of the viscoelastic stress tensor σ .

Step 3. Find σn+1, such that

σn+1−σn

∆ t
+(un+1 ·∇)σn = (∇un+1) ·σn−σ

n ·
(
∇un+1)T

− 1

τs(φ
n+ 1

2 )
σ

n +B2(φ
n+ 1

2 )2D(un+1) . (9)

Theorem 2. The numerical scheme (6)-(9) is energy stable. More precisely, the
scheme satisfies the discrete version of the energy law

Etot(φ
n+1,qn+1,σn+1,un+1)−Etot(φ

n,qn,σn,un)

∆ t
+
∫

Ω

1

2τs(φ
n+ 1

2 )
tr(σn)

+
∫

Ω

η(φ n+ 1
2 )

2 ∑
i, j

(
∂un+1

i
∂x j

+
∂un+1

j

∂xi

)2

+
1
τ0

∥∥∥∥∥qn+ 1
2

φ̃ n

∥∥∥∥∥
2

L2(Ω)

+
∫

Ω

M
[
φ̃

n(1− φ̃
n)∇µ

n+ 1
2 −∇(A1(φ̃

n)qn+ 1
2 )
]2

+NDn+1
phobic +NDn+1

split = 0 ,

(10)

where

NDn+1
phobic :=

∫
Ω

f (φ n+1,φ n)
φ n+1−φ n

∆ t
−
∫

Ω

F(φ n+1)−F(φ n)

∆ t
,

NDn+1
split :=

1
2∆ t

(
‖un+1− ũn‖2

L2(Ω)+‖ũ
n−un‖2

L2(Ω)

)
.

Proof. Similar to the proof of the continuous energy law, we multiply (6)1 by µn+ 1
2 ,

(6)3 by qn+ 1
2 , (8)1 by un+1, and (9) by 1

2 1, and integrate. Assuming suitable bound-
ary conditions, the calculation of the discrete polymeric and elastic energy is analo-
gous to the continuous case. The calculation of the discrete mixing energy leads to
the additional terms NDn+1

phobic and
∫

Ω
(ũn ·∇φ̃ n)µn+ 1

2 . The key point of the splitting
scheme lies in the matching of the latter term with

∫
Ω

1
∆ t (u

n+1− ũn) ·un+1, which
arises while calculating the discrete kinetic energy. This is possible by multiplying
expression (7) by ũn, and integrating which yield

‖ũn‖2
L2(Ω) =

∫
Ω

un · ũn +
∫

Ω

∆ t(ũn ·∇φ̃
n)µn+ 1

2 .

This implies
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Ω

(ũn ·∇φ̃
n)µn+ 1

2 =
1

∆ t

(
‖ũn‖2

L2(Ω)−
∫

Ω

un · ũn
)

=
1

2∆ t

(
‖ũn‖2

L2(Ω)−‖u
n‖2

L2(Ω)+‖ũ
n−un‖2

L2(Ω)

)
,

since∫
Ω

1
∆ t

(un+1− ũn) ·un+1 =
1

2∆ t

(
‖un+1‖2

L2(Ω)−‖ũ
n‖2

L2(Ω)+‖u
n+1− ũn‖2

L2(Ω)

)
.

In conclusion we obtain the discrete energy law (10) and consequently

Etot(φ
n+1,qn+1,σn+1,un+1)≤ Etot(φ

n,qn,σn,un), (11)

provided that we control NDn+1
phobic, since all other terms are non-negative. In [9]

it has been shown that NDn+1
phobic = O(∆ t2). Our numerical experiments presented

below indeed confirm that the energy dissipation (11) holds. ut

Let us note that the computational domain Ω ⊂ R2 is discretized by a regular
rectangular grid. The discretization in space is realized by a finite volume scheme
using second order upwinding for the convective terms and central differences for
the remaining terms.

4 Lattice Boltzmann and Molecular Dynamics Simulation

Starting point of the simulation model is a standard Kremer-Grest model [8], where
polymer chains are represented by sequences of Nch beads each. The beads interact
via a bonded potential (FENE springs) in order to ensure connectivity, and a non-
bonded potential to model the excluded volume effect as well as the quality of the
solvent. In good solvent, the latter interaction is simply a purely repulsive Lennard-
Jones (LJ) potential. For the form of these potentials, as well as the parameters,
see [8]. The LJ potential also defines the unit system of the simulation (each bead
has unit mass). The effects of less-than-perfect or even poor solvent quality are
modeled by adding an attractive tail to the non-bonded pair interaction. For this tail,
we take a suitably fitted cosine wave such that the range of the potential is 1.5 and
its depth a parameter φattr ≥ 0, which is a direct measure of solvent quality. For
details of that potential, see [17]. This system is simulated by Molecular Dynamics
(MD) and at the same time coupled to a standard D3Q19 Lattice Boltzmann (LB)
model. The latter represents the momentum transport through the solvent and has
the thermodynamic properties of an ideal gas. The coupling is facilitated by a Stokes
friction acting on each bead. The dissipative nature of the coupling ensures that it
does not alter the thermodynamics of the polymer system. Both MD and LB are
supplemented by a Langevin thermal noise such that the temperature is being kept
constant. For technical details of that approach, as well as the underlying theory,
see [5]. It should be noted that the simulations are done in three-dimensional space,
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Fig. 1 128× 128 grid with homogeneous initial volume fraction with noise: φ(t = 0) = 0.4+
δ , δ ∈ [−0.05, 0.05] .

