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Abstract We present new implicit-explicit (IMEX) finite volume schemes for nu-
merical simulation of cloud dynamics. We use weakly compressible equations to
describe fluid dynamics and a system of advection-diffusion-reaction equations to
model cloud dynamics. In order to efficiently resolve slow dynamics we split the
whole nonlinear system in a stiff linear part governing the acoustic and gravitational
waves as well as diffusive effects and a non-stiff nonlinear part that models non-
linear advection effects. We use a stiffly accurate second order IMEX scheme for
time discretization to approximate the stiff linear operator implicitly and the non-
stiff nonlinear operator explicitly. Fast microscale cloud physics is approximated by
small scale subiterations.
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1 Mathematical model

In this paper we present a new operator splitting finite volume method for weakly
compressible flows including cloud dynamics. The mathematical model consists
of the Navier-Stokes equations describing weakly compressible fluid flow includ-
ing viscous and friction effects. Further atmospheric factors like the Coriolis force
and turbulence are not considered in this paper. In order to model microscale cloud
physics we add evolution equations for water vapor, cloud water and rain. Phase
change between these phases is modeled by an advection-diffusion-reaction system.
Note that the total mass of the dry air remains constant, whereas the momentum and
energy are not conserved, but satisfy the balance laws.

Let p̄, ρ̄ , ū(= 0), θ̄ , ρθ express the pressure, density, velocity, potential temper-
ature and energy for a dry background state, which is in the hydrostatic equilibrium

∂x3 p̄ =−ρ̄g,

where g = 9.81[m/s2] is the gravitational acceleration. Furthermore let p′, ρ ′, u′,
θ ′, (ρθ)′ stand for the corresponding perturbations of the background states. Thus,
we have p = p̄+ p′, ρ = ρ̄ +ρ ′, θ = θ̄ +θ ′, and (ρθ) = ρ̄ θ̄ + ρ̄θ ′+ρ ′θ̄ +ρ ′θ ′ ≡
ρθ +(ρθ)′. Since the background velocity ū = 0, it holds u≡ u′ and we will omit
the prime symbol hereinafter.

In order to avoid numerical instabilities due to the multiscale flow behavior in
the case of low Mach number limit, numerical simulations are typically realized for
the perturbations, which satisfy the following equations

∂tρ
′+∇ · (ρu) = 0,

∂t(ρu)+∇ ·
(
ρu⊗u+ p′ Id−ρµm

(
∇u+(∇u)T ))=−ρ

′ge3 ≡−ρ
′g

 0
0
1

 ,

∂t(ρθ)′+∇ · (ρθu−ρµh∇θ) = Sθ , (1)

where µm,µh are viscosity and heat conductivity constants. To include the moist
dynamics we use in (1)3 instead of the potential temperature for dry air the moist
potential temperature. Denoting T the temperature, the moist potential temperature
can be approximated as

θ =
Rm

R
T
(

p0

p

)Rm/cp

,

where p0 = 105[Pa] is the reference pressure, R = 287.05[J/(kg ·K)] is the gas
constant of dry air, Rm = (1− qv− qc− qr)R+ qvRv is the modified gas constant
of moist air and cp = 1005[J/(kg ·K)], Rv = 461.51[J/(kg ·K)]. The mass fractions
of water vapor, cloud water and rain are denoted by qv, qc and qr, respectively; their
evolution equations will be specified below, cf. (2).

In order to close the system we determine pressure from the state equation in-

cluding moisture p = p0

(
Rρθ

p0

)γm
, γm =

cp
cp−Rm

. The source term Sθ that is re-
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lated to the cloud microphysics for moist processes, cf. (2), expresses the released
or absorbed latent heat. For dry case Rm reduces to R and Sθ = 0.

