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Abstract

Heterogeneous multiscale methods (HMM) combine molecular accuracy of particle-based simulations with the
computational efficiency of continuum descriptions to model flow in soft matter liquids. In these schemes, molecular
simulations typically pose a computational bottleneck, which we investigate in detail in this study. We find that it is
preferable to simulate many small systems as opposed to a few large systems, and that a choice of a simple isokinetic
thermostat is typically sufficient while thermostats such as Lowe-Andersen allow for simulations at elevated viscosity.
We discuss suitable choices for time steps and finite-size effects which arise in the limit of very small simulation boxes.
We also argue that if colloidal systems are considered as opposed to atomistic systems, the gap between microscopic
and macroscopic simulations regarding time and length scales is significantly smaller. We propose a novel reduced-
order technique for the coupling to the macroscopic solver, which allows us to approximate a non-linear stress-strain
relation efficiently and thus further reduce computational effort of microscopic simulations.

Key words: shear flow, heterogeneous multiscale methods, Molecular Dynamics, discontinuous Galerkin method,
soft matters

1. Introduction

Modeling and computational simulation of soft matter liq-
uids remains a challenging problem because these fluids
may exhibit complex non-Newtonian effects, such as shear-
thinning/thickening, viscoelasticity or flow-induced phase
transition. Such complex behavior is attributed to microstruc-
ture changes in fluids when a system is subject to an exter-
nal mechanical shear force [28, 29]. Therefore, computational
modeling of soft-matter fluids has to necessarily take into ac-
count microscopic effects in order to obtain reliable numerical
solutions.

Clearly, the most accurate description of soft-matter fluids
can be obtained by the molecular dynamics (MD). However,
such microscale description is computationally inefficient, if
large scale regions in space and time need to be simulated.
To overcome this restriction and to obtain practically tractable
simulation techniques hybrid molecular-continuum methods
have been proposed in the literature aiming in combining the

∗Corresponding author.
E-mail address: lukacova@mathematik.uni-mainz.de
∗∗Corresponding author.

E-mail address: virnau@uni-mainz.de

best attributes of both parts: the molecular accuracy with the
computational efficiency of continuum models.

Bridging the large range of dynamically coupled scales is
a fundamental challenge that is a driving force in the de-
velopment of new mathematical algorithms. In general, hy-
brid models can be divided in two groups: based on the
Eulerian-Lagrangian decomposition or on domain decompo-
sition. In the first type the Lagrangian-type particles are em-
bedded in the Eulerian fluid description, see, e.g., [14, 34, 42].
The second type of the methods is based on the domain de-
composition into a small accurate atomistic region embed-
ded into a coarser macrosopic model, see, e.g., [15]. In
the literature we can find several hybrid models combining
particle dynamics with the macroscopic continuum model,
see, e.g., the hybrid heterogeneous multiscale methods de-
scribed in [8, 6, 9, 11, 33, 34, 42], the triple-decker atomistic-
mesoscopic-continuum method [15], the seamless multiscale
methods [7, 10], the equation-free multiscale methods [22, 23]
or the internal-flow multiscale method [2, 3]. In [24] a
overview of multiscale flow simulations using particles is pre-
sented. The essential question that arises in building a cou-
pled multiscale method is how micro- and macroscopic mod-
els are linked together, i.e., how projection/lift (or compres-
sion/reconstruction) operators are defined and implemented.
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On the artificial boundary of the particle domain embed-
ded into the macroscopic domain following typical strategies
of constraint dynamics can be found in the literature: the
Maxwell buffer [20], the relaxation dynamics [31], the least
constraint dynamics [30], and the flux imposition [17]. Trun-
cation of the microscopic domain is realized by imposing suit-
able boundary conditions. Non-periodic boundary conditions
involve particle insertions and deletions, special wall reflec-
tions and body force terms, see [15] for more details. The de-
formation of the boxes mimics the time evolution of the con-
trol volume element in continuum and requires an adaption of
standard Lees-Edwards periodic boundary conditions [40].

In order to extract mean flow field information from
particle-based simulations averaging needs to be performed
after a specified number of time steps. For example, the re-
quired rheological information for the stress tensor is calcu-
lated using the Irving-Kirkwood expression [21] and passed
to the macroscopic continuum model.

In fact all of these techniques can be considered as hy-
brid particle-continuum methods under the statistical influ-
ence of microscale effects since coefficients in coarse-grained
equations are estimated from data that are obtained from mi-
croscale simulations. As demonstrated in [3] the sensitivity
of the accuracy of a solution, as well as the computational
speed-up over a full molecular simulation, is dependent on
the degree of scale separation that exists in a problem. For
the case when processes occurring on a small scale are only
loosely coupled with the behavior on a much larger scale and
the so-called scale separation in the flow direction occurs, the
hybrid multiscale schemes can be successfully applied, see
[2, 3, 8, 9, 14, 33, 34, 41, 42, 43] and the references therein.

A complementary approach, the fluctuating hydrodynam-
ics goes beyond the mean flow field of the hybrid simulation.
In this case, the statistical influence of microscale effects is
explicitly taken into account in the macroscopic flow equa-
tions leading to the stochastic partial differential models, such
as the Landau-Lifshitz-Navier-Stokes system [4, 5, 19]. We
refer reader to a recent study [1], where the errors in the fluc-
tuations, due to both the truncation of the domain and the con-
straint dynamics performed on the artificial boundary are anal-
ysed for hybrid shear flow simulations.