while the solution of the macroscopic equations is done in 2D. The pure LB fluid
is strictly Newtonian, and all non-Newtonian effects arise from the coupling to the
polymer system.

5 Numerical Experiments

As a first numerical experiment, the dynamic equations were solved on our compu-
tational domain Ω = [0,1]× [0,1], which is devided into 128× 128 grid cells and
has periodic boundaries. The initial data of the volume fraction φ(t = 0) is taken
to be constant with a small random perturbation and the initial velocity and bulk
stress are set to zero. The elastic stress tensor σ(t = 0) =

√
21, the mixing con-

stant C0 = 1/600, the molecular weights np = ns = 1, the Flory constant χ0 = 3.3
and the temperature T = 1.1. Furthermore the mobility coefficient M = 10 and the
relaxation coefficients τ0 = 10,τ0

s = 5 and m0
s = 0.2. The experiment as shown in

Figure 1 demonstrates phase separation by aggregation of polymer molecules to-
wards droplets. The droplets merge over time causing noticeable decreases of the
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Fig. 2 Energy evolution in experiment 1.

mixing energy, as shown in Figure 2. Accordant to our proofs, the total energy is
(strictly) monotonically decreasing over time, even while there is no merging, which
is related to the surface minimization of the droplets.

As a second numerical experiment, we ran the LB/MD system for the following
parameters: We study 40 chains of 100 beads each immersed in a volume of size
803, such that the volume fraction is roughly 4× 10−3, assuming a bead diameter
of one LJ unit. The system is equilibrated in good solvent conditions (φattr = 0) at
temperature T = 1 (in units where Boltzmann’s constant is one). Coupling to the
LB system is facilitated by a Stokes friction ζ = 20 and nearest-neighbor velocity
interpolation. The MD time step is 5×10−3 and the LB time step ten times larger.
The LB lattice spacing is one, and the LB shear viscosity is four. After equilibration
φattr is suddenly increased to one, which is in the poor-solvent regime. Figure 3, left
column, shows the time development of the system after this “quench”.

The starting configuration of the 3D simulation was then transferred to the 2D
solver of the macroscopic equations by subdividing the 3D system into columns of
size 1× 1× 80, counting the number of beads in each column and averaging their
velocities weighted with the solvent velocity field. By such a projection we obtain
an effective 2D volume fraction, which is, on average, roughly 0.3 and an effective
2D velocity field. Further parameters of the macroscopic solver are unchanged.

The numerical scheme (right column in Fig. 3) behaves analogous to the first
experiment. Starting with initial configuration (at the top) the polymer concentra-
tion is then being smoothed (middle) and the system starts to phase-separate by
aggregation into larger droplets (bottom). The 3D MD/LB simulations (left column
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in Fig. 3) demonstrate a similar process with another level of details. The polymer
chains in the initial configuration at good solvent condition form coils (top). Af-
ter quenching the system into poor solvent regime the individual chains collapse
(middle) and later form larger droplets by aggregation (bottom).

Although the mapping is of course extremely crude, it is nevertheless clear that
the two systems evolve at least somewhat similarly. The relations for mass and en-
ergy scales between two models can be established by matching volume fractions
and Flory parameters. However, a detailed comparison of time scales has not yet
been accomplished: Though the viscosity of the fluid in the numerical model is
known, at least a tiny fraction of the polymer is always present in every grid cell.
Only averaging over these cells will give us the desired value of the effective vis-
cosity needed to match the time scales. This analysis is left for future work.

6 Outlook

The present work is intended only as a first step towards much more detailed inves-
tigations. It is hoped on the one hand that in the future the underlying physics of the
dynamic equations will become more clear, and on the other hand that much more
detailed and stringent comparisons will provide deeper insight and perhaps also the
development of more refined and accurate macroscopic models, with the possible
perspective of even constructing multiscale models, which would consist of hybrid
schemes that incorporate aspects of both the approaches presented here.
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