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Abstract

We consider a haptotaxis cancer invasion model that includes two families of cancer cells. Both
families, migrate on the extracellular matrix and proliferate. Moreover the model describes an
epithelial-to-mesenchymal-like transition between the two families, as well as a degradation and a
self-reconstruction process of the extracellular matrix.

We prove in two dimensional space positivity and conditional global existence and uniqueness of
the classical solutions of the problem for large initial data.

1 Introduction

Cancer research is a multidisciplinary effort to understand the causes of cancer and to develop strategies
for its diagnosis and treatment. The involved disciplines include the medical science, biology, chemistry,
physics, informatics, and mathematics. From a mathematical point of view, the study of cancer has
been an active research field since the 1950s and addresses different biochemical processes relevant to
the development of the disease, see e.g. [34, 4, 47, 28, 37].

In particular, a large amount of the research focuses on the modelling of the invasion of the Extracellular
Matrix (ECM); the first step in cancer metastasis and one of the hallmarks of cancer, [13, 33, 7, 32].
The invasion of the ECM involves also a secondary family of cancer cells that is more resilient to cancer
therapies. These cells are believed to possess stem cell-like properties, such as self-renewal and differ-
entiation, as well as the ability to metastasize, i.e. detach from the primary tumour, afflict secondary
sites within the organism and engender new tumours [6, 19]. These cells are termed Cancer Stem Cells
(CSCs) and originate partly from the more usual Differentiated Cancer Cells (DCCs) via a cellular differ-
entiation program that is related to another cellular differentiation program found also in normal tissue,
the Epithelial-Mesenchymal Transition (EMT) [26, 12]; see also [36] for a discussion on the relation
between “Stem cells, cancer, and cancer stem cells”.

Both types of cancer cells invade the ECM and while doing so, affect its architecture, composition, and
functionality. One of the methods they use, is to secrete matrix metalloproteinases (MMPs), i.e. enzymes
that degrade the ECM and allow for the cancer cells to move through it more freely, [11, 10].

During the EMT and the subsequent invasion of the ECM, chemotaxis1, and haptotaxis2, play funda-
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1cellular movement under the influence of one or more chemical stimuli
2cellular movement along gradients of cellular adhesion sites or ECM bound chemoattractants
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DCC CSC ECM

Figure 1: Graphical description on the model (1.1). The more aggressive CSCs escape the main body of the
tumour and invade the ECM faster than the DCCs. At the same time, cancer secreted MMPs degrade the
ECM.

mental roles [38, 35]. These processes are typically described using macroscopic deterministic models
with the densities of the participating components as their primal variables. These models follow the
path laid in [31, 20] (and later (re-)derived using a many particle system approach in [40]) to describe
the chemotactic movement and aggregation of Dictyostelium discoideum bacteria. When accounting for
chemotaxis, these models are called Keller-Segel (KS) or KS-type systems. They are known to potentially
lead to blow-up of solutions (depending on the spatial dimension and the initial mass) in finite time and
their analysis has been a field of intensive research, e.g. [5, 9].

In a similar spirit, KS-like models have been used to model cancer invasion while taking into account
chemotaxis, haptotaxis, and other processes important in development of cancer, see e.g. [3, 43]. Al-
though these models are simplifications of the biochemical reality of the tumour, their solutions display
complex dynamics and their mathematical analysis is challenging. We refer indicatively to some relevant
results on the analysis of these models. It is by far not an exhaustive list of the topic, rather an insight
to analytical approaches for similar models.

In [27] a single family of cancer cells is considered. The model is haptotaxis with cell proliferation, matrix
degradation by the MMPs, without matrix remodelling. In this work global existence of weak solutions
is proven. In addition, the solutions are shown to be uniformly bounded using the method of “bounded
invariant rectangles”, which can be applied once the model is reformulated in divergence form using a
particular change of variables.

In [45] the author considers a haptotaxis model with one type of cancer cells, which accounts for self-
remodelling of the ECM, and ECM degradation by MMPs. With respect to the MMPs, the model is
parabolic. The decoupling between the PDE governing the cancer cells, and the ODE describing the
ECM, is facilitated by a particular non-linear change of variables. The global existence of classical
solutions follows by a series of delicate a-priori estimates and corresponding limiting processes.

In [46] a single family of cancer cells is considered that responds in chemotactic-haptotactic way to its
environment. The ECM is degraded by the MMPs and is self-remodelled. The diffusion of the MMPs
is assumed to be very fast and the resulting equation is elliptic. Global existence of classical solutions
follows after a-priori estimates, that are established using energy-type arguments.

In [42] a single family of cancer cells was considered in a chemotaxis-haptotaxis model where the subcel-
lular binding of integrins was taken into account, and where the focus was on the coupling of the motility
of the cells with the subcellular dynamics. Conveniently chosen regularized (neighbouring) problems are
used to construct the generalized solution of the model while exploiting the “quasi-dissipative property”
that the coupling of the cancer cells with the ECM exhibits.

In [41] two species of cancer cells are considered using a motility-proliferation dichotomy hypothesis on
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the cancer cells. Further assumptions include the matrix degradation and (self-)remodelling, as well as
a type of radiation therapy. The authors prove global existence of weak solutions via an appropriately
chosen “approximate” problem and entropy-type estimates.

For further results on the analysis of similar models we refer to the works [8, 17, 50, 44, 16, 42]. Overall,
many techniques have been developed in the literature to tackle the particularities that these models
exhibit, i.e. one or more cancer cell species, chemotaxis or haptotaxis systems, constant or not constant
diffusion coefficients, and constant or non-constant EMT rates.

In our paper the cancer invasion model features DCCs and CSCs, with their densities denoted by cD and
cS respectively, and the EMT transition between them. We consider the model in two space dimensions
and assume that both families of cancer cells perform a haptotaxis biased random motion modelled by
the combination of diffusion and advection terms. We assume moreover that they proliferate with a rate
that is influenced by the local density of the total biomass. The ECM (with density denoted by v) is
assumed to be self-remodelled and to compete for free space and resources with the DCCs and the CSCs
in a typical logistic way. Its is moreover assumed to be degraded by the MMPs (of density m) which in
turn are produced by the cancer cells. The MMPs are assumed to diffuse freely in the environment and
to decay with a constant rate.