In our recent paper [14] we have developed a novel hy-
brid multiscale method that is based on the combination of
the discontinuous Galerkin (dG) method and molecular dy-
namics (MD) in order to simulate complex fluids, such as
colloids in a Newtonian solvent. It has been shown that the
method can be applied successfully to complex fluids when
scale separation occurs and we can assume that the statis-
tical influence of the microscale can be controlled on the
macroscale. Our dG-MD hybrid method combines the fol-
lowing advantages (i) for macroscopic flow equations the dG
method is applied which allows more flexible discretization
including per-cell momentum conservation, (ii) the reduced
order techniques are included in order to control the num-
ber of needed but computationally expensive MD simulations.
The main goal of the present paper is to focus on the molec-

ular dynamics part, which typically poses the bottleneck in
these hybrid molecular-continuum approaches. We will dis-
cuss strategies, which minimize the computational effort in
the particle-based simulations and discuss optimum choices
for thermostats, time steps and relate time and length scales
from simulations to experiments. Moreover we investigate
the coupling of the microscopic simulation data to the macro-
scopic flow solver and propose a novel reduced-order strategy
based on the combination of the proper orthogonal decompo-
sition, the regularized least-square approximation and a suit-
able greedy algorithm to approximate the unknown nonlinear
stress-strain function efficiently. This is the first time that the
reduced-order technique is used in the context of hybrid sim-
ulation methods. As a test case we investigate Couette and
Poiseuille flow in two and three dimensions.

2. Microscale (particle-based) simulations

In non-equilibrium Molecular Dynamics (MD) [18], we
simulate colloidal particles with a coarse-grained model.
Since we simulate a one dimensional flow, standard Lees-
Edwards periodic boundary conditions [25] are applied. In
our case, we shear in z-direction, and apply the velocity-Verlet
algorithm to solve the equations of motion [38].

Figure 1: Lees-Edwards boundary conditions. In the simulations, we
shear in z direction.

The stress-tensor is calculated via the Irving-Kirkwood for-
mula [21], using the peculiar velocities of particles vi =

ṽi − vi,S , where = ṽi is the total and vi,S the streaming velocity
of particle i, respectively.

σαβ = − 1
V


N�

i

�
mivi,αvi,β

�
+

N�

i

N�

j>i

�
ri j,αFi j,β

�
 , (1)

where ri j and Fi j are the distance and the force between parti-
cle i and j. The pressure corresponds to

p = −Trσ
3
. (2)

The dynamic viscosity is

η =

�����
σ13

γ̇

����� . (3)
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Note that σ13 will be used later on to couple microscopic sim-
ulations to the macroscopic solver.

Colloids are treated as hard spheres. The interaction of two
particles is simulated with a Weeks-Chandler-Andersen po-
tential (WCA), which corresponds to the repulsive part of the
Lennard-Jones potential:

VWCA(r) = 4ε
��
σ

r

�12
−
�
σ

r

�6
+

1
4

�
, r < rC =

6√2σ . (4)

Two particles in the interaction radius rC reject each other.
Outside this radius rC , the potential is 0. In formula (4) ε cor-
responds to the well depth of the Lennard-Jones potential. In
our simulations, we set ε = 1kBT . σ is the typical diameter of
a colloid and is used as the length scale of the MD simulation.

It is worth noting that if particles represent colloids, σ ≈
1 µm and typical time scales tMD are in the order of 10−4 s,
which is close to experimental relaxation times. If particles
represent atoms instead (σ ≈ 10−10 m), the gap between time
scales of the simulation and experimental (macroscopic) time
scale spans many orders of magnitude (tMD ≈ 10−12 s). See
Appendix A.

Shearing a system leads to friction, which heats up the
sheared system. Since we want to simulate in the NVT-
ensemble, we need to cool the system down to an initial tem-
perature T0. In the following we discuss two thermostats. The
Lowe-Andersen thermostat (LAT) [27] conserves momentum
and is Galilean invariant. In this thermostat, after solving the
equations of motion via the velocity-Verlet algorithm, parti-
cles undergo a ”bath” collision with a probability of ΓΔt (with
0 < ΓΔt ≤ 1).

Two particles within an interaction range ri j < rC have the
possibility to get a ”kick” along the center of mass, where the
”kick” is taken from a Maxwell-Boltzmann distribution.

v�i j = ξi j

�
2kBT r̂i j (5)

where ξi j is a random number with unit variance and r̂i j the
normalized particle distance. The new velocities for particles
i and j after a bath collision are:

v�i = vi + Δi j (6)

and
v�j = v j − Δi j, (7)

where
2Δi j = r̂i j

�
v�i j − vi j

�
· r̂i j (8)

which leads to momentum conservation. In the following we
set the bath collision probability to Γ · Δt = 0.001.

The second thermostat we would like to discuss is the sim-
ple isokinetic (ISO) thermostat [42], a popular choice amongst
hybrid simulation schemes. After each velocity-Verlet inte-
gration step, we compute the temperature:

3
2

NkBT =
N�

i

miv2
i (9)

and rescale the velocities with the factor

λ =

�
T0

T
(10)

where T0 is the temperature at which we want to simulate.
(Here, T0 = 1 εkB

.)
Additionally, we implement the SLLOD algorithm [42],

which applies the shear profile to the equations of motion.
Like this, we reach the steady state even faster. The equations
of motion change to

q̇ = p + �u · q (11)

ṗ =
f
m
− �u · p (12)

where �u is the matrix representation of the applied stress:

�u =


0 0 0
0 0 0
γ̇ 0 0

 (13)

since we shear the xy-plane in the z-direction.
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(b) Isokinetic with SLLOD
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(c) Time evolution of the σ13 component.

