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1 Introduction

Numerical simulations of complex materials in physical chemistry are so time-
consuming, even with today’s computing power at hand, that it is necessary
to implement subprocesses on a meso-scale by means of “coarse-graining” the
atomistic structure of (parts of) the associated molecules. The coarse-grained
“beads” are simulated by using effective potentials for their interactions.
These effective potentials have to be determined a priori, and this is often
done so as to match some given structural data.

Here we consider the case where this structural information consists of
measurements of the so-called radial distribution function g† of the beads;
see (3.2) for a formal definition of this function. The effective potential u† is
then chosen in such a way that

F (u†) = g† , (1.1)

where F is the function which maps a potential u (out of a predetermined
family of suitable functions) onto the corresponding radial distribution func-
tion of the associated grand canonical ensemble under well-defined physi-
cal conditions. The question of existence and uniqueness of a solution u† of
(1.1) for a given g† is referred to as the inverse Henderson problem, because
Henderson [9] was the first to investigate the identifiability problem associ-
ated with (1.1), i.e., whether the radial distribution function is enough data
to uniquely recover the underlying pair potential; see Kuna, Lebowitz, and
Speer [11] for a more rigorous mathematical treatment of the uniqueness
problem.

A popular method for solving numerically the inverse Henderson prob-
lem is the iterative Boltzmann inversion (IBI) suggested by Soper [15].
This method, which is available in pertinent public domain software like
votca1 [12] starts from an initial guess u0 and determines recursively an
iterative sequence (uk)k≥0 of approximate solutions of (1.1) via

uk+1 = uk + γ log
F (uk)

g†
, k = 0, 1, 2, . . . . (1.2)

Here γ > 0 is a relaxation parameter that is usually chosen to be

γ = 1/β , (1.3)

where β > 0 is the inverse temperature.
A mathematical analysis of the IBI method is still lacking although the

method seems to be fairly robust. In his original paper [15] Soper provided a
heuristic argument why IBI might be expected to converge, however, there
is little hope to turn this argument into a rigorous proof.

From a mathematical point of view a possible framework for studying
(1.2) is fixed point iteration theory, where

Φ(u) = u + γ log
F (u)

g†

1 http://www.votca.org



3

is the corresponding fixed point operator. This is the point of view taken in
this paper. Note, however, that currently we are not yet able to prove exis-
tence of a fixed point of Φ under reasonable assumptions on g† and the set of
admissible pair potentials, although this is evidently a necessary requirement
for convergence of (1.2); see [1,10,11] for preliminary results concerning the
existence of solutions of the inverse Henderson problem.

Instead we stipulate that a solution u† of (1.1) exists, and that it belongs
to the class of Lennard-Jones type potentials. Then, assuming further that
the system is in the so-called gas phase we can introduce a norm ‖ · ‖V

u†
and

establish that the fixed point operator Φ is well-defined in a neighborhood of
u† with respect to this norm. Moreover, Φ is locally Lipschitz, i.e.,

‖Φ(u)− Φ(u†)‖V
u†
≤ CΦ‖u− u†‖V

u†
(1.4)

for some CΦ > 0 and all u sufficiently close to u†; see Theorem 6.1 for the
precise statement and the corresponding assumptions. Therefore, assuming
that the kth iterate uk is sufficiently close to u†, it follows from (1.4) that
the k + 1st iterate of IBI satisfies

‖uk+1 − u†‖V
u†

= ‖Φ(uk)− Φ(u†)‖V
u†
≤ CΦ‖uk − u†‖V

u†
,

and hence, F (uk+1) and the next iterate uk+2 are well-defined.
We mention that in order to prove (1.4) we need to establish positive

lower bounds for the radial distribution function g = F (u) near the origin
and tight upper bounds for |g − 1| near infinity.

In practice IBI is usually started with the initial guess

u0 = − 1

β
log g† , (1.5)

i.e., the potential of mean force. Our analysis shows, in particular, that the
potential of mean force is a Lennard-Jones type potential and that the re-
sulting iterate u1 of (1.2) is also well-defined; see Remark 6.5.

The outline of this paper is as follows. In the following section we specify
our requirements on the family of admissible pair potentials and introduce
the norm ‖ · ‖V

u†
. We then review in Section 3 the necessary background

concerning the associated grand canonical ensemble and its thermodynamical
limit, and investigate in more detail the so-called cavity distribution function
which is needed for the aforementioned lower bounds. Section 4 contains an
auxiliary result on autoconvolution products of a certain class of functions
which include the Mayer function. This will be applied in Section 5 to discuss
the rate of decay of the Ursell function for large radii, and to improve upon
our earlier results in [6] on the derivative of the Ursell function with respect
to the pair potential. This provides the required upper bound of |g− 1| near
infinity. Finally, in Section 6 we return to IBI and present the proof of (1.4).

We mention that although we treat IBI in the context of a grand canonical
ensemble, it is possible to extend this analysis to a canonical ensemble, which
is the more usual setting of numerical simulations in practice.
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2 Setting

We start by considering an ensemble of identical classical particles in thermal
equilibrium within a bounded cubical box Λ ⊂ R3 centered at the origin.
We assume that the interaction of the particles can be described by a pair
potential u : R+ → R, which only depends on the distance of the interacting
particles, and that this potential satisfies

|u(r)| ≤ Cr−α , r ≥ r0 ,

u(r) ≥ cr−α , r ≤ r0 ,
(2.1)

for some α > 3, r0 > 0, and constants c, C satisfying C0 > C > c >
c0 > 0; here, α, r0, c0, and C0 are fixed parameters, and we denote by
U = U (α, r0, c0, C0) the family of potentials u satisfying (2.1). Following
Ruelle [14] potentials u ∈ U are called Lennard-Jones type pair potentials.