For representing (liquid) clouds in models, different approaches are described
in literature, see, e.g., [4, 6] and references therein. In the present study we use a
so-called single moment scheme, i.e. evolution equations for mass concentrations
of water vapor qv, cloud water qc and rain qr are coupled to the system of equa-
tions (1). The formulation of cloud models is not possible from first principles, since
some approximations and fits to experimental data must be used in order to formu-
late the equations for mass concentrations only. We chose a consistent approach for
modeling the process rates in the cloud model, combining existing approaches in a
meaningful way, see, e.g., [9]. The microphysical cloud processes of warm clouds
are modeled by the following advection-diffusion-reaction system

∂t(ρqv)+∇ · (ρqvu−ρµh∇qv) =−C+E,

∂t(ρqc)+∇ · (ρqcu−ρµh∇qc) =C−A1−A2,

∂t(ρqr)+∇ · (ρqru−ρvqe3qr−ρµh∇qr) = A1 +A2−E. (2)

The term ∇ ·(−ρvqe3qr), where vq ∼ q1/5
r is the raindrop fall velocity, represents the

sedimentation of rain water. C, E, A1, A2 denote rates of condensation and evapora-
tion (phase transition vapor/water) and collision rates. We assume that cloud water
does not sediment by gravity, whereas rain water falls downwards. Thus, we intro-
duce autoconversion A1 for colliding cloud drops forming rain and accretion A2 for
rain droplets growing by collecting cloud water. Thermodynamic equilibrium is de-
termined by saturation mixing ratio q∗ = q∗(p,T ). Thus, the source terms can be
formulated as follows:

C ∼ qc(qv−q∗), E ∼ q1/2
r (q∗−qv), A1 ∼ q2

c , A2 ∼ qcq19/20
r .

Note that in general cloud physics parametrisations show stiff behavior. The stiff-
ness is a result of modeling processes with power laws containing exponents α with
0 < α < 1. To close the coupled model (1), (2) we express the potential temperature
source term as

Sθ = ρ
L
cp

θ

T
(C−E)

with the specific latent heat of vaporization L = 2.53 ·106[J/kg]. Note that we for-
mulate condensation and evaporation processes explicitely, in contrast to the usual
approach of saturation adjustment, see, e.g. [7], which is commonly used in opera-
tional weather forecast models. The explicit formulation introduces additional stiff
terms and very small time scales.
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2 Numerical scheme

The numerical approximation of the coupled model (1), (2) is realized by the oper-
ator splitting approach. We split the whole system into the macroscopic flow equa-
tions and microscopic cloud model. The macroscopic model is approximated by
the IMEX finite volume scheme. On the other hand the cloud equations are ap-
proximated using several subiterations of the same implicit-explicit scheme using
smaller time steps. The macroscopic flow equations use the solution of the micro-
scopic cloud model at the last time step and the cloud model uses the solution of the
flow equations from the new time step. This yields to a first order splitting. In order
to increase the accuracy the second order Strang splitting can be used.

2.1 IMEX finite volume scheme for the Navier-Stokes equations

In order to take into account multiscale behavior of the solution and to derive
an asymptotically stable and accurate scheme, we propose the following split-
ting of the Navier-Stokes equations into a linear L and a nonlinear N part, see
also [2] and the references therein. To this end let us rewrite (1) in the follow-
ing compact form. Let w = (ρ ′,ρu,ρθ ′)T , F(w) = (ρu,ρu⊗ u + p′ Id,ρθu)T ,
D(w) =

(
0,∇ ·

(
ρµm

(
∇u+(∇u)T

))
,∇ · (ρµh∇θ)

)T and S(w) = (0,−ρ ′ge3,Sθ )
T ,

then (1) can be equivalently written as

∂w
∂ t

=−∇ ·F(w)+D(w)+S(w)≡L (w)+N (w). (3)

We would like to point out that the choice of the linear and nonlinear operators,
L and N , respectively, is crucial. Indeed, we choose L to model linear acoustic
and gravitational waves as well as a part of viscous fluxes, whereas the operator
N describes resulting nonlinear advective/convective and the remaining viscous
effects. Analogously, to split the diffusive terms into linear and nonlinear terms in
w, we set D = DL +DN with

DL =
(
0,µm(∆(ρu)+∆(ρuT )),µh∆ (ρθ)′

)T
,

DN =
(
0,−µm((u+uT )∆ρ +∇ρ · (∇u+∇uT )),µh

(
∆
(
ρθ
)
−θ∆ρ−∇ρ ·∇θ

))T
.

Analogously as in [2] we then set

L (w)≡−∇ ·FL(w)+SL(w)+DL(w) :=−∇ ·

 ρu
p′ Id
θρu

+

 0
−ρ ′ge3

0

+DL(w)
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with the linearized pressure p′= γm
p(ρθ)′

ρθ

(
Rρθ

p0

)γm−γ

, where γ = 1.4 is the adiabatic
constant, and

N (w)≡−∇ ·FN(w)+SN(w)+DN(w) :=−∇ ·

 0
ρu⊗u
θ ′ρu

+

 0
0

Sθ

+DN(w).