Figure 2: Shear profiles for a system at particle density ρ = 0.4 (con-
taining 400 particles) and varying shear rates. The integration time
step was chosen to be 10−4, after a relaxation time of 200 MD-times,
the shear profiles are taken for 1 500 MD-times. (a) Lowe-Andersen
thermostat with a bath collision probability of Γ · Δt = 0.001. (b)
Isokinetic thermostat with SLLOD. In (c) the time to steady state for
the σ13 component at a shear rate of γ̇ = 0.05 is shown. The in-
stantaneous data of the σ13 component is black, the mean at a certain
MD-time is red, while the overall mean is colored in green.
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(a) Temperature vs. shear rate.
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(b) Pressure vs. shear rate.
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(c) Viscosity vs. shear rate.
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(d) Viscosity vs. Γ.

Figure 3: Comparison of Lowe-Andersen and isokinetic thermostat with SLLOD. (a) Temperature, (b) pressure and (c) viscosity as a function of
shear rate after relaxation (of 200 MD times). The system size is 10σ in all directions. The time step is set to 10−4 for isokinetic and Lowe-
Andersen thermostat. In the LAT, Γ · Δt is set to 0.001. In d) the viscosity is shown as a function of bath collision frequency Γ for different
thermostat interaction radii at two different time steps Δt = 10−4 and Δt = 10−3.
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Here, we extend the equations of motion for the half step,
e.g., one equation for the generalized coordinates qn+ 1

2 due to
the new terms of the SLLOD method in (11) and (12). These
equations will then be needed for the full step. For a given Δu,
the half steps look like:

qn+ 1
2 = qn +

1
2
Δt
�
pn + γ̇

�
qn

x · êz
��

(14)

pn+ 1
2 = pn +

1
2
Δt
�
Fn − γ̇ �pn

x · êz
��

(15)

where n is the current time step, n+ 1
2 is the time of the half step

and n + 1 is the full step. The index x in q and p correspond
to the x coordinate of the vector.

Analogously to the half step, we have to modify the equa-
tions of motion for q, which includes the half step qn+ 1

2 , con-
sistent with the time level of pn+ 1

2 :

qn+1 = qn + Δt
�
pn+ 1

2 + γ̇
�
qn+ 1

2
x · êz

��
, (16)

Fn+1 = −∇V(|qn+1|) , (17)

pn+1 = pn+ 1
2 +

1
2
Δt
�
Fn+1 − γ̇

�
pn+1

x · êz

��
. (18)

This method takes advantage of the Crank-Nicolson
method. As pointed out in [26] it allows larger time steps and
yields one order smaller errors.

Figure 2 shows averaged shear profiles obtained with (a)
the Lowe-Andersen thermostat and (b) the isokinetic thermo-
stat with SLLOD in agreement with the shear rate imposed
by Lees-Ewards boundary and SLLOD conditions. Note that
SLLOD conditions in the isokinetic case impose a linear shear
profile, which takes somewhat longer to emerge for the Lowe-
Andersen thermostat, and increases further for lower shear
rates. Figure 2c displays a typical relaxation of the off-
diagonal component of the stress tensor σ13 after turning on
shear. The component relaxes in less than 200 MD times as
indicated by the running mean (red curve). We have verified
that this holds for various shear rates and densities for the
small system sizes considered in this study, and in all simu-
lations discussed from now on, measurements start after 200
MD times to omit influences of the relaxation process.

In Figure 3 we check to which extent the Lowe-Andersen
thermostat is able to thermalize the system for our given set
of simulation parameters (Γ · Δt = 0.001). For high densi-
ties and shear rates, deviations in the temperature (a), trace of
the stress tensor (b) and viscosity (c) are noticeable in com-
parison to the isokinetic thermostat, which strictly enforces
temperature. As already stated in the original publication on
the Lowe-Andersen thermostat [27], the viscosity of such a
system is somewhat elevated (Figure 3d), and the surplus vis-
cosity is only expected to vanish in the limit of small Γ and
large time steps, which again counteracts efforts to keep tem-
perature and pressure fixed. On the other hand, this enables
exploration of fluids with somewhat larger viscosities in the
context of hybrid-continuum schemes.

In such a scenario, the model needs to be considered in con-
junction with the thermostat and thermostat parameters. (Note

that even though viscosity is elevated, the system still behaves
like a Newtonian fluid, i.e., the viscosity changes only little as
a function of the shear rate (Figure 3c).) If we are, however,
interested in the viscosity of the actual model system or re-
lated properties, it is preferable to apply a thermostat, which
does not enhance the latter (such as Lowe-Andersen or DPD).
Even though the isokinetic thermostat with SLLOD (which
we will use from now on) is somewhat unphysical, we are not
interested in realistic dynamics, but properties of the steady
state.

In attempt to minimize the computational effort, we inves-
tigate the dependence of the time step on pressure (Figure 4a)
and viscosity (Figure 4b). While time steps larger than 10−3

(for the isokinetic thermostat) yield noticeable deviations in
pressure and viscosity for dense systems and high shear rates,
differences for a time step of 10−3 are probably acceptable in
the context of a hybrid scheme. In this paper we use 10−4 if
not noted differently.