Under this assumption it is known (cf. Fisher and Ruelle [2]) that there
exists B > 0 such that

UN (RN ) :=
∑

1≤i<j≤N

u(|Ri −Rj |) ≥ −BN (2.2)

for every configuration of N particles in free space and every N ∈ N; here
we denote by Ri ∈ R3 the coordinates of the ith particle, and by RN =
(R1, . . . , RN ) ∈ (R3)N the configuration of the first N particles.

Associated with u ∈ U and the inverse temperature β > 0 is the Mayer
function

f(R) = e−βu(|R|) − 1 , (2.3)

which is considered to be −1 at the origin R = 0. Because of (2.1) the Mayer
function is absolutely integrable, i.e., there exists cβ > 0 such that∫

R3

|f(R)|dR < cβ . (2.4)

By virtue of (2.2) and (2.4) every Lennard-Jones type potential is stable and
regular in the sense of [14]. As worked out in the proof of [5, Proposition 2.1],
for every u ∈ U the same constants B and cβ can be used in (2.2) and (2.4),
respectively.

Associated with the parameter α in (2.1) is the weight function

%(r) = (1 + r2)α/2 , r ≥ 0 . (2.5)

For every u ∈ U we can use this weight function to define a corresponding
Banach space Vu of perturbations, consisting of all functions v : R+ → R, for
which the associated norm

‖v‖Vu
= max

{
‖v/u‖(0,r0], ‖%v‖[r0,∞)

}
(2.6)

is finite. Clearly, for every u ∈ U there exists δ0 = δ0(u) ∈ (0, 1) sufficiently
small such that u+ v ∈ U for every v ∈ Vu with ‖v‖Vu ≤ δ0. Later, compare
(5.11) and (5.12), we will reduce the size of δ0(u) somewhat further to ensure
additional properties of u+ v for all v ∈ Vu with ‖v‖Vu ≤ δ0.
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3 The grand canonical ensemble

Let u ∈ U be the pair potential that determines the interaction of the
particles. In the grand canonical ensemble the number of particles and their
coordinates within Λ are random variables, and the probability of observing
an ensemble with exactly N particles in an infinitesimal volume dRN at the
coordinates RN ∈ ΛN (up to permutations) is given by

1

ΞΛ(z)

zN

N !
e−βUN (RN ) dRN ,

where z > 0 is the so-called activity, UN (RN ) is defined in (2.2), and

ΞΛ(z) =

∞∑
N=0

zN

N !

∫
ΛN

e−βUN (RN ) dRN

is the grand canonical partition function. We consider this grand canonical
ensemble under specified physical conditions, i.e., we assume that the activity
z and the inverse temperature β are given (and fixed), and that they satisfy
the inequality

0 < z <
1

cβe2βB+1
, (3.1)

where cβ and B are the constants in (2.4) and (2.2), respectively. This regime
is known as the gas phase of the ensemble, cf. [14].

For m ∈ N and Rm ∈ Λm the m-particle distribution function is given by

ρ
(m)
Λ (Rm) =

1

ΞΛ(z)

∞∑
N=m

zN

(N −m)!

∫
ΛN−m

e−βUN (RN ) dRm,N ,

where Rm,N = (Rm+1, . . . , RN ); ρ
(m)
Λ determines the probability distribu-

tion for snap shots with m particles (up to permutations) at coordinates
R1, . . . , Rm ∈ Λ.2 The grand canonical partition function ΞΛ can be seen to
be an entire function of z ∈ C, which is free of zeros for

z ∈ Z =
{
z ∈ C : |z| < 1

cβe2βB+1

}
,

compare [14, Theorem 4.2.3], and similarly, the m-particle distribution func-
tions all are analytic functions of z ∈ Z. On the other hand, the m-particle
distribution functions may encounter singularities for positive values of z out-
side the interval (3.1); those are understood to correspond to physical phase
transitions.

As shown in [14] the m-particle distribution function has a well-defined

thermodynamical limit, i.e., ρ
(m)
Λ converges to some ρ(m) ∈ L∞

(
(R3)m

)
as

|Λ| → ∞, uniformly on every compact subset of (R3)m and for activities z
from every compact subset of Z, this being true for every m ∈ N; here, |Λ|

2 If Ri = Rj for different indices i, j ∈ {1, . . . ,m} then ρ
(m)
Λ (Rm) is set to be

zero.
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denotes the volume of the box. In particular, for m = 1, the thermodynamical
limit

ρ(1)(R) = ρ0 ∈ R+
0

is independent of R ∈ R3 and provides the counting density of the ensemble;
for m = 2, ρ(2)(R1, R2) only depends on the distance r = |R1 − R2| ≥ 0.
Given these two functions the radial distribution function, referred to in the
introduction, is defined to be

g(r) =
1

ρ20
ρ(2)(R, 0) , |R| = r ≥ 0 . (3.2)

For m ∈ N0 and z as in (3.1) the function ρ(m) is Fréchet differentiable
with respect to u, i.e., with respect to perturbations v ∈ Vu of u, cf. [5]. The
derivative is a bounded linear operator ∂ρ(m) ∈ L

(
Vu, L∞((R3)m)

)
. A sim-

ilar result (see [5, Remark 3.4] for details) applies to certain weighted copies
of the particle distribution functions, which include the cavity distribution
function (cf. Hansen and McDonald [7])

y(r) = eβu(r)g(r) , r > 0 , (3.3)

as a special case; the following result elaborates on this.