The model proposed in [39, 14] reads as follows:


cDt = ∆cD − χD∇ ·

(
cD∇v

)
− µEMT c

D + µD c
D(1− cS − cD − v) ,

cSt = ∆cS − χS∇ ·
(
cS∇v

)
+ µEMT c

D + µS c
S(1− cS − cD − v) ,

vt = −mv + µv v(1− cS − cD − v),

mt = ∆m+ cS + cD −m,

(1.1)

with (fixed) coefficients χD, χS , µS , µD, µv > 0 and an EMT rate function µEMT whose properties will
be specified below.

The system (1.1) is complemented with the no-flux boundary conditions

∂νc
D − χDcD∂νv = ∂νc

S − χScS∂νv = ∂νm = 0 in ∂Ω× (0, T ) (1.2)

and the initial data

cD(·, 0) = cD0 , c
S(·, 0) = cS0 , v(·, 0) = v0, m(·, 0) = m0 on Ω, (1.3)

for which we assume that

cD0 , c
S
0 ,m0 ≥ 0, 0 ≤ v0 ≤ 1, cD0 , c

S
0 ,m0, v0 ∈ C2+l(Ω̄), (1.4)

for a given 0 < l < 1. The domain Ω ⊂ R2 is bounded with smooth boundary ∂Ω that satisfies

∂Ω ∈ C2+l. (1.5)

The model (1.1) has been scaled with respect to reference values of the primary variables. Moreover, the
coefficients of the diffusion terms and of the reaction diffusion equation for the MMPs have been reduced
to 1 since they do not participate in the final (conditional) global existence result. For the complete
coefficient/parameter set we refer to [39].

We moreover assume that the parameters of the problem satisfy

µD ≥ χDµv, µS ≥ χSµv. (1.6)

This condition is crucial for the analysis presented in this paper. Similarly to the open problem posed
at the end of [45] it is not clear whether solutions to (1.1) may blow up in case (1.6) does not hold.

We assume that the EMT rate µEMT is a function µEMT : R4 → R, that is Lipschitz continuous, has
Lipschitz continuous first derivatives, and satisfies moreover for µM > 0,

0 ≤ µEMT ≤ µM . (1.7a)
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Due to the continuity, we get for µEMT that,

‖µEMT(cD1 , c
S
1 , v1,m1)− µEMT(cD2 , c

S
2 , v2,m2)‖C1,0(Q̄T ) ≤L(‖cD1 − cD2 ‖C1,0(Q̄T ) + ‖cS1 − cS2‖C1,0(Q̄T )

+ ‖v1 − v2‖C1,0(Q̄T ) + ‖m1 −m2‖C1,0(Q̄T )),

(1.7b)

for an L with
L = C1‖(cD1 , cS1 , v1,m1)‖C1,0(Q̄T ). (1.7c)

Here Q̄T is the closure of the cylinder

QT := Ω× (0, T ). (1.8)

Let us note that throughout this work we will call solutions of (1.1) strong solutions provided they
are regular enough that all derivatives appearing in (1.1) are weak and the solution belongs to the
corresponding Sobolev space, e.g. W 2,1

p (QT ). We refer to solutions of (1.1) as classical solutions provided
their regularity is such that all terms in (1.1) are pointwise well-defined. The main result in this work is
the proof of existence and uniqueness of global classical solutions to the problem (1.1).
Theorem 1.1 (Global existence). Let (1.6) hold, then for any T > 0 and 0 < l < 1 there exists a unique
classical solution

(cD, cS, v,m) ∈ (C2+l,1+l/2(Q̄T ))4,

of the system (1.1)–(1.5) with cD, cS,m ≥ 0 and 0 ≤ v ≤ 1.

The proof of Theorem 1.1 is mainly based on Theorem 2.1, which is a local existence result for strong
solutions, on Theorem 2.2 proving that the strong solutions are classical solutions, and on a series of
a-priori estimates, inspired by [45], that enable us to extend the local solutions for large times. We
note that the raise of the regularity, which takes place in Lemma 5.1, could not be achieved by means
of energy-type techniques as in [45]. We instead base our argumentation on parabolic Lp theory and
Sobolev embeddings, using an approach that resembles the strategy employed in [46].

Comparing this work with [27, 45, 46] we note that the model (1.1) features two types of cancer cells.
We treat their corresponding equations separately due to the different motility parameters of the two
families, but their non-linear coupling by the EMT necessitates particular treatment. In comparison to
[41] the model we consider in this work assumes that both families of cancer cells migrate and proliferate
and that the EMT takes place only in one direction. Thus, we do not consider mesenchymal-epithelial
transition. Moreover, we allow for a wide variety of EMT coefficient (functions) that are bounded and
Lipschitz continuous (1.7a). The study of (1.1) is mostly motivated by its properties; in particular, by
its prediction that CSCs invade the ECM while remaining “below detection levels” [39] and by the very
dynamic solutions that develop “sharp” concentrations and “thin” interaction waves, see also Section 6.
Moreover, the analysis is neither trivial nor a straight forward application of existing theories.

The rest of this paper is structured as follows: in Section 2 we perform a change of variables and prove
local existence of strong solutions by a fixed point argument. In addition, we show that these strong
solutions are classical solutions. Section 3 is devoted to a series in of a-priori estimates which continues
in Section 4. These estimates allow us to extend the local solutions to global solutions in Section 5. We
conclude with two appendices. Appendix A gathers some facts from parabolic theory and Appendix B
contains the proof of a technical lemma.