Consequently, we discretize the Navier-Stokes equations by the IMEX scheme
in time and approximate the linear stiff system at a new time level tn+1 and the
nonlinear system at the old time level tn. This yields the first order IMEX scheme. In
order to increase the accuracy, the second order IMEX schemes can be applied, see,
e.g., [1, 3, 2]. In our recent papers [1, 3] we have studied several second order IMEX
schemes with respect to their asymptotic preserving properties. Here we confine
ourselves with the second order globally stiffly accurate ARS(2,2,2) scheme

wn+ 1
2 = wn +α∆ t

(
L
(

wn+ 1
2

)
+N (wn)

)
,

wn+1 = wn +∆ t
(

δN (wn)+(1−δ )N
(

wn+ 1
2

))
+∆ t

(
αL

(
wn+1)+(1−α)L

(
wn+ 1

2

))
,

(4)

where α = 1− 1√
2
, δ = 1− 1

2α
and ∆ t = tn+1− tn.

Spatial discretization is realized by the finite volume scheme. In particular having
a regular rectangular grid we approximate the corresponding divergence operators
by applying the Gauss theorem and the numerical flux functions in order to ap-
proximate fluxes along the cell interfaces. Let us denote the finite difference in the
x1-direction at the mesh cell Ωi, j,m ≡ [xi−∆x1/2,xi +∆x1/2]× [y j −∆x2/2,y j +
∆x2/2]× [zm−∆x3/2,zm +∆x3/2] by δx1 fi, j,m ≡ fi+1/2, j,m− fi−1/2, j,m; an analo-
gous notation holds in the x2 and x3 direction. The finite volume discretization of
the operators L and N yields

L (w`)i, j,m =−
3

∑
k=1

1
∆xk

δxkF
∗
L (w

`)i, j,m +S(w`)i, j,m +DL(w`)i, j,m, `= n+1,

N (w`)i, j,m =−
3

∑
k=1

1
∆xk

δxkF
∗
N(w

`)i, j,m +DN(w`)i, j,m, `= n,n−1.

Here DL(w`) and DN(w`) are the second order central difference approximations
of the operators DL(w`) and DN(w`), respectively. For the numerical fluxes on cell
interfaces, i.e. F ∗

L (w`) and F ∗
N(w`), we apply the central difference flux in the

linear subsystem L and the Rusanov numerical flux in the nonlinear subsystem
N . To keep the finite volume approximation of the explicit advection part stable
we control the time step by the Courant-Friedrichs-Lewy stability condition

CFLu ≡ max
k=1,2,3

max
i, j,m
|(uk)i, j,m|

∆ t
∆xk

< 1.
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2.2 IMEX finite volume scheme for the cloud dynamics model

Similar to the IMEX finite volume discretization of the compressible Navier-Stokes
equations in Subsection 2.1, we approximate the advection-diffusion-reaction sys-
tem (2) by the finite volume method in space and by the second order IMEX scheme
in time.

First, we rewrite the system (2) in the following compact form. Let wq =
(ρqv,ρqc,ρqr)

T , Fq(wq)= (ρqvu,ρqcu,ρqru−ρvqe3qr)
T , Dq(wq)=∇ ·(ρµh∇qv,

ρµh∇qc,ρµh∇qr)
T and Sq(wq) = (−C+E,C−A1−A2,A1+A2−E)T , then (2) can

be equivalently written as

∂wq

∂ t
=−∇ ·Fq(wq)+Dq(wq)+Sq(wq). (5)

Realizing that µh∇ · (ρ∇qx) = µh∆ (ρqx)− µhqx∆ρ − µh∇ρ ·∇qx for any x ∈
{c,v,r} we can split Dq into

Dimpl
q = µh (∆ (ρqv) , ∆ (ρqc) , ∆ (ρqr))

T ,

Dexpl
q = −µh (qv∆ρ +∇ρ ·∇qv, qc∆ρ +∇ρ ·∇qc, qr∆ρ +∇ρ ·∇qr)

T .