Proposition 3.1 For u ∈ U and z ∈ Z the cavity distribution function y of
(3.3) is a bounded function of r > 0, which is analytic with respect to z ∈ Z
and uniformly bounded on every compact subset of Z. Moreover, y is Fréchet
differentiable with respect to u with derivative ∂y ∈ L (Vu, L∞(R+)). If

0 < z <
1

1 + e

1

cβe2βB+1
, (3.4)

then the cavity distribution function is strictly positive, i.e., there exists c > 0
(depending only on z, cβ, and B) such that

y(r) ≥ c , r > 0 , (3.5)

for all u ∈ U .

Proof The function
σ(2)(R, 0) = ρ20 y(|R|)

is the second entry of the semi-infinite vector σ = σR3 considered in [5,
Remark 3.4]. There it is shown that σ satisfies a system

(I − zB)σ = ze1 , B = KD , (3.6)

of Kirkwood-Salsburg integral equations, and that σ has certain differentia-
bility properties. These properties readily imply differentiability of y with
respect to z and u as stated above.

In (3.6) we have adopted notation of [5]: K is a semi-infinite matrix
of integral operators, D a diagonal multiplication operator, and I the cor-
responding identity operator; e1 is a vector of constant functions, its first
entry being identically one, and all other entries being zero. To establish the
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lower bound (3.5) for the specific real interval of activity parameters z given
in (3.4), we first note that I − zB can be developed into a Neumann series,
and hence we can rewrite (3.6) in the form

σ = ze1 + z2Be1 + h , (3.7)

where

h = (h(m))m = z3(I − zB)−1BKDe1 = z3(I − zB)−1BKe1 ,

because the (1, 1)-entry of D is an identity operator. Looking at the second
entry of the vector identity (3.7) we conclude that

σ(2)(R, 0)− z2 = h(2)(R, 0) , (3.8)

because the second entry b21 of Be1 is again a constant, i.e., b21 = 1; com-
pare [5]. For z ∈ Z the right-hand side of (3.8) can be bounded as in [5],
which gives

‖h(2)‖L∞((R3)2) ≤ z3e
cβe

2βB+1

1− zcβe2βB+1
.

Therefore, assuming (3.4), there holds

y(r) =
σ(2)(R, 0)

ρ20
≥ z2

ρ20

(
1− ze cβe

2βB+1

1− zcβe2βB+1

)
≥ c

with an appropriate choice of c > 0, valid for every r > 0 and every R ∈ R3

with |R| = r. ut

4 An auxiliary inequality for autoconvolution products

Before we continue we define the Banach space L∞% (R3) of functions v ∈
L∞(R3) with finite norm

‖w‖L∞% (R3) = sup
R∈R3

%(|R|)|w(R)| , (4.1)

where % is as in (2.5). We mention that the Mayer f -function defined in (2.3)
belongs to this space by virtue of (2.1). Note that L∞% (R3) is continuously

embedded in L1(R3) and L∞(R3), because the parameter α in (2.1) is as-
sumed to satisfy α > 3. It readily follows that the convolution w ∗ w′ of two
functions w,w′ ∈ L∞% (R3) is an absolutely integrable function. In fact, we

show next that the result belongs to L∞% (R3) again.

Proposition 4.1 Let w,w′ ∈ L∞% (R3). Then w ∗ w′ ∈ L∞% (R3) with

‖w ∗ w′‖L∞% (R3) ≤ c%2
α+1‖w‖L∞% (R3)‖w′‖L∞% (R3) , (4.2)

where c% is the embedding constant for the embedding of L∞% (R3) into L1(R3).
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Proof For R ∈ R3 and 0 < ε < 1 we consider the ball Bε|R|(R) ⊂ R3 of
radius ε|R| around R. Depending on whether R′ is inside or outside this ball,
there holds

1 + |R′|2 ≥ (1− ε)2(1 + |R|2) , R′ ∈ Bε|R|(R) , (4.3a)

1 + |R′ −R|2 ≥ ε2(1 + |R|2) , R′ ∈ R3 \ Bε|R|(R) . (4.3b)

Using (4.3a) it follows for every R ∈ R3 that

%(|R|)

∣∣∣∣∣
∫
Bε|R|(R)

w(R−R′)w′(R′) dR′

∣∣∣∣∣
≤
∫
Bε|R|(R)

%(|R|)
%(|R′|)

∣∣w(R−R′)
∣∣ %(|R′|)

∣∣w′(R′)∣∣ dR′
≤ 1

(1− ε)α
‖w′‖L∞% (R3)

∫
Bε|R|(R)

∣∣w(R−R′)
∣∣dR′

≤ 1

(1− ε)α
‖w‖L1(R3)‖w′‖L∞% (R3) ,

while (4.3b) implies that

%(|R|)

∣∣∣∣∣
∫
R3\Bε|R|(R)

w(R−R′)w′(R′) dR′

∣∣∣∣∣
≤
∫
R3\Bε|R|(R)

%(|R|)
%(|R−R′|)

%(|R−R′|)
∣∣w(R−R′)

∣∣ ∣∣w′(R′)∣∣dR′
≤ 1

εα
‖w‖L∞% (R3)

∫
R3\Bε|R|(R)

∣∣w′(R′)∣∣ dR′ ≤ 1

εα
‖w‖L∞% (R3) ‖w′‖L1(R3) .