2 Local existence of classical solutions regularity

In this section we show local in time existence of classical solutions. To this end we reformulate (1.1)
using a change of variables.
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2.1 Change of variables

Following [45, 46] we perform the change of variables

{
aD = cDe−χDv

aS = cSe−χSv
.

Consequently, the system (1.1) recasts as


aD
t = e−χDv∇ ·

(
eχDv∇aD

)
+ χDa

Dvm− µEMT a
D + (µD − χDµv v)aDρdev

aS
t = e−χSv∇ ·

(
eχSv∇aS

)
+ χSa

Svm+ µEMT a
DeχDv−χSv + (µS − χSµv v)aSρdev

mt = ∆m+ eχSvaS + eχDvaD −m,
vt = −mv + µv vρdev

, (2.1)

where
ρdev = 1− eχSvaS − eχDvaD − v (2.2)

describes the deviation of the total density from the equilibrium value 1.

The system is closed with initial and boundary conditions resulting from (1.2) and (1.3){
∂νa

D = ∂νa
S = ∂νm = 0 in ∂Ω× (0, T )

aD(·, 0) = aD
0 , a

S(·, 0) = aS
0 , v(·, 0) = v0, m(·, 0) = m0 on Ω,

(2.3)

Analogously, (1.4) implies

aD
0 , a

S
0 ,m0 ≥ 0, 0 ≤ v0 ≤ 1, aD

0 , a
S
0 ,m0, v0 ∈ C2+l(Ω̄). (2.4)

For the rest of this work we will use the notations

W 2,1
p (QT ) = {u : QT → R|u,∇u,∇2u, ∂tu ∈ Lp(QT )},
W 2
p (Ω) = {u : QT → R|u,∇u,∇2u ∈ Lp(QT )},

C1,1(Q̄T ) = {u : QT → R|u,∇u, ∂tu ∈ C0(Q̄T )},
C1,0(Q̄T ) = {u : QT → R|u,∇u ∈ C0(Q̄T )}.

2.2 Local existence

In this section we establish existence and uniqueness of local (in time) classical solutions of (2.1). We
begin by showing existence and uniqueness of local (in time) strong solutions.
Theorem 2.1 (Local existence and uniqueness). Let (2.4) and (1.5) be satisfied. Then there exists a
unique strong solution (aD, aS, v,m) ∈W 2,1

p (QT0
)×W 2,1

p (QT0
)×C1,1(Q̄T0

)×W 2,1
p (QT0

) (for any p > 5)
of system (2.1), (2.3) for a final time T0 > 0 depending on

M = 3‖aD0 ‖C2 + 3‖aS0‖C2 + 9‖v0‖C1 + ‖m0‖C2 + 3.

Moreover,
aD, aS,m ≥ 0, 0 ≤ v ≤ 1.

Proof. We will prove the local existence by Banach’s fixed point theorem

Spaces. Let X be the Banach space of functions (aD, aS, v) with finite norm

‖(aD, aS, v)‖X = ‖aD‖C1.0(Q̄T ) + ‖aS‖C1.0(Q̄T ) + ‖v‖C1.0(Q̄T ), 0 < T < 1 (2.5)

and

XM :=
{

(aD, aS, v) ∈ (C1,0(Q̄T ))3 : aD, aS, v are nonnegative, satisfy (2.3), and ‖(aD, aS, v)‖X ≤M
}
.
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Fixed point. For any (aD, aS, v) ∈ XM we define (aD
∗ , a

S
∗, v∗) = F (aD, aS, v) given such that

mt −∆m+m = aDeχDv + aSeχSv in QT , (2.6a)

∂νm = 0 in ∂Ω× (0, T ), m(·, 0) = m0 in Ω, (2.6b)

v∗t = −mv∗ + µvv∗ρdev in QT , (2.6c)

v∗(·, 0) = v0, (2.6d)

aD
∗ t −∆aD

∗ − χD∇v∗ · ∇aD
∗ + [µEMT − (µD − χDµvv)ρdev]aD

∗ = χDa
Dvm, (2.6e)

∂νa
D
∗ = 0 in ∂Ω× (0, T ), aD

∗ (·, 0) = aD
0 in Ω, (2.6f)

aS
∗t −∆aS

∗ − χS∇v∗ · ∇aS
∗ − (µS − χSµvv)ρdeva

S
∗ = χSa

Svm+ µEMTa
D
∗ e

χDv−χSv, (2.6g)

∂νa
S
∗ = 0 in ∂Ω× (0, T ), aS

∗(·, 0) = aS
0 in Ω, (2.6h)

where ρdev = 1− eχSvaS − eχDvaD − v. For the proof we fix some (arbitrary) p > 5 and set λ = 1− 5
p .

F is well defined and F (XM ) ⊂ XM . We start with the component m and consider the equations
(2.6a)-(2.6b). Since 0 < T < 1 and (aD, aS, v) ∈ XM this linear parabolic problem has a unique solution
by Theorem A.1:

‖m‖W 2,1
p (QT ) ≤ C2(M). (2.7)

Here we can apply the Sobolev embedding Theorem A.3 and get

‖m‖C1,0(Q̄T ) ≤ C3(M). (2.8)

Moreover, the parabolic comparison principle yields

m ≥ 0. (2.9)

The initial value problem (2.6c), (2.6d) can be written as

v∗t = h1v∗, v∗(·, 0) = v0, (2.10)

where
‖h1‖C1,0(Q̄T ) = ‖ −m+ µvρdev‖C1,0(Q̄T ) ≤ C4(M) (2.11)

due to (2.8) and (aS, aD, v) ∈ XM . The ODE system has the solution

v∗ = v0(x) exp

(∫ t

0

h1(x, s)ds

)
≥ 0 (2.12)

with gradient

∇v∗ = ∇v0(x) exp

(∫ t

0

h1(x, s)ds

)
+ v0(x) exp

(∫ t

0

h1(x, s)ds

)∫ t

0

∇h1(x, s)ds. (2.13)