When performing microscopic simulations in the context
of a hybrid scheme, the question arises whether it is better to
simulate a single large system or multiple systems of smaller
size to gather statistics. From a computational point of view,
the latter is typically to be preferred as MD simulations in
practice often do not scale perfectly linear with the number
of particles. Therefore, computational resources required to
compute the contribution of ,e.g., a single particle to the stress
tensor (over a given simulation period) are larger in a single
large system when compared to multiple small ones. In ad-
dition, larger systems also require longer relaxation time. In
Figure 4c and d, we test the lower limits of system sizes for
our model by decreasing the size of the simulation box in the
direction perpendicular to the applied shear. As seen in Fig-
ure 4c and d, finite-size effects start to play a role if the height
of the box is smaller than four σ, which corresponds to four
particle diameters. Of course, this value will change if the po-
tential is longer-ranged or if particles become correlated, e.g.,
in the vicinity of a critical point.

Finally, Figure 5 shows the viscosity (inset) and the off-
diagonal component of the stress-tensor σ13 from which the
viscosity is derived as a function of shear rate. As already in-
dicated for large shear rates (Figure 3), the viscosity changes
only little over many orders of magnitude and behaves like a
Newtonian fluid. It is worth noting, however, that the com-
putational effort to obtain meaningful values for the viscosity
increases manifold when the shear rate is reduced. While fluc-
tuations in σ13 are comparable across shear rates (not shown),
fluctuations in the viscosity η = σ13/γ̇ increase by an order of
magnitude if the shear is reduced accordingly. This increase
in fluctuations translates into an increase of computational ef-
fort by two orders of magnitude if we want to keep errors at
the same level.

In Section 3, we will briefly outline the macroscopic sim-
ulation. In Section 4 we explain in detail the coupling of the
micro and the macro level for which we need the data from
Figure 5 as input.
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(a) Trace of the stress vs. shear rate for different timesteps.
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(b) Viscosity vs. shear rate for different timesteps.
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(c) Pressure vs. box length.
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(d) Viscosity vs. box length.

Figure 4: Comparison of (a) trace of the stress, (b) viscosity as a function of shear rate after relaxation for different time steps. The density is ρ = 0.8
in a box of dimensions 10 × 7.5 × 10σ3, and comparison of (c) trace of the stress and (d) viscosity as a function of box length after relaxation with
a shear rate of γ̇ = 0.1. For different densities ρ = 0.2, 0.4, 0.6, 0.8 the y-dimension of the box is varied, while the other two dimensions are kept
constant at 15 × 15σ2. The grey dotted line are the values for an unsheared system with box dimension 15 × 10 × 15 σ3.
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Figure 5: Viscosity η (inset) and the σ13 component of the stress ten-
sor as a function of shear rate. Density is ρ = 0.8 in a box of dimen-
sions 10 × 7.5 × 10σ3.

3. Macroscale simulations

At the macroscopic level, the motion of the incompressible
fluid flow is governed by the continuity and momentum equa-
tions

∇ · u = 0, in Ω × [0, tF] (19a)

ρ

�
∂u
∂t
+ u · ∇u

�
=

1
Re
∇ · σ + g, in Ω × [0, tF] (19b)

u = uD, on ∂ΩD (19c)

u(t = 0) = u(0) in Ω, (19d)

where u is the velocity vector, σ the Cauchy stress tensor,
g an external body force, ρ the density, which is constant,
and Re the Reynolds number. The computational domain Ω
is surrounded by the boundary ∂Ω = ∂ΩD ∪ ∂ΩP, where the
Dirichlet and periodic boundaries are considered, respectively.
In case of the Navier-Stokes equations for Newtonian fluids,
σ = −pI + τ, where τ = µ(∇u + ∇uT ), the above momentum
equations reduce to

ρ

�
∂u
∂t
+ u · ∇u

�
= −∇p +

1
Re

(µΔu) + g in Ω. (20)

For the time integration of the continuity equation (19a) and
momentum equations (19b) we apply the following multi-step
projection method [13]. Using the first-order Euler method we
have

I ũ = Δt
� − u(n) · ∇u(n) +

1
Re
∇ · (σ(n)/ρ) + g(n)/ρ

�
, in Ω

(21a)

II Δp̄(n+1) = ∇ · �ũ/Δt
�
, in Ω

(21b)

∂p̄
∂n

(n+1)

= n · �ũ/Δt
�
, on ∂Ω

(21c)
˜̃u = ũ − Δt∇p̄(n+1), in Ω

(21d)

III u(n+1) = u(n) + ˜̃u, in Ω.
(21e)

Here we define the average pressure p̄(n+1) = 1/Δt
� tn+1

tn
p�/ρ dt

with the normal derivative ∂p̄(n+1)/∂n = n·∇p̄(n+1). To obtain a
unique solution for (21b)-(21c), we require

�
Ω

p̄(n+1) = 0. Note
that p� is a correction to the pressure to ensure the divergence-
free constraint. As one notices, the pressure is already present
in the stress tensor in equation (19b).

For the second-order time integration of the velocity, we
use the Adams-Bashforth method in the first step I,

ũAB = Δt
J−1�

j=0

β j
�−u(n− j) ·∇u(n− j) +

1
Re
∇ · (σ(n− j)/ρ)+ g(n− j)/ρ

�
,

with the coefficients β0 = 3/2 and β1 = −1/2. However, the
effective pressure, p̄(n+1), is first-order accurate in time. If re-
quired, one can reconstruct the pressure for higher-order ac-
curacy, see [32, 35]. In the above projection scheme, we use
by construction ∇ · u(n− j) = 0, for all j ≥ 0. Therefore, we can
integrate the unsteady terms in the third step III. In this way,
by replacing the intermediate velocity from the first step, the
right-hand side of the Poisson equation in the second step II
is independent of the time step. This prevents the numerical
instability observed in [12, 16, 37] using the dG method.