Adding these two inequalities we thus conclude that

‖w ∗ w′‖L∞% (R3)

≤ 1

(1− ε)α
‖w‖L1(R3)‖w′‖L∞% (R3) +

1

εα
‖w‖L∞% (R3) ‖w′‖L1(R3) (4.4)

≤
( 1

(1− ε)α
+

1

εα

)
c%‖w‖L∞% (R3)‖w′‖L∞% (R3) ,

where c% is the embedding constant for the embedding L∞% (R3) ⊂ L1(R3).
By choosing ε = 1/2 we finally obtain (4.2). ut

Proposition 4.1 implies that we can rescale the norm of L∞% (R3) to make

L∞% (R3) a commutative Banach algebra with respect to convolution.
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For w ∈ L∞% (R3) and n ∈ N let Wn be the n-fold autoconvolution of w,
i.e.,

W1 = w , Wn+1 = w ∗Wn , n ≥ 1 . (4.5)

By virtue of Proposition 4.1 each Wn belongs to L∞% (R3), and there holds

‖Wn‖L1(R3) ≤ ‖w‖nL1(R3) , n ≥ 1 . (4.6)

Proposition 4.2 Assume that w ∈ L∞% (R3) satisfies

‖w‖L1(R3) = q < 1 , (4.7)

and let q ∈ (q, 1). Then the autoconvolution products Wn defined in (4.5)
satisfy

‖Wn‖L∞% (R3) ≤ C∗ q
n‖w‖L∞% (R3) , n ∈ N , (4.8)

for some constant C∗ > 0 depending only on α, q, and q.

Proof We are going to prove by induction the inequality

‖Wn‖L∞% (R3) ≤
1

εα
‖w‖L∞% (R3)

1− (q/q)n

1− q/q
qn−1 , (4.9)

where we let

ε = 1− (q/q)1/α , (4.10)

which is a positive number; this readily implies (4.8). The induction base
n = 1 of (4.9) is obviously correct because ε < 1 according to (4.10). For the
induction step from n to n + 1, n ≥ 1, we apply inequality (4.4) from the
proof of Proposition 4.1 with w′ = Wn and ε of (4.10) to obtain

‖Wn+1‖L∞% (R3) ≤ q ‖Wn‖L∞% (R3) +
1

εα
‖w‖L∞% (R3) ‖Wn‖L1(R3) .

Inserting (4.6), (4.7), and the induction hypothesis (4.9) this yields

‖Wn+1‖L∞% (R3) ≤
1

εα
‖w‖L∞% (R3)

(1− (q/q)n

1− q/q
+ (q/q)n

)
qn ,

which coincides with the bound (4.9) for the norm of Wn+1. ut

Corollary 4.3 Under the assumptions of Proposition 4.2 the infinite series

WΣ =

∞∑
n=1

Wn (4.11)

converges in L∞% (R3).
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5 The Ursell function

The Ursell function (relative to the origin) of a grand canonical ensemble
with pair potential u ∈ U (see Section 3) is defined to be

ωΛ(R) = ρ
(2)
Λ (R, 0)− ρ(1)Λ (R)ρ

(1)
Λ (0) , R ∈ Λ . (5.1)

For z ∈ Z the Ursell function can be expanded into an absolutely convergent
power series

ωΛ(R) =

∞∑
N=2

aN,Λ(R)zN , (5.2)

the coefficients of which depend on u via the Mayer function f defined in
(2.3). They can be represented in the form

aN,Λ(R) =
1

(N − 2)!

∫
ΛN−2

∑
C∈CN

∏
(i,j)∈C

f(Ri −Rj) dR2,N , (5.3a)

cf. Stell [16], where R1 = R and R2 = 0, CN is the set of connected graphs
with N vertices, labeled 1, . . . , N , and the product in (5.3a) runs over all
bonds in C: the notation (i, j) refers to a bond connecting vertices i and
j, where we use the convention that i < j for (i, j) ∈ C. For N = 2 the
representation (5.3a) is to be read as

a2,Λ(R) = f(R) . (5.3b)

According to (5.1) and the discussion in Section 3 there holds

ωΛ(R) −→ ω(R) := ρ(2)(R, 0)− ρ20 , |Λ| → ∞ , (5.4)

uniformly on every compact subset for R ∈ R3 and for all activities z in a
compact subinterval of (3.1). Likewise, if ∂ωΛ ∈ L

(
Vu, L∞(Λ)

)
and ∂ω ∈

L
(
Vu, L∞(R3)

)
are the derivatives with respect to u of the Ursell function

and of its thermodynamical limit, respectively, and if v ∈ Vu then(
(∂ωΛ)v

)
(R) −→

(
(∂ω)v

)
(R) , (5.5)

uniformly on every compact subset for R ∈ R3.
The goal of this section is two-fold. First, we derive a sharp upper bound

for the decay of this thermodynamical limit ω as |R| → ∞. Subsequently, we
extend this analysis to estimate its perturbation, given a perturbation of the
potential. To begin with, we prove the following inequality.

Lemma 5.1 Let u ∈ U and ũ = u+ζv, where v ∈ Vu with ‖v‖Vu
≤ δ0(u) for

some δ0(u) > 0 sufficiently small, and where ζ ∈ C with |ζ| ≤ 1. Associated

with ũ is the (complex) Mayer function f̃ , and

ϕ̃N (RN ) =
∑
C∈CN

∏
(i,j)∈C

f̃(Ri −Rj) , RN ∈ ΛN . (5.6)
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If z satisfies (3.1), where cβ and B are given by (2.4) and (2.2), respectively,
then ∫

ΛN−2

∣∣ϕ̃N (RN )
∣∣ dR2,N ≤ CΣ e

NβBNN−2cN−1β

1

%(R1 −R2)
(5.7)

with % of (2.5) and with some constant CΣ, which only depends on u and
δ0(u).