For T ≤ 1
2C4(M) < log(2)/C4(M) we get

‖v∗‖C(Q̄T ) ≤ ‖v0‖C(Ω̄)e
C4(M)T ≤ 2‖v0‖C(Ω̄) (2.14)

‖∇v∗‖C(Q̄T ) ≤ ‖∇v0(x)‖C(Ω̄) exp(C4(M)T ) + ‖v0(x)‖C(Ω̄) exp(C4(M)T )TC4(M)

≤ 2‖∇v0‖C(Ω̄) + ‖v0‖C(Ω̄) (2.15)

and thus

‖v∗‖C1,0(Q̄T ) = ‖v∗‖C(Q̄T ) + ‖∇v∗‖C(Q̄T ) ≤ 3‖v0‖C(Ω̄) + 2‖∇v0‖C(Ω̄) ≤ 3‖v0‖C1(Ω̄) ≤M/3. (2.16)

Next, we deal with the parabolic problem (2.6e), (2.6f) that can be written as

a∗t −∆a∗ − χ∇v∗ · ∇a∗ − h2a∗ = h3 (2.17)
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with boundary and initial conditions given by (2.6f) where a∗ = aD
∗ , χ = χD. We have

‖∇v∗‖L∞(QT ) ≤M, ‖h2‖L∞(QT ) ≤ C5(M), ‖h3‖L∞(QT ) ≤ C6(M), (2.18)

because of (aD, aS, v) ∈ XM , (2.8), (1.7a). Applying the maximal parabolic regularity result (Theorem
A.1), there is a unique solution a∗ that satisfies

‖a∗‖W 2,1
p (Q̄T ) ≤ C7(M) for all p > 1. (2.19)

Further the Sobolev embedding A.3: W 2,1
p (Q̄T ) ↪→ C1+λ,(1+λ)/2(Q̄T ) gives us

‖a∗‖C1+λ,(1+λ)/2(Q̄T ) ≤ C8(M). (2.20)

If T ≤ C8(M)
−2
1+λ we get

‖a∗‖C1,0 = ‖a∗‖C0,0(Q̄T ) + ‖∇a∗‖C0,0(Q̄T )

≤ ‖a∗ − a0‖C0,0(Q̄T ) + ‖a0‖C0(Ω̄) + ‖∇a∗ −∇a0‖C0,0(Q̄T ) + ‖∇a0‖C0(Ω̄)

≤ sup
t1,t2∈[0,T ]

‖a∗(t1)− a∗(t2)‖C1(Ω̄) + ‖a0‖C1(Ω̄)

≤ T (1+λ)/2‖a∗‖C1,(1+λ)/2(Q̄T ) + ‖a0‖C1(Ω̄)

≤ T (1+λ)/2C8(M) + ‖a0‖C1(Ω̄)

≤ 1 + ‖a0‖C1(Ω̄)

≤M/3, (2.21)

where we have used the definition of the Hölder norm in the third inequality. Moreover,

a∗ ≥ 0 (2.22)

by the parabolic comparison principle since the right hand side of (2.6e) is non negative. Since we have
shown that aD

∗ ∈ XM , the assertion (2.18) is true also for a = aS in the problem (2.17). Hence (2.21),
(2.22) for a∗ = aS

∗ follow by the same arguments.

F is a contraction. We take (aD
1 , a

S
1 , v1), (aD

2 , a
S
2 , v2) ∈ XM and consider (aD

1∗, a
S
1∗, v1∗) = F (aD

1 , a
S
1 , v1),

(aD
2∗, a

S
2∗, v2∗) = F (aD

2 , a
S
2 , v2). As shown before one can find

m1,m2, ‖m1‖C1,0(Q̄T ), ‖m2‖C1,0(Q̄T ) ≤ C9(M)

that satisfy (2.6a), (2.6b) for (aD, aS,m, v) = (aD
1 , a

S
1 ,m1, v1), (aD

2 , a
S
2 ,m2, v2). Further we have

(m1 −m2)t −∆(m1 −m2) + (m1 −m2) = aD
1 e

χDv1 + aS
1e
χSv1 − aD

2 e
χDv2 − aS

2e
χSv2 in QT , (2.23)

∂ν(m1 −m2) = 0 in ∂Ω× (0, T ), (m1 −m2)(·, 0) = 0 in Ω, (2.24)

where

‖aD
1 e

χDv1 + aS
1e
χSv1 − aD

2 e
χDv2 − aS

2e
χSv2‖L∞(QT )

≤ ‖eχDv1(aD
1 − aD

2 )‖L∞(QT ) + ‖eχSv1(aS
1 − aS

2)‖L∞(QT )

+ ‖(eχDv1 − eχDv2)(aD
2 )‖L∞(QT ) + ‖(eχSv1 − eχSv2)(aS

2)‖L∞(QT )

≤ C10(M)(‖aD
1 − aD

2 ‖L∞(QT ) + ‖aS
1 − aS

2‖L∞(QT ) + ‖v1 − v2‖L∞(QT )). (2.25)

Hence by Theorem A.1 there is a solution to (2.23),(2.24) satisfying

‖m1 −m2‖W 2,1
p (QT ) ≤ C11(M)(‖aD

1 − aD
2 ‖L∞(QT ) + ‖aS

1 − aS
2‖L∞(QT ) + ‖v1 − v2‖L∞(QT ))

for all p > 1. The Sobolev embedding A.3 once again yields

‖m1 −m2‖C1,0(Q̄T ) ≤ C12(M)(‖aD
1 − aD

2 ‖L∞(QT ) + ‖aS
1 − aS

2‖L∞(QT ) + ‖v1 − v2‖L∞(QT )). (2.26)
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We get from (2.6c), (2.6d) that

(v1∗ − v2∗)t = h4(v1∗ − v2∗) + h5, (v1∗ − v2∗)(·, 0) = 0, (2.27)

where
h4 = −m1 + µvρdev,1, h5 = (m2 −m1)v2∗−µvv2∗(ρdev,2 − ρdev,1).