4. Hybrid multiscale method (HMM)

The particle simulations represent a bottle-neck of our hy-
brid method. To compute the solution of a macroscopic prob-
lem, the stress tensor is required at each quadrature point, as
shown for example in Figure 6 for a two-dimensional fluid
dynamics problem. In order to reduce the number of these
time-consuming simulations, we do not follow the strategy
of the one-to-one correspondence between the MD boxes and
the quadrature points on the macroscopic level, but we split
our simulations into an off-line and on-line phases to prepare
approximations for the stress in advance. In an off-line train-
ing phase, hence, we collect most of the information using the

7
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greedy method (see, e.g., [39]) and build functional dependen-
cies of the stress on shear rates based on the data approxima-
tion with Chebyshev’s orthogonal polynomials. In an on-line
phase of fast multiple queries we obtain the required data us-
ing these approximations and in rare cases rebuild them if new
strain rates appear which exceed the approximated intervals.

The stress data is provided by the MD method using one-
dimensional shear flow (the so-called simple-shear flow) re-
alized along one of the coordinate axes as described above.
However, the macroscopic model represents a fluid flow with
a two- or three-dimensional velocity field. In order to obtain
one-dimensional shear rates for the particle simulations we
have to rotate the MD boxes along the streamlines and change
correspondingly the data basis [41].

Furthermore, the stress data provided by the MD simula-
tions is subject to statistical and systematic errors. To reduce
the noise in MD data we apply the method of Proper Orthogo-
nal Decomposition and project our simulation data onto prin-
cipal component directions. In what follows we describe our
approach in more details.

S∗ = Θ(S/l∗b )ΘT

S∗

σ∗

σ = ΘT (σ∗ l∗b )Θ

Figure 6: Data transfer for the 2D hybrid simulations. Θ is the rota-
tional transformation yielding a 1D strain field.

4.1. Reduced-order approach for data refinement strat-
egy

In order to find a proper approximation of the stress tensor
with fewer number of particle simulations, we solve the opti-
mization problem with a relatively small number of samples.
Then we use the greedy algorithm (worst scenario search),
see e.g. [39], for the data refinement to suggest the shear
rate(s) for new particle simulations. If one plots the residual
(Ax − b) versus γ̇, the proposed shear rate for a new simu-
lation γ̇new = 0.5(γ̇M + γ̇N), is found in the neighborhood of
γ̇M = arg maxγ̇(Ax − b), where γ̇N is the left or right neighbor
of γ̇M which corresponds to the larger residual.

4.2. Eigenvalue decomposition of strain and stress
fields

Any strain rate tensor can be written as a symmetric matrix
of streaming velocity gradients S = (1/2)(∇u + ∇uT ). In the
case of two-dimensional simulations the strain rate matrix is

S =
�
∂u
∂x S 12

S 12
∂v
∂y

�
, (22)

where S 12 =
�
∂u
∂y +

∂v
∂x

�
/2. In the case of plane flow in three-

dimensional simulations the strain rate matrix is

S =



∂u
∂x 0 S 13

0 0 0
S 13 0 ∂w

∂z

 . (23)

where S 13 =
�
∂u
∂z +

∂w
∂x

�
/2.

In the following part, for simplicity we focus on the deriva-
tion of the basis transform for the two-dimensional case. The
plane flow in the three-dimensional case follows analogously
and in the next section we also compare flow profiles of 2D
Couette and 3D Poiseuille flows with analytic solutions as
proof of concept.

As pointed out in [40] there exists an angle θ =
1
2 arctan(− S 11

S 12
), where S i j are components of the strain rate

matrix S in (22), and a rotation matrix

Θ =

�
cos θ sin θ
− sin θ cos θ

�
, (24)

which transforms the strain rate tensor S to the anti-diagonal
matrix

S� = ΘSΘT =

�
0 γ̇/2
γ̇/2 0

�
. (25)

This strain rate tensor S� corresponds to a pure-shear defor-
mation (i.e., in absence of normal stresses) with the shear rate
γ̇/2 = −S 11 sin(2θ) + S 12 cos(2θ). Eigenvalue decomposition
of the pure-shear strain rate matrix S� yields

S� = PΛPT = P
�
λ1 0
0 λ2

�
PT , (26)

where λi ∈ R are the eigenvalues of S�, P = (p1, p2) is the ma-
trix of the corresponding eigenvectors. By solving the eigen-
value equation S�P = λP one can find that λ1,2 = ∓γ̇/2 and

from S� pi = λpi it follows that P = 1√
2

�−1 1
1 1

�
.

Thus, the eigenvalue decomposition of S� reads

S� =
1
2

�−1 1
1 1

� �−γ̇/2 0
0 γ̇/2

� �−1 1
1 1

� �
=

�
0 γ̇/2
γ̇/2 0

��

(27)
and is same as (25).

We are now looking for a fitting function f (γ̇) approximat-
ing the MD stress data σMD ≡ {σαβ(γ̇)}Nsets

Nγ̇
for Nγ̇ values of

the shear rate γ̇ and Nsets independent data sets

f (γ̇) ≈ σMD . (28)
8
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Thus, f (S�) should approximate σMD

f (S�) = f
�
P
�
λ1 0
0 λ2

�
PT

�
= P
�

f (λ1) 0
0 f (λ2)

�
PT ≈ σMD.