Proof Let u and ũ = u+ ζv be as in the statement of this lemma, with δ0(u)
as specified in Section 2. Below, we may reduce the size of δ0(u) somewhat

further. We define ŨN , VN , and |V |N as in (2.2), replacing u by ũ, v and |v|,
respectively, on the right-hand side. Using this notation it follows from (2.2)
that ũ satisfies the stability bound

Re
(
ŨN (RN )

)
= UN (RN ) + Re (ζ)VN (RN )

≥ UN (RN ) − |V |N (RN ) ≥ −NB
(5.8)

for every coordinate vector RN ∈ (R3)N , because u − |v| ∈ U by the defi-
nition of δ0. Therefore the absolute value of the function ϕ̃N of (5.6) can be
estimated by means of the tree-graph inequality

|ϕ̃N (RN )| ≤ eNβB
∑
T ∈TN

∏
(i,j)∈T

∣∣f̃(Ri −Rj)
∣∣ , (5.9)

where TN is the set of trees with N vertices; this particular version of the
tree-graph inequality can be found in Ueltschi [17].

As far as the Mayer function is concerned there holds

∣∣f̃(R)− f(R)
∣∣ ≤ βe−β(u−|v|)(|R|)

∣∣v(|R|)
∣∣ ≤


1

e(1− δ0)
‖v‖Vu

, |R| < r0 ,

βe2βB

%(|R|)
‖v‖Vu , |R| ≥ r0 ,

and hence, it follows that

|f̃(R)| ≤ cβw(R), R ∈ R3 , (5.10)

where cβ has been introduced in (2.4), and

w(R) =
1

cβ
|f(R)| + Cβ

δ0
%(|R|)

(5.11)

for some suitably chosen constant Cβ > 0; note that w is a positive function.
Reducing the size of δ0, when necessary, we can make sure that

q :=

∫
R3

w(R) dR < 1 (5.12)

by virtue of (2.4). We fix δ0 = δ0(u) accordingly for the remainder of this
paper. Note that (5.10) holds uniformly for all ũ = u + ζv with ‖v‖Vu

≤ δ0
and ζ ∈ C, |ζ| ≤ 1.
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As we have already mentioned in Section 4 the Mayer function associ-
ated with u belongs to the Banach space L∞% (R3) introduced in (4.1), hence
the function w of (5.11) satisfies the assumptions of Proposition 4.2 and
Corollary 4.3: As before we denote by Wn,WΣ ∈ L∞% (R3) the corresponding
autoconvolutions (4.5) and their infinite series (4.11), respectively. Note that
there exists CΣ > 0, such that

0 < Wn(R) ≤ WΣ(R) ≤ CΣ
1

%(R)
(5.13)

for every R ∈ R3 and n ∈ N, because w is a positive function and WΣ ∈
L∞% (R3).

By virtue of (5.10) we have the inequality∫
ΛN−2

∏
(i,j)∈T

∣∣f̃(Ri −Rj)
∣∣ dR2,N ≤

∫
RN−2

∏
(i,j)∈T

cβw(Ri −Rj) dR2,N (5.14)

for any fixed tree T ∈ TN . Such a tree consists of (i) a “backbone” with
n bonds and n − 1 inner vertices, where 1 ≤ n ≤ N − 1, which connects
the vertices 1 and 2, and (ii) n + 1 subtrees rooted at all vertices of this
backbone. One can first integrate (5.14) over all N − n− 1 vertices of these
subtrees besides their roots, with each of these integrals being bounded by
cβ according to (5.12); integrating over the inner vertices of the backbone
thereafter constitutes an n-fold autoconvolution of cβw, i.e.,∫
ΛN−2

∏
(i,j)∈T

∣∣f̃(Ri−Rj)
∣∣dR2,N ≤ cN−1β Wn(R1−R2) ≤ CΣ c

N−1
β

1

%(R1 −R2)
,

where we have used (5.13) for the final inequality. Note that this estimate is
independent of the particular form of the tree T . Therefore, making use of
Cayley’s result that TN consists of exactly NN−2 different trees, we conclude
that∑

T ∈TN

∫
ΛN−2

∏
(i,j)∈T

∣∣f̃(Ri −Rj)
∣∣ dR2,N ≤ CΣ N

N−2cN−1β

1

%(R1 −R2)
,

and hence, the inequality (5.7) follows from (5.9). ut

Corollary 5.2 Let u ∈ U and let z satisfy (3.1), where cβ and B are given
by (2.4) and (2.2), respectively. Then the thermodynamical limit (5.4) of the
Ursell function belongs to L∞% (R3), i.e., there exists cω = cω(u, z) > 0 such
that ∣∣ω(R)

∣∣ ≤ cω(1 + |R|2)−α/2 (5.15)

for every R ∈ R3.

Proof From (5.2) and (5.3) we have

ωΛ(R) =

∞∑
N=2

zN

(N − 2)!

∫
ΛN−2

ϕN (RN ) dR2,N ,



13

where R1 = R and R2 = 0, and ϕN (R) is defined as in (5.6) with f̃ re-
placed by the Mayer function f associated with u. It therefore follows from
Lemma 5.1 that

∣∣ωΛ(R)
∣∣ ≤ CΣ

cβ

( ∞∑
N=2

(
zcβe

βB
)N NN−2

(N − 2)!

)
1

%(R)

≤ CΣ
cβ

( ∞∑
N=2

(
zcβe

βB+1
)N) 1

%(R)
= CΣ

z2cβe
2(βB+1)

1− zcβeβB+1

1

%(R)
.

Now the assertion follows by turning to the thermodynamical limit |Λ| → ∞,
compare (5.4). ut

Some comments on Corollary 5.2 are in order.
The estimate (5.15) can be found in a paper by Groeneveld [3] with similar

assumptions on the pair potential3, but it appears that he only published a
proof for nonnegative potentials (in [4]). On the other hand, Ruelle included
in his book [14] a proof of the weaker statement that ω ∈ L1(R3); see also
[13].