There we have used the notation

ρdev,1 = 1− eχSv1aS
1 − eχDv1aD

1 − v1, ρdev,2 = 1− eχSv2aS
2 − eχDv2aD

2 − v2.

Since (aD
i , a

S
i , vi) ∈ XM , i = 1, 2 and due to (2.26), we get

‖h4‖C1,0(Q̄T ) ≤ C13(M), (2.28)

‖h5‖C1,0(Q̄T ) ≤ C14(M)(‖aD
1 − aD

2 ‖C1,0(Q̄T ) + ‖aS
1 − aS

2‖C1,0(Q̄T ) + ‖v1 − v2‖C1,0(Q̄T )). (2.29)

The solution of the ODE (2.27) is given by

v1∗ − v2∗ =

∫ t

0

exp

(∫ t

τ

h4(x, s)ds

)
h5(x, τ)dτ, (2.30)

and thus

∇(v1∗−v2∗) =

∫ t

0

exp

(∫ t

τ

h4(x, s)ds

)
∇xh5(x, τ)dτ+

∫ t

0

exp

(∫ t

τ

h4(x, s)ds

)
h5(x, τ)

∫ t

τ

∇xh4(x, s)ds dτ.

(2.31)
Finally we obtain by using 0 < T < 1 and the bounds (2.28), (2.29) that

‖v1∗ − v2∗‖C1,0(Q̄T ) ≤ TC15(M)‖h5‖C1,0(Q̄T )

≤ TC16(M)(‖aD
1 − aD

2 ‖C1,0(Q̄T ) + ‖aS
1 − aS

2‖C1,0(Q̄T ) + ‖v1 − v2‖C1,0(Q̄T )). (2.32)

Next, we derive the parabolic problem for a ∈ {aD, aS} with the variables (χ, h6, h7) ∈ {(χD, hD6 , hD7 ), (χS , h
S
6 , h

S
7 )}

by (2.6e)–(2.6h)

(a1∗ − a2∗)t −∆(a1∗ − a2∗)− χ∇v1∗ · ∇(a1∗ − a2∗) + h6(a1∗ − a2∗) = h7 in QT , (2.33)

∂ν(a1∗ − a2∗) = 0 in ∂Ω, (a1∗ − a2∗)(·, 0) = 0 on Ω, (2.34)

where

hD6 = µEMT,1 − (µD − χDµvv1)ρdev,1, hS6 = −(µS − χSµvv1)ρdev,1,

hD7 = χD(aD1 m1v1 − aD2 m2v2) + χD∇(v1∗ − v2∗) · ∇aD
2∗

+ aD
2∗[(µD − χDµvv1)ρdev,1 − (µD − χDµvv2)ρdev,2 − (µEMT,1 − µEMT,2)],

hS7 = χS(aS1m1v1 − aS2m2v2) + χS∇(v1∗ − v2∗) · ∇aS
2∗ + aS

2∗[(µS − χSµvv1)ρdev,1

− (µS − χSµvv2)ρdev,2]− (µEMT,1 a
D
1∗e

χDv1−χSv1 − µEMT,2 a
D
2∗e

χDv2−χSv2).

We have used the notation

µEMT,1 = µEMT(cD1 , c
S
1 , v1,m1), µEMT,2 = µEMT(cD2 , c

S
2 , v2,m2).

Due to (aD
i , a

S
i , vi) ∈ XM , (2.16), (2.21), (2.26), (2.32), (1.7b), (1.7c) we can estimate

‖χD∇v1∗‖L∞(QT ), ‖χS∇v1∗‖L∞(QT ) ≤ C17(M) (2.35)

‖hD6 ‖L∞(QT ), ‖hS6 ‖L∞(QT ) ≤ C18(M), (2.36)

‖hD7 ‖L∞(QT ), ‖hS7 ‖L∞(QT ) ≤ C19(M)(‖aD
1 − aD

2 ‖C1,0(Q̄T ) + ‖aS
1 − aS

2‖C1,0(Q̄T )

+ ‖v1 − v2‖C1,0(Q̄T )). (2.37)
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Since 0 < T < 1 a solution of (2.33), (2.34) exists by Theorem A.1 with

‖a1∗ − a2∗‖W 2,1
p (QT ) ≤ C20(M)‖h7‖Lp(QT )

≤ C21(M)(‖aD
1 − aD

2 ‖C1,0(Q̄T ) + ‖aS
1 − aS

2‖C1,0(Q̄T )

+ ‖v1 − v2‖C1,0(Q̄T )),

hence the bound can be extended using the Sobolev embedding A.3 and we get

‖a1∗−a2∗‖C1+λ,(1+λ)/2(Q̄T ) ≤ C22(M)(‖aD
1 −aD

2 ‖C1,0(Q̄T ) +‖aS
1−aS

2‖C1,0(Q̄T ) +‖v1−v2‖C1,0(Q̄T )). (2.38)

Then follows

‖a1∗ − a2∗‖C1,0(Q̄T ) = ‖(a1∗ − a2∗)(x, t)− (a1∗ − a2∗)(x, 0)‖C1,0(Q̄T )

≤ T (1+λ)/2‖a1∗ − a2∗‖C1,(1+λ/2)(Q̄T )

≤ T (1+λ)/2C22(M)
(
‖aD

1 − aD
2 ‖C1,0(Q̄T ) + ‖aS

1 − aS
2‖C1,0(Q̄T ) + ‖v1 − v2‖C1,0(Q̄T )

)
.

(2.39)

If we take T0 = T such that

max{TC16(M), T (1+λ)/2C22(M)} < 1

3

we see by (2.32) and (2.39) that F is a contraction in XM .

Conclusion and regularity. According to the Banach fixed-point theorem F has a unique fixed point
(aD, aS, v), which together with m from (2.7) is the unique solution of (2.1), (2.3). By (2.7) and (2.19)
we have that

m, aD, aS ∈W 2,1
p (QT ).

Due to (2.10), (2.11), and (2.16) we get
v ∈ C1,1(Q̄T ).