(29)
Substituting the eigenvalues of λ1,2 into (29) yields

σMD ≈ P
�

f (−γ̇/2) 0
0 f (γ̇/2)

�
PT . (30)

This means that in order to obtain a least-square approxima-
tion f (γ̇) we need to transform MD data into the eigenvector
basis P

�
f (−γ̇/2) 0

0 f (γ̇/2)

�
≈ PTσMD P =

�
σ̃11 σ̃12

σ̃21 σ̃22

�
≡ σ̃. (31)

We can therefore assume σ̃12 = σ̃21 = 0 and fit

f (λ1) ≡ f (−γ̇/2) ≈ σ̃11 (32)

f (λ2) ≡ f (γ̇/2) ≈ σ̃22 (33)

The stress data, σMD, were obtained for various densities
using the SLLOD method with a WCA potential in two- and
three-dimensional MD simulations, as discussed in Section 2.
In Figure 7 we show 2D MD stress data at ρ = 0.8 and in
Figure 8 the results of the orthogonal transform of this data
into the eigenvector basis representation, σ̃, via (31). The
diagonal principal component functions σ̃11(λ1) and σ̃22(λ2)
look very simple: σ̃11 for λ1 ≤ 0 is nearly a straight line, σ̃22

for λ2 ≥ 0 increases monotonously with a negative curvature,
which changes with the density. These features make it easier
to approximate σ̃11 and σ̃22 by low order polynomials f (λ1)
and f (λ2), respectively. We also consider an approximation of
the principal stress by f (λ) with λ = λ1 ∪ λ2.

Note that the off-diagonal components of the matrix at the
left-hand-side of (31) are zero. However, due to statistical er-
rors of MD simulations (and perhaps due to a systematic error
of the method) the off-diagonal components σ̃12 and σ̃21 of the
matrix σ̃ deviate from zero. These stochastic and systematic
deviations increase with the shear rate, decrease with the den-
sity and lay in the range of few percents if compared to the val-
ues of the diagonal principal stress components. As mentioned
above, we suppress these deviations by setting σ̃12 = σ̃21 = 0
in the following processing of our data.

4.3. Proper Orthogonal Decomposition for noise re-
duction

In order to extract physically significant information from
our MD data and to reduce the noise we apply the Proper Or-
thogonal Decomposition (POD) method, which is based on a
Singular Value Decomposition (SVD) of a matrix. Hence, the
matrix of principal stress can be represented as σ̃ = VΣZT ,
where Σ is a diagonal m× n matrix of rank r ≤ min(m, n) with
positive singular values s1 ≥ s2 ≥ sr > 0 stored along the
main diagonal
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Figure 7: MD results of a stress tensor, σMD, in a simple-shear 2D
flow using the SLLOD method with a WCA potential, at the density
ρ = 0.8. Points are simulation data, lines are mean averages of the
simulation data. The normal stress components, σMD

ii (γ̇), are shifted
by a constant value of the zero-shear mean stress, �σMD

ii (γ̇ = 0)� =
−6.2679.

Σ =



s1 0
. . .

0 sr

0



, (34)

V is a m × m unitary matrix of left-singular vectors, Z is a
n× n unitary matrix of right-singular vectors. m is the number
of γ̇i’s, n is the number of independent simulations sampling
σMD(γ̇i). The singular values si are related to the eigenvalues
of the correlation matrix C = σ̃T σ̃ as s2

i = λ
(C)
i . According to

the POD method one can reduce the rank of the original stress
matrix σ̃ by a low-rank approximation σ̃(k) by keeping the first
k of r singular values si in Σ

σ̃ ≈ σ̃(k) = VΣ(k) ZT =

k�

i=1

siVi ⊗ ZT
i , (35)

where k is a reduced rank, Σ(k) is a reduced-rank singular-value
matrix.

The SVD analysis of our principal stresses has shown that
there exists one singular value, s1, which is by two orders of
magnitude greater than any other si, as shown in Figure 9 for
10 independent 2D MD data sets. The remaining singular val-
ues si with (i > 1) have nearly same amplitude and correspond
to the statistical noise of the MD data. Therefore, the first prin-
cipal component with the largest variance along the principal
direction given by the vector V1 approximates our principal
stress data

σ̃ ≈ σ̃(1) = s1V1 ⊗ ZT
1 (36)

with the projection relative error
9



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

-0.5 0 0.5
6

-10

-9

-8

-7

-6

-5

d
ia

g
.
st

re
ss

~<
ii

~<11

~<22

-0.5 0 0.5
6

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

o
,
-d

ia
g
.
st

re
ss

~<
ij

~<12

~<21

Figure 8: Diagonal (top) and off-diagonal (bottom) principal stresses,
σ̃, obtained by the orthogonal transform (31) of the molecular stress
data, σMD, shown in Figure 7.

�2(1) =

r�
i=2

s2
i

r�
i=1

s2
i

. (37)

For instance, in the case of singular values shown in Figure 9,
the projection relative error of the rank-1 approximation, σ̃(1),
is �(1) � 0.9%.

2 4 6 8 10
basis index i

10 -1

10 0

10 1

10 2

lo
g
s
i

Figure 9: Singular values of the principal stress at the density ρ = 0.8
obtained using the SVD method.