A common way of estimating the decay of the Ursell function consists in
rewriting the Mayer function in (5.9) as

f(R) =
(
f(R)ea(R)

)
e−a(R)

in such a way that a satisfies a triangle inequality, and fea is bounded and
absolutely integrable. In this case the integral over the backbone considered
above can be estimated by e−a(R) times an autoconvolution of fea, and the
former factor e−a(R) provides an estimate for the rate of decay. In our case
this approach could be realized with

ea(R) = |R|α
′−3 for any 3 < α′ < α ,

but the resulting bound for the Ursell function is evidently suboptimal.
The bound (5.15), on the other hand, is optimal up to multiplicative

constants, as follows from the cluster expansion (5.2), which gives

ω(R) = z2f(R) + O(z3) , z → 0 ,

according to (5.3b).
In the remainder of this section we treat the Ursell function as a function

of the pair potential u and prove the following result.

Theorem 5.3 Assume that z satisfies (3.1). Then the thermodynamical limit
of the Ursell function, considered a function of u ∈ U , has a Fréchet deriva-
tive ∂ω ∈ L (Vu, L∞% (R3)). More precisely, if ω and ω̃ denote the thermo-
dynamical limits of the Ursell functions corresponding to u and ũ = u + v,

3 The notation in [3] concerning the assumptions on u and the corresponding
hypothesis is not fully clear, though.
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respectively, then there exists Cω = Cω(u, z), such that

‖ω̃ − ω‖L∞% (R3) ≤ Cω‖v‖Vu
, (5.16)

‖ω̃ − ω − (∂ω)v‖L∞% (R3) ≤ Cω‖v‖2Vu
, (5.17)

provided that ‖v‖Vu is sufficiently small.

Proof Let u ∈ U and δ0 = δ0(u) be chosen as in the proof of Lemma 5.1.
Fix a perturbation v0 ∈ Vu with ‖v0‖Vu ≤ δ0 and an activity parameter z
satisfying (3.1). In addition, let R1 = R ∈ Λ and R2 = 0, and for N ≥ 2 let
R2,N ∈ ΛN−2 be further N − 2 points in Λ. With these variables fixed we
define entire functions

fij(ζ) = e−β
(
u(|Ri−Rj |)+ζv0(|Ri−Rj |)

)
− 1 , 1 ≤ i < j ≤ N ,

of ζ ∈ C, and

ϕN (ζ) =
∑
C∈CN

∏
(i,j)∈C

fij(ζ) .

Note that fij(ζ) coincides with f̃(Ri−Rj) and ϕN (ζ) coincides with ϕ̃(RN )
of Lemma 5.1, when R1 = R and R2 = 0; we switch to the new notation
to highlight the dependency on ζ, rather than RN . Further note that ϕN is
also an entire function of ζ, because the number of connected graphs with N
vertices is finite. For 0 < ε ≤ 1/2 we can therefore apply Cauchy’s integral
formula to deduce that∣∣ϕN (ε)−ϕN (0)

∣∣ =
∣∣∣ ε
2πi

∫
|ζ|=1

ϕN (ζ)

ζ(ζ − ε)
dζ
∣∣∣ ≤ ε

π

∫ 2π

0

∣∣ϕN (eiθ)
∣∣ dθ (5.18)

and∣∣ϕN (ε)− ϕN (0)− εϕ′N (0)
∣∣

=
∣∣∣ ε2
2πi

∫
|ζ|=1

ϕN (ζ)

ζ2(ζ − ε)
dζ
∣∣∣ ≤ ε2

π

∫ 2π

0

∣∣ϕN (eiθ)
∣∣ dθ . (5.19)

Integrating ϕN , N ≥ 2, over the free parameters R2,N ∈ ΛN−2, but
keeping R1 = R and R2 = 0 fixed, we can extend (5.3) and (5.2) to scalar
functions of the complex variable ζ, namely

aN,Λ(ζ) =
1

(N − 2)!

∫
ΛN−2

ϕN (ζ) dR2,N ,

and

ωΛ(ζ) =

∞∑
N=2

aN,Λ(ζ)zN . (5.20)

For ζ = 0 we recover the original definitions (5.3) and (5.2). Since ϕN is
absolutely integrable with respect to R2,N ∈ ΛN−2, cf. (5.7), and the integral
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is uniformly bounded for |ζ| ≤ 1, it follows that aN is also complex analytic
for |ζ| ≤ 1. Furthermore, from (5.19) and (5.7) we obtain

∣∣aN,Λ(ε)− aN,Λ(0)− εa′N,Λ(0)
∣∣ ≤ 2CΣ ε

2 NN−2

(N − 2)!
eNβBcN−1β

1

%(R)

≤ CΣ
2ε2

cβ
(cβe

βB+1)N
1

%(R)

for 0 < ε ≤ 1/2.
Since the infinite series (5.20) converges uniformly for ζ ∈ C, |ζ| ≤ 1 (for

the same fixed parameters R, z, and the same perturbation v0 ∈ Vu), the
complex extension (5.20) of the Ursell function is also an analytic function
of ζ in a neighborhood of the unit disk with

∣∣ωΛ(ε)− ωΛ(0)− εω′Λ(0)
∣∣ ≤ CΣ ε

2z2
2cβe

2(βB+1)

1− zcβeβB+1

1

%(R)
(5.21)

for 0 < ε ≤ 1/2. Accordingly, (5.21) implies that when choosing v0 ∈ Vu, z
as in (3.1), and R ∈ Λ as above then

ω′Λ(0) =
(
(∂ωΛ)v0

)
(R) .