By (2.22), (2.12), and (2.9) we get the non-negativity

aD, aS, v,m ≥ 0.

Moreover we note that due to the non negativity of v, 0 ≤ v0 ≤ 1, and

(1− v)t ≥ −µvv(1− v), (1− v)(·, 0) ≥ 0

(1− v) can not become negative and hence v ≤ 1.

Our next result shows that the strong solutions which we constructed in Theorem (2.1) are indeed
classical solutions.
Theorem 2.2 (Regularity). Under the initial and boundary conditions (2.3) and (2.4) the solution in
Theorem 2.1 satisfies

(aS, aD, v,m) ∈ (C2+l,1+l/2(Q̄T0
))4, (2.40)

for 0 < l < 1.

Proof. We use Theorem 2.1 and the Sobolev embedding A.3. Then we obtain for a sufficiently large
p > 5, that

aD, aS,m ∈ C1+l,(1+l)/2(Q̄T0
). (2.41)

We further derive from (2.1) that
(∂xiv)t = h8∂xiv − h9, (2.42)

where

h8 = −m+ µvρdev − µvv(1 + χSe
χSvaS + χDe

χDvaD), (2.43)

h9 = v∂xim+ µvv(eχSv∂xia
S + eχDv∂xia

D). (2.44)
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Because of (2.41) and v ∈ C1,1(Q̄T ) we get

h8, h9 ∈ Cl,l/2(Q̄T0). (2.45)

The solution of (2.42) is given by

∂xiv = ∂xiv0(x)e
∫ t
0
h8(x,s) ds −

∫ t

0

h9(x, τ)e
∫ t
τ
h8(x,s) ds dτ, (2.46)

and hence by (2.45)
∂xiv ∈ Cl,l/2(Q̄T0

). (2.47)

The equation for aD in (2.1) can be written as

aD
t −∆aD − χD∇v · ∇aD − h10a

D = h11, (2.48)

where

h10 = (µD − χDµvv)ρdev ∈ Cl,l/2(Q̄T0) (2.49)

h11 = χDa
Dvm− µEMTa

D ∈ Cl,l/2(Q̄T0
) (2.50)

by (2.41), (2.47), and (1.7b). Thus, we can apply Theorem A.2 and get together with (2.47) that the
solution of (2.48) satisfies

aD ∈ C2+l,1+l/2(Q̄T0
). (2.51)

Similarly, the equation for aS in (2.1) can be rewritten as

aS
t −∆aS − χS∇v · ∇aS − h12a

S = h13, (2.52)

h12 = (µS − χSµvv)ρdev ∈ Cl,l/2(Q̄T0
), (2.53)

h13 = χSa
Svm+ µEMTa

DeχDv−χSv ∈ Cl,l/2(Q̄T0
). (2.54)

Applying Theorem A.2 we obtain
aS ∈ C2+l,1+l/2(Q̄T0

). (2.55)

Furthermore, (2.41), v ∈ C1,1(Q̄T ), (2.6a), and (2.6b) yield

m ∈ C2+l,1+l/2(Q̄T0). (2.56)

By using (2.47) together with (2.51), (2.55), and (2.56) and repeating the proof of (2.47) for ∂2
xi,xjv, we

get
∂2
xi,xjv ∈ C

l,l/2(Q̄T0). (2.57)

The equation for v in (2.1) provides further that

vt = −mv + µvvρdev ∈ C2+l,l/2(Q̄T0
),

which yields together with v ∈ C1,1(Q̄T0
) and (2.57) that

v ∈ C2+l,1+l/2(Q̄T0
).

Remark 2.3. Let us note that the local existence of classical solutions that follow from the Theorems
2.1 and 2.2 is valid also for more than two space dimensions.
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3 A-priori estimates for ‖aD(t)‖L∞(Ω), ‖aS(t)‖L∞(Ω)

To extend the local (in time) solutions whose existence we have established in the last section to global
(in time) solutions we need some a priori estimates. Establishing those estimates is the purpose of this

section. Let (aD, aS, v,m) ∈
(
C2,1(QT )

)4
be a classical solution of (2.1) in [0, T ] for any T > 0. In what

follows we will show the corresponding a priori estimates. We begin by proving ‖ · ‖L1(Ω) bounds for aD,
aS and m uniformly in time.

Lemma 3.1. Let (aD, aS, v,m) ∈
(
C2,1(QT )

)4
be a solution of (2.1), then we have for all t ∈ (0, T ),

‖aD(t)‖L1(Ω) ≤ ‖cD(t)‖L1(Ω) ≤ max
{
‖cD0 ‖L1(Ω), |Ω|

}
(3.1a)

‖aS(t)‖L1(Ω) ≤ ‖cS(t)‖L1(Ω) ≤ max
{
‖cS0‖L1(Ω), c

S
max

}
(3.1b)

‖m(t)‖L1(Ω) ≤ max
{
‖m0‖L1(Ω),max

{
‖cD0 ‖L1(Ω), |Ω|

}
+ max

{
‖cS0‖L1(Ω), c

S
max

}}
(3.1c)

with

cSmax :=
|Ω|
2

(
1 +

√
1 + 4

µM
µS |Ω|

max
{
‖cD0 ‖L1(Ω), |Ω|

})
.

Proof. We integrate the cD equation in (1.1) over Ω and employ the boundary conditions (2.3) and
cD ≥ 0:

d

dt
‖cD(t)‖L1(Ω) =− ‖µEMTc

D(t)‖L1(Ω) + µD‖cD(t)‖L1(Ω) − µD
∫

Ω

cD(x, t)cS(x, t)dx

− µD
∫

Ω

(cD(x, t))2dx− µD
∫

Ω

cD(x, t)v(x, t)dx.