4.4. Chebyshev’s approximation with Tikhonov’s regu-
larisation

The noise-reduced data of the principal stress, σ̃(1), will be
now approximated using the least squares method with the or-
thogonal polynomials of Chebyshev

σ̃(1) ≈ f (λ) =
k�

i=0

aiTi(λ) , λ ∈ R . (38)

Here k is the degree of the approximating polynomial, ai co-
efficients of the Chebyshev polynomials Ti. Our goal is to
approximate simulation data by means of a simple function
for f (γ̇) for further use at the level of the macroscopic solver.
To reduce a large number of particle simulations we use an
off-line training phase and an on-line phase of fast multiple
queries. For this training, we solve a least-square problem
with the Tikhonov regularization for each principal compo-
nent of the stress tensor. Tikhonov’s regularization improves
the approximation of a badly conditioned data matrix, i.e.,
when the problem is ill-posed. Thus, our goal is to find a
vector x minimizing an extended residuum functional

arg min
x

�||Ax − b||22 + α2
1||x||22 + α2

2||Dx||22
�
. (39)

Here b is the vector of n (n ≥ k + 1) data points of the
corresponding component of the principal stress tensor, σ̃(1),
obtained as described in the previous section. Further, x is
the vector of the unknown Chebyshev coefficients ai. A is

10
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the Vandermonde matrix of the Chebyshev polynomial ba-
sis. The penalty term Dx is added to damp the oscillations in
the derivative function ∂A/∂γ̇ x = ADx. Parameters α1 and
α2 are the regularization parameters. The equivalent problem
(AT A+α2

1 I+α2
2 DT D)x = AT b is solved by the LU factoriza-

tion using the LAPACK library 1.
The Chebyshev approximation with the Tikhonov regular-

ization is shown in Figure 10. As it has been mentioned, the
dependence f (λ) exhibits two distinct behaviour: it is nearly
linear for λ < 0 and is concave for λ > 0 with a density depen-
dent curvature. Therefore, we approximate f (λ) either by one
joint function in the range λ ∈ R or by two separate functions
f (λ1) and f (λ2) with λi in ranges λ1 < 0 and λ2 > 0. In both
cases, the joint and split approximations are indistinguishable
in the plot scales, however, the degree of the optimal poly-
nomials for the joint approximation f (λ) is higher than that
for the split approximations f (λi). From the practical point
of view a low degree polynomial approximation is preferred,
since it can significantly improve the numerical efficiency and
stability of the automated algorithms for data processing.
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O(f(62)) =3
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Figure 10: Approximations of the principal stress by the Cheby-
shev polynomials using either one joint function f (λ) in the range
λ ∈ [−0.5, 0.5] or two functions f (λ1) and f (λ2) with λi in ranges
λ1 ∈ [−0.5, 0] and λ2 ∈ [0, 0.5]. The approximation degree is shown
in the legends.

4.5. Back transform of Chebyshev’s approximants

On the macroscopic level, the stress data is requested from
the MD simulations level at each quadrature point for a given
strain rate, S. Hence, the principal stress calculated by the
Chebyshev approximations, f (λi) with λ1 = −γ̇/2, λ2 = γ̇/2,
has to be transformed back to the basis space of the macro-
scopic solver, σ(S). Using (25), (30) and the property of the
Galilean invariance of the rotation Θ we have

1http://www.netlib.org/lapack

σ(S) = ΘT P
�

f (−γ̇/2) 0
0 f (γ̇/2)

�
PTΘ . (40)

The rotation matrix Θ is problem specific. Hence, in
Figures 11 we compare the MD stress data, σMD

i j (γ̇), with
σCHEB(γ̇), the back transform of f (λi) to the MD basis space
obtained from (30). One can see that the shear stress, σMD

12 (γ̇),
is described very well. Some discrepancies can be observed
for the normal stresses: σMD

11 and σMD
22 from MD exhibit slight

normal stress difference at ρ = 0.8, whereas σCHEB
11 and σCHEB

22
are identical (in Figure 11, only σCHEB

11 is shown). This is
a consequence of the suppression in (31) of the off-diagonal
components, σ̃12 and σ̃21. For ρ = 0.8 these terms are nearly
zero and, hence, these discrepancies can hardly be recog-
nized. Furthermore, we have checked the descriptive quality
of the back transformation of the joint approximation, f (λ)
with λ = λ1 ∪ λ2, which includes higher degree Chebyshev’s
polynomials. It yields very similar results, as one could expect
after comparison in Figure 10.
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Figure 11: Components of the 2D stress tensor, σ(γ̇), obtained by the
back transform to the MD basis using (30) of the Chebyshev approxi-
mation to the principal stress, f (λi). The two-function representation
of f (λi) is used with λ1 = −γ̇/2 and λ2 = γ̇/2. The normal stress
components, σii(γ̇), are shifted by a constant value of the zero-shear
mean stress, �σCHEB

ii (γ̇ = 0)� = −6.2552. Lines: Chebyshev’s approx-
imation, symbols: MD stress data.