On the other hand, (5.21) is valid for every z as in (3.1), R ∈ Λ, and in-
dependent of the particular choice of v0 ∈ Vu with ‖v0‖Vu

≤ δ0. Therefore,
denoting by ωΛ and ω̃Λ the Ursell functions (5.1) associated with the refer-
ence potential u and any perturbed potential ũ = u+ v with ‖v‖Vu

≤ δ0/2,
we can rewrite (5.21) for

v0 = δ0v/‖v‖Vu and ε = ‖v‖Vu/δ0

as ∣∣ω̃Λ(R)− ωΛ(R)−
(
(∂ωΛ)v

)
(R)
∣∣

≤ CΣ z
2 2

δ20

cβe
2(βB+1)

1− zcβeβB+1
‖v‖2Vu

1

%(R)
,

(5.22)

valid for every R ∈ Λ.
Starting from (5.18) the same line of argument leads to the corresponding

estimate

∣∣ω̃Λ(R)− ωΛ(R)
∣∣ ≤ CΣ z

2 2

δ0

cβe
2(βB+1)

1− zcβeβB+1
‖v‖Vu

1

%(R)
, (5.23)

valid for every R ∈ Λ and every v ∈ Vu with ‖v‖Vu
≤ δ0/2. Finally, (5.16)

and (5.17) readily follow from (5.22) and (5.23), respectively, by turning to
the thermodynamical limit |Λ| → ∞, compare (5.4) and (5.5). ut
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6 Iterative Boltzmann inversion

Now we turn to the fixed point operator

Φ(u) = u + γ log
F (u)

g†

associated with the IBI method (1.2), where γ > 0 is a fixed parameter. Recall
that F is the nonlinear operator (1.1) which takes a pair potential u ∈ U
onto the corresponding radial distribution function g in (3.2). This operator is
associated with the corresponding grand canonical ensemble at fixed (inverse)
temperature β > 0 and fixed activity z > 0, where for technical reasons we
slightly restrict the interval of admissible activity parameters, cf. (6.2) below.
Note that Henderson [9] as well as Soper [15] considered the operator F for a
canonical ensemble at fixed temperature and fixed (counting) density ρ0; it is
possible to redo the subsequent analysis also for this case with ρ0 sufficiently
small by using the equivalence of ensembles and treating the activity as a
function of the counting density and the potential, i.e., z = z(ρ0, u).

For fixed radial argument r > 0 it is an immediate consequence of the
results in [5] that the scalar function u 7→ (Φ(u))(r) is differentiable with
respect to u, and the corresponding derivative is given by

Φ′(u)v = v + γ
F ′(u)v

F (u)
, (6.1)

pointwise for r > 0. However, since F (u) – as a function of r – decays
exponentially near r = 0 it is not at all obvious whether Φ′ actually is a
Fréchet derivative in L (Vu,Vu). This is the key assertion of our main result.

Theorem 6.1 Let u ∈ U , and let

0 < z <
1

1 + e

1

cβe2βB+1
. (6.2)

Then there exists CΦ = CΦ(u, z) > 0 such that

‖Φ(ũ)− Φ(u)‖Vu
≤ CΦ‖ũ− u‖Vu

(6.3)

for ‖ũ − u‖Vu
sufficiently small. Moreover, Φ is Fréchet differentiable with

respect to u with Φ′(u) ∈ L (Vu,Vu), and

‖Φ(ũ)− Φ(u)− Φ′(u)(ũ− u)‖Vu ≤ CΦ‖ũ− u‖2Vu
(6.4)

for ‖ũ− u‖Vu
sufficiently small.

To prepare for a proof of this theorem we investigate the core region
0 < r ≤ r0 and the remaining interval r > r0 separately. We start with the
core region.
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Lemma 6.2 Let u ∈ U , and let z satisfy (6.2). Then there exists C > 0,
depending on u and on z but independent of r ∈ (0, r0], such that∣∣∣(Φ(ũ)− Φ(u)

)
(r)
∣∣∣ ≤ C ‖ũ− u‖Vu

u(r) , (6.5)∣∣∣(Φ(ũ)− Φ(u)− Φ′(u)(ũ− u)
)
(r)
∣∣∣ ≤ C ‖ũ− u‖2Vu

, (6.6)

uniformly for ũ ∈ U , provided that ‖ũ− u‖Vu
is sufficiently small.

Proof Referring to the cavity distribution function y defined in (3.3) we have

F (u) = g = e−βuy ,

from which we deduce the representation

F ′(u)v = −βe−βuvy + e−βu(∂y)v , (6.7)

pointwise for 0 < r ≤ r0 and all v ∈ Vu; here, ∂y denotes the Fréchet
derivative of y with respect to u, compare Proposition 3.1.

Let ỹ be the cavity distribution function associated with ũ = u + v for
some v ∈ Vu sufficiently small. Then we have

Φ(ũ)− Φ(u) = v + γ log
F (ũ)

F (u)
= (1− βγ)v + γ log

eβũF (ũ)

eβuF (u)

= (1− βγ)v + γ log(ỹ/y) ,

and because y is bounded from below, cf. Proposition 3.1, we can use the
estimate ∣∣log(1 + x) − x

∣∣ ≤ 2x2 , |x| < 1/2 , (6.8)

to obtain

Φ(ũ)− Φ(u) = (1− βγ)v + γ
ỹ − y
y

+ O(‖v‖2Vu
) (6.9)

= (1− βγ)v + O(‖v‖Vu
) ,

uniformly for 0 < r ≤ r0 and ‖v‖Vu
sufficiently small. Because of (2.1) and

the definition (2.6) of ‖ · ‖Vu
this implies assertion (6.5).