Due to the positivity of cD, cS and v we obtain

d

dt
‖cD(t)‖L1(Ω) ≤ µD‖cD(t)‖L1(Ω) − µD

∫
Ω

(cD(x, t))2dx.

or, after the boundedness of Ω and the corresponding embeddings, as

d

dt
‖cD(t)‖L1(Ω) ≤ µD‖cD(t)‖L1(Ω) −

µD
|Ω|
‖cD(t)‖2L1(Ω).

Since the right hand side is a quadratic polynomial with roots 0 and |Ω|, we deduce by comparison

‖cD(t)‖L1(Ω) ≤ max
{
‖cD0 ‖L1(Ω), |Ω|

}
.

Similarly, we see that due to the positivity of cS, v, the cS equation (1.1) implies

d

dt
‖cS(t)‖L1(Ω) = ‖µEMT‖L∞(Ω)‖cD(t)‖L1(Ω) + µS‖cS(t)‖L1(Ω) − µS

∫
Ω

cS(x, t)cD(x, t)dx

− µS
∫

Ω

(cS(x, t))2dx− µS
∫

Ω

cS(x, t)v(x, t)dx

≤ µM‖cD(t)‖L1(Ω) + µS‖cS(t)‖L1(Ω) − µS
∫

Ω

(cS(x, t))2dx

≤ µM‖cD(t)‖L1(Ω) + µS‖cS(t)‖L1(Ω) −
µS
|Ω|
‖cS(t)‖2L1(Ω)

≤ µM max
{
‖cD0 ‖L1(Ω), |Ω|

}
+ µS‖cS(t)‖L1(Ω) −

µS
|Ω|
‖cS(t)‖2L1(Ω).

The right-hand side has two roots, one negative and one positive that is larger than |Ω|:

|Ω|
2

(
1 +

√
1 + 4

µM
µS |Ω|

max
{
‖cD0 ‖L1(Ω), |Ω|

})
= cSmax.
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We deduce by comparison
‖cS(t)‖L1(Ω) ≤ max

{
‖cS0‖L1(Ω), c

S
max

}
.

For m we get from (1.1), after integration over Ω, due to the positivity of cD, cS, m, and the boundary
conditions (2.3), that:

d

dt
‖m(t)‖L1(Ω) ≤ ‖cD(t)‖L1(Ω) + ‖cS(t)‖L1(Ω) − ‖m(t)‖L1(Ω).

Using (3.1a) and (3.1b) we obtain

d

dt
‖m(t)‖L1(Ω) ≤ max

{
‖cD0 ‖L1(Ω), |Ω|

}
+ max

{
‖cS0‖L1(Ω), c

S
max

}
− ‖m(t)‖L1(Ω).

Finally we deduce that

‖m(t)‖L1(Ω) ≤ max
{
‖m0‖L1(Ω),max

{
‖cD0 ‖L1(Ω), |Ω|

}
+ max

{
‖cS0‖L1(Ω), c

S
max

}}
.

We have shown uniform in time L1 bounds of aD, aS,m. In order to prove a uniform in time L∞ estimate
for a we need the following Lemma which can be found (for an arbitrary number of dimensions) in [23,
Lemma 1] and is an extension of [17, Lemma 4.1]
Lemma 3.2. Let m0 ∈W 1

∞(Ω) and let cD, cS,m satisfy the equation m in (1.1) together with ∂m
∂ν

∣∣
ΓT

= 0.

Moreover, we assume that ‖cD(t) + cS(t)‖Lρ(Ω) ≤ C23 for 1 ≤ ρ and all t ∈ (0, T ). Then for ρ < 2

‖m(t)‖W 1
q (Ω) ≤ C24(q), t ∈ (0, T ), (3.2)

where

q <
2ρ

2− ρ
. (3.3)

Moreover, if ρ = 2 then (3.2) is valid for q < +∞, if ρ > 2 then (3.2) is valid for q = +∞.

Proof. See Appendix B.

We now combine Lemma 3.2 with a suitable Sobolev embedding to obtain a uniform bound for m in
higher Lebesgue spaces:
Lemma 3.3. Let m0 ∈W 1

∞(Ω), and cD, cS,m satisfy the equation for m in (1.1) together with ∂m
∂ν

∣∣
ΓT

=

0. Moreover, we assume that ‖cD(t) + cS(t)‖Lρ(Ω) ≤ C25 for 1 ≤ ρ, and all t ∈ (0, T ). Then,

‖m(t)‖Lr(Ω) ≤ C26(q) t ∈ (0, T ), (3.4)

for any r > ρ that satisfies
1

r
+ 1 >

1

ρ
. (3.5)

Proof. The proof is based on the Sobolev embedding W 1
q (Ω) ↪→ Lr

′
(Ω) for r′ < 2q

2−q , and Lemma 3.2.

Since q < 2ρ
2−ρ , it holds that 2r′ < (2 + r′)q < (2 + r′) 2ρ

2−ρ . That is,
(

2− 2ρ
2−ρ

)
r′ < 4ρ

2−ρ or

1

ρ
− 1 <

1

r′
. (3.6)

Then it holds
‖m(t)‖Lr′ (Ω) ≤ C27, t ∈ (0, T ), (3.7)

where r′ > ρ such that
1

r′
+ 1 >

1

ρ
. (3.8)
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The main result of this section is the following theorem which asserts uniform in time a priori bounds
for aD and aS in ‖ · ‖L∞(Ω).

Theorem 3.4. Let (aD, aS, v,m) ∈
(
C2,1(QT )

)4
be a solution of (2.1), and let (1.6) hold. Then for all

t ∈ (0, T ):
‖aD(t)‖L∞(Ω), ‖aS(t)‖L∞(Ω) ≤ C28. (3.9)

Proof. The proof is divided into 4 steps. We first derive a basic estimate, prove Lp bounds for all p in
step two and three and finally prove the L∞(Ω) estimate.