Then, equation (5) can be rewritten as

∂wq

∂ t
= Iq(wq)+Eq(wq), (6)

where Iq(wq) = Dimpl
q (wq) and Eq(wq) =−∇ ·Fq(wq)+Dexpl

q (wq)+Sq(wq).
Let us point out that the coupled system (1), (2) has a multiscale character, since

it combines fast microscopic cloud dynamics with the slower macroscopic fluid
flow. Therefore, we choose the time step for the cloud dynamics ∆ tcloud =

∆ t
const. for

a sufficiently big constant. Time discretization of the cloud dynamics is realized by
the second order IMEX ARS(2,2,2) scheme (4), whereas the diffusive terms Iq(wq)
are approximated implicitly at a new micro-time level ts+1 and the remaining terms
Eq(wq) explicitly at the old time level ts.

The spatial discretization is done by the finite volume scheme. With the same
notation as in Subsection 2.1 the discretizations of the operators Iq and Eq yield

Iq(w`
q)i, j,m = D impl

q (w`
q)i, j,m, `= s+1,

Eq(w`
q)i, j,m =−

3

∑
k=1

1
∆xk

δxk F∗q(w
`
q)i, j,m +Dexpl

q (w`
q)i, j,m +Sq(w`

q)i, j,m, `= s,s−1,

where Dexpl
q (w`

q) is a second order central difference approximation of Dexpl
q (w`

q);

analogous notation holds for D impl
q (w`

q). For the numerical fluxes on the cell inter-
faces δxk F∗q(w`

q) we apply the Lax-Friedrichs numerical flux.
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3 Numerical test

In this test we simulate free convection of a smooth warm air bubble as proposed in
[5], see also [8]. A warm air bubble that is surrounded by cold air is placed on the
bottom of the domain. Since the density of the warm air is lower than the surround-
ing air, the bubble rises up due to the buoyancy force. The experiment was simulated
on a two-dimensional (x1− x3 plane) domain Ω = [0,20.0]× [0,10.0] [km2].

The initial conditions for the Navier-Stokes equations are chosen as

ρ
′
=

p0

R
π

1
γ−1

e

(
1
θ
− 1

θ̄

)
=−ρ̄

θ
′

θ
, πe = 1− gx3

cpθ̄
, ρ̄ =

p0

Rθ̄
π

1
γ−1

e ,

u = 0,

θ
′
=

{
0, r > rc,

2cos2
(

πr
2

)
, r ≤ rc,

where θ̄ = 300 [K], r = ‖(x1,x3)
T − (10.0,2.0)T‖2 [km], rc = 2.0 [km], p0 = p̄ =

105 [Pa] and (x1,x3)
T ∈Ω . For the cloud model the initial conditions are

qv = min(q∗ f (x3),0.014), qc = 0, qr = 0,

where f is the relative humidity and given by

f (x3) = 1− 3
4

(
x3

xtr

)5/4

, xtr = 12 [km].

We apply the no-flux boundary conditions u ·n = 0, ∇ρ
′ ·n = 0, ∇(ρθ)

′ ·n = 0.
In Fig. 1 the time evolution of a moist air bubble, obtained by the ARS(2,2,2)

finite volume approximation, is shown. The results for the potential temperature as
well as for the vertical velocity are quite similar to the ones by Bryan and Fritsch
proposed in [5] which confirms the reliability of our numerical model.
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with DUNE-FEM. In: E. Krause (ed.) Computational Sci., & High Performance Computing IV,
NNFM 115, pp. 93–106. Springer (2011)

5. Bryan, G., Fritsch, J.M.: A benchmark simulation for moist nonhydrostatic numerical models.
Monthly weakly review 130, 2917–2928 (2002)

6. Khain, A.P., Beheng, K.D., Heymsfield, A., Korolev, A., Krichak, S.O., Levin, Z., Pinsky, M.,
Phillips, V., Prabhakaran, T., Teller, A., van den Heever, S.C., Yano, J.I.: Representation of
microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk
parameterization. Reviews of Geophysics 53, 247–322 (2015)

7. Lamb, D., Verlinde, J.: Physics and chemistry of clouds. Cambridge University Press (2011)
8. Schuster, D., Brdar, S., Baldauf, M., Dedner, A., Klöfkorn, R., Kröner, D.: On discontinuous
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Fig. 1 Rising moist air bubble test computed by the IMEX ARS(2,2,2) finite volume scheme;
µh = 10−2,µm = 10−3, CFLu = 0.4, the mesh resolution ∆x1 = 100 [m] and ∆x3 = 50 [m]. The
colors correspond to the vertical velocity u3 (left column) and the moist potential temperature θ

(right column).