Starting from (6.9) and inserting the representations (6.1) and (6.7) of
Φ′(u) and F ′(u), respectively, it follows that

Φ(ũ)− Φ(u)− Φ′(u)v = γ
( ỹ − y

y
− F ′(u)v

F (u)
− βv

)
+ O(‖v‖2Vu

)

=
γ

y

(
ỹ − y − eβuF ′(u)v − βvy

)
+ O(‖v‖2Vu

)

=
γ

y

(
ỹ − y − (∂y)v

)
+ O(‖v‖2Vu

) = O(‖v‖2Vu
)

by virtue of Proposition 3.1, again, and this estimate also holds uniformly
for 0 < r ≤ r0. This proves assertion (6.6). ut
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Lemma 6.3 Under the assumptions of Lemma 6.2 there exists C > 0, such
that ∣∣∣(Φ(ũ)− Φ(u)

)
(r)
∣∣∣ ≤ C‖ũ− u‖Vu

(1 + r2)−α/2 , (6.10)∣∣∣(Φ(ũ)− Φ(u)− Φ′(u)(ũ− u)
)
(r)
∣∣∣ ≤ C‖ũ− u‖2Vu

(1 + r2)−α/2 , (6.11)

uniformly for r ≥ r0, provided that ‖ũ− u‖Vu
is sufficiently small.

Proof Using (3.2) and (5.4) we readily obtain the representation(
F (u)

)
(r) = g(r) = 1 +

1

ρ20
ω(R) , r = |R| ≥ 0 , (6.12)

and therefore (5.15), (5.16), and the differentiability of ρ0 with respect to u
imply a local Lipschitz bound∣∣∣(F (ũ)− F (u)

)
(r)
∣∣∣ ≤ CF ‖ũ− u‖Vu(1 + r2)−α/2 (6.13)

with some CF = CF (u, z) > 0 for all ‖ũ − u‖Vu
sufficiently small and all

r ≥ 0. Moreover, for r ≥ 0 and R ∈ R3 with |R| = r we further deduce from
(6.12) that (

F ′(u)v
)
(r) = ∂

( 1

ρ20
ω(R)

)
v ,

where the right-hand side denotes the derivative of the scalar function
u 7→ ω(R)/ρ20 with respect to u in direction v ∈ Vu. Again, using the differ-
entiability of ρ0 = ρ0(u), (5.15), and (5.17), we conclude that∣∣∣(F (ũ)− F (u)− F ′(u)v

)
(r)
∣∣∣ ≤ C ′F ‖v‖2Vu

(1 + r2)−α/2 , (6.14)

for some C ′F > 0, all v = ũ− u ∈ Vu sufficiently small, and all r ≥ 0.
Since F (u) is uniformly bounded from below for the given value of the

activity and all r ≥ r0 according to Proposition 3.1 and (2.1), (6.13) implies
that the fraction (F (ũ) − F (u))/F (u) is bounded by 1/2 in absolute value,
say, for ‖v‖Vu

sufficiently small and all r ≥ r0. Accordingly,∣∣∣Φ(ũ)− Φ(u)
∣∣∣ ≤ |v| + γ

∣∣∣log
F (ũ)

F (u)

∣∣∣
= |v| + γ

|F (ũ)− F (u)|
F (u)

+ 2γ
∣∣∣F (ũ)− F (u)

F (u)

∣∣∣2
by virtue of (6.8). Using once again that F (u) is bounded from below for the
respective radii r ≥ r0, (6.13) and (2.6) imply the first assertion (6.10).

Using (6.1) the same argument as before yields∣∣Φ(ũ)− Φ(u)− Φ′(u)v
∣∣ = γ

∣∣∣log
F (ũ)

F (u)
− F ′(u)v

F (u)

∣∣∣
≤ γ

∣∣∣F (ũ)− F (u)− F ′(u)v

F (u)

∣∣∣ + 2γ
∣∣∣F (ũ)− F (u)

F (u)

∣∣∣2
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for ‖v‖Vu sufficiently small and all r ≥ r0. The second assertion (6.11) thus
follows from (6.14) and (6.13). ut

After these preparations we can readily finalize our theoretical analysis
of the Iterative Boltzmann Inversion.

Proof of Theorem 6.1 Assembling the upper bounds (6.5) and (6.10) from
Lemma 6.2 and Lemma 6.3 we obtain the first inequality (6.3). Likewise,
(6.6) and (6.11) yield inequality (6.4). ut

We conclude with two remarks.

Remark 6.4 For the particular choice γ = 1/β of the relaxation parameter
in IBI, compare (1.3), the first term on the right-hand side of (6.9) vanishes,
and hence, in this particular case we have the stronger Lipschitz bounds

‖Φ(ũ)− Φ(u)‖L∞% (R3) ≤ CΦ‖ũ− u‖Vu ,

‖Φ(ũ)− Φ(u)− Φ′(u)(ũ− u)‖L∞% (R3) ≤ CΦ‖ũ− u‖2Vu
,

under the same assumptions as in Theorem 6.1. �
Remark 6.5 Since the cavity distribution function y† = eβu

†
g† associated with

the true pair potential u†, compare (1.1), is bounded and strictly positive
according to Proposition 3.1, we have

− 1

β
log g†(r) = u† − 1

β
log y† = u† + O(1) , (6.15)

uniformly for 0 < r ≤ r0. On the other hand it follows from Corollary 5.2
that there exists cg > 0 with∣∣g†(r)− 1

∣∣ ≤ cg(1 + r2)−α/2 ,

which implies ∣∣log g†(r)
∣∣ ≤ C(1 + r2)−α/2 (6.16)

by virtue of (6.8) for some C > 0 and r sufficiently large. Moreover, since y†

has strictly positive lower and upper bounds, the representation g† = e−βu
†
y†

of the radial distribution function implies that (6.16) extends to all r ≥ r0
after increasing C appropriately, when necessary.

We thus conclude from (6.15) and (6.16) that the potential (1.5) of mean
force is a Lennard-Jones type pair potential with the same parameter α, and
therefore the first iteration of IBI is well-defined for this initial guess. �
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