5. Reduced-order hybrid simulations

The macroscopic hybrid simulations of the Couette flow are
performed on the domain [−1, 1]× [0, 1]. The flow is periodic
in the streamwise x-direction. The no-slip boundary condition
is applied at the walls. At the lower wall y = 0, the velocity
is zero. At the upper wall y = 1, the velocity in x-direction
is equal to U and the velocity in y-direction is zero. A grid of
3×3 cells is employed. A polynomial degree k = 1 is assigned
in the dG method, Re = 1. The velocity profiles presented in
Figure 12 overlap with the analytical solution ux = yU for the
equivalent Newtonian fluid with density ρ = 0.8 and viscosity
µ = σ12/γ̇|γ̇=1 = 1.96481 calculated from the 2D MD data.
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Figure 12: 2D Couette flow: velocity profiles in the streamwise di-
rection for shear velocities U = 1, 2, 3. Symbols: hybrid simulations,
lines: analytic solutions ux = yU.
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Figure 13: Components of the 3D stress tensor, σ(γ̇), obtained from
the Chebyshev approximation to the principal stress and its back trans-
form to the MD basis. The normal stress components, σii(γ̇), are
shifted by a constant value of the zero-shear mean stress, �σCHEB

ii (γ̇ =
0)� = −6.6045. Lines: Chebyshev’s approximation, symbols: MD
stress data.
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Figure 14: 3D Poiseuille flow: velocity profiles in the streamwise di-
rection for pressure gradient parameter P = −3,−2,−1, 2, 4, 6. Sym-
bols: hybrid simulations, lines: analytic solutions uz = x(1 − x)P.
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Figure 15: Estimated Newtonian fluid viscosity vs. density in 3D MD.

Three-dimensional hybrid simulations of the Poiseuille
flow are performed for ρ = 0.8 using the Chebyshev approx-
imations to the 3D MD data, analogously to the 2D case de-
scribed in the previous section. Figure 13 shows the MD data
and the approximations for the 3D case. In Figure 14 veloc-
ity profiles in z-direction are plotted for different values of the
pressure gradient parameter P and coincide with the analytic
solution uz = x(1 − x)P. We take the shear stress σ13 to esti-
mate the viscosity of the equivalent Newtonian fluid using re-
lation µ = σ13/γ̇|γ̇=0.5 = 1.61776. The viscosities for different
densities are plotted in Figure 15, cf. [14]. The computational
domain is taken as [0, 1] × [−1, 1] × [−1, 1]. The flow is pe-
riodic in y- and z-directions. The no-slip boundary condition
is applied at the walls x = 0 and x = 1, where the velocity is
zero. The pressure gradient fz = −2µ P/Re is applied in the
streamwise z-direction with Re = 1. A grid of 3×3×3 cells is
employed. The polynomial degree is k = 2 in the dG method.

6. Conclusion

In hybrid particle continuum schemes, molecular simula-
tions typically pose a computational bottleneck.

12
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In the first part of this paper we discuss in detail strategies to
minimize the effort of particle-based simulations. We find that
it is preferable to simulate small system sizes and determine
limits of the latter, which are imposed by finite-size effects
such as the transition to two-dimensional behavior.

As we are interested in properties of the steady-state and
not necessarily dynamics, a simple non-physical thermostat
such as the isokinetic thermostat with SLLOD boundary con-
ditions is actually preferable while thermostats such as Lowe-
Andersen allow for simulations at elevated viscosity. We
also investigate boundaries for the size of time steps, and
discuss the mapping of time scales between micro- and the
macroscale.

In the second part we propose a novel reduced-order tech-
nique, which allows us to approximate the stress-strain rela-
tion in efficient way and thereby further reduce the compu-
tational effort of the microscopic simulations. Our approach
is based on a delicate combination of the eigenvalue decom-
position, the least square approximation using the Chebyshev
polynomials with the Tikhonov regularization and the proper
orthogonal decomposition. The latter is applied to reduce sta-
tistical noise from the MD simulation data. Our hybrid dG-
MD method is tested by evaluating velocity profiles of Cou-
ette and Poiseuille flow. To our knowledge this is the first
time, such reduced-order techniques are applied in the context
of hybrid heterogeneous atomistic-continuum simulations.

Acknowledgments

The present work is supported by German Science Founda-
tion (DFG) under the grant TRR 146 (project C 5). We would
like to thank M. Oberlack, F. Kummer and B. Müller for pro-
viding their code BoSSS and T. Raasch for fruitful discussions
on the topic. The authors gratefully acknowledge the com-
puting time granted on the HPC cluster Mogon at Johannes
Gutenberg-University Mainz.

A. Mapping

We assume that our particles correspond to colloidal par-
ticles. The typical size of a colloid is 1 µm (range 100 nm
to 10 µm). Thus, the unit of length in the MD simulations is
σ = 10−6 m.

The time scale in the simulation is given by the so-called
MD time tMD, corresponding to ∼ 104 time steps in the simu-
lation (for a time step of 10−4).

tMD = σ ·
�

m
ε

ε = 1kBT

= 1.3 · 10−23 J
K
· 300 K

The mass of a polystyrene bead can be determined with the
density of polystyrene ρ = 1.05 t

m3 :

m =
4
3
π
�
σ

2

�3
· ρ

=
4
3
π
�
10−6 m

�3 · 1
8
· 1.05

t
m3

= 0.55 · 10−18 t = 5.5 · 10−16 kg ,

⇒ tMD = 10−6 m

�
5.5 · 10−16 kgs2

3.9 · 10−21kgm2

= 3.755 · 10−4 s .

tMD should correspond to the structural relaxation time of a
bead, i.e., a bead takes roughly tMD to travel to a position over
the distance σ.

An alternative approach to determine relaxation times takes
the diffusion into account, which leads to:

t =
σ2

(6)D
≈ 10−2 − 10−4 s (41)

in corresponding experiments [36]. Therefore, for colloidal
particles simulation time scales roughly correspond to experi-
mental time scales.

To simulate Argon, the well depth ε = 1.65 · 10−21 J. The
diameter of the Argon atoms is equal to σ = 3.4 · 10−10 m, the
density is ρ = 1.784 kgm−3. Inserting in the formula gives:

t =

�
mσ2

ε
= 2.17 · 10−12 s . (42)
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