Step 1: First Lp(Ω) estimates. We set γ = 0 if p ≤ 2 and γ ∈ (0, 1) otherwise, and aγ = a+γ ≥ γ ≥ 0
so that

∇
(

(aD
γ )p/2

)
=
p

2
(aD
γ )p/2−1∇aD

γ , ∇
(

(aS
γ)p/2

)
=
p

2
(aS
γ)p/2−1∇aS

γ , for any p > 1. (3.10)

Since 0 ≤ v ≤ 1 we can consider the integrals
∫

Ω
eχDv(aD

γ )pdx,
∫

Ω
eχSv(aS

γ)pdx instead of
∫

Ω
(aD
γ )pdx,∫

Ω
(aS
γ)pdx, and get moreover

0 ≤ µD − χDµv ≤ µD, 0 ≤ µS − χSµv ≤ µS , (3.11)

using the above assumption. Using (2.1), (3.11), partial integration, (3.10), (1.7a), and the fact that
0 ≤ v ≤ 1, we obtain

d

dt

∫
Ω

eχDv(aD
γ )pdx =

∫
Ω

χDe
χDv∂tv(aD

γ )p dx+

∫
Ω

eχD vp(aD
γ )p−1∂ta

D dx

=− χD
∫

Ω

eχDvmv(aD
γ )pdx+ χD µv

∫
Ω

eχDv(aD
γ )pvρdev dx

+

∫
Ω

p(aD
γ )p−1∇ · (eχDv∇aD) dx+ χD

∫
Ω

eχDvp(aD
γ )p−1aDvmdx

−
∫

Ω

µEMT a
DeχDvp(aD

γ )p−1 dx+

∫
Ω

eχDvp(aD
γ )p−1(µD − χD µv v)aDρdev dx

≤(µD p+ χD µv)

∫
Ω

eχDv(aD
γ )p dx+ χD p

∫
Ω

eχD v(aD
γ )pmdx

−
∫

Ω

p(p− 1)(aD
γ )p−2|∇aD

γ |2eχDv dx

≤− 4(p− 1)

p

∫
Ω

|∇(aD
γ )p/2|2 dx+ (µD p+ χD µv)e

χD

∫
Ω

(aD
γ )p dx

+ χD pe
χD

∫
Ω

m(aD
γ )p dx. (3.12)

Similarly, we get

d

dt

∫
Ω

eχSv(aS
γ)pdx =

∫
Ω

χSe
χSv∂tv(aS

γ)p dx+

∫
Ω

eχS vp(aS
γ)p−1∂ta

S dx

=− χS
∫

Ω

eχSvmv(aS
γ)pdx+ χS µv

∫
Ω

eχSv(aS
γ)pvρdev dx

+

∫
Ω

p(aS
γ)p−1∇ · (eχSv∇aS) dx+ χS

∫
Ω

eχSvp(aS
γ)p−1aSvmdx

+

∫
Ω

µEMT a
DeχDvp(aS

γ)p−1 dx

+

∫
Ω

eχSvp(aS
γ)p−1(µS − χS µv v)aSρdev dx

≤− 4(p− 1)

p

∫
Ω

|∇(aS
γ)p/2|2 dx+ (µS p+ χS µv)e

χS

∫
Ω

(aS
γ)p dx

+ χS pe
χS

∫
Ω

m(aS
γ)p dx+ µM peχD

∫
Ω

aD(aS
γ)p−1 dx. (3.13)
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Step 2: Raise of p. We assume that both ‖aD
γ (t)‖Lq(Ω), ‖aS

γ(t)‖Lq(Ω) ≤ C29 for some q ≥ 1 and show
that

‖aD
γ (t)‖Lp(Ω), ‖aS

γ(t)‖Lp(Ω) ≤ C30,

where p = 4q
3 .

Since we are in d = 2 space dimensions the inequality

dp

dp+ 2q
< 1 +

2

d
− 1

q
, (3.14)

is true and allows us to find r > 1, such that

dp

dp+ 2q
<

1

r
< 1 +

2

d
− 1

q
. (3.15)

The first inequality justifies the Gagliardo-Nirenberg inequality

‖ · ‖2rL2r ≤ C31‖ · ‖2(r−1)

L2q/p ‖ · ‖2W 1
2
, (3.16)

and due to the second inequality there is a dual exponent r′ of r that satisfies the conditions of Lemma 3.3.
We take a ∈ {aD

γ , a
S
γ}. Applying Young’s inequality, (3.16), Lemma 3.3, and assumption ‖a(t)‖Lq(Ω) ≤

C29, we get for any ε > 0∫
Ω

map dx ≤ C32(ε)

∫
Ω

mr′ dx+ ε

∫
Ω

apr dx

≤ C33(ε) + ε‖ap/2‖2rL2r

≤ C33(ε) + εC34‖a‖p(r−1)
Lq ‖ap/2‖2W 1

2

≤ C33(ε) + εC35

∫
Ω

ap dx+ εC35

∫
Ω

|∇ap/2|2 dx. (3.17)

Since we are in two space dimensions we have the Gagliardo-Nirenberg interpolation inequality

‖ · ‖L2 ≤ C36‖ · ‖1/4W 1
2
‖ · ‖3/4

L3/2 , (3.18)

and we can moreover estimate
∫

Ω
ap dx by employing (3.18), Young’s inequality and ‖a(t)‖Lq(Ω) ≤ C29

(C37 + β)

∫
Ω

ap dx = (C37 + β)

∫
Ω

(ap/2)2 dx

= (C37 + β)‖ap/2‖2L2

≤ C38(C37 + β)‖ap/2‖1/2
W 1

2 (Ω)
‖ap/2‖3/2

L3/2(Ω)

≤ β

2
‖ap/2‖2W 1

2 (Ω) + C39‖ap/2‖2L3/2(Ω)

=
β

2
‖ap/2‖2W 1

2 (Ω) + C39‖a‖pL3p/4(Ω)

≤ β

2
‖ap/2‖2W 1

2 (Ω) + C40, (3.19)

where C37 and β are arbitrary positive numbers.

In order to prove the Lp bound for aD we insert (3.17) where a = aD into (3.12) and fix ε such that
εχDpe

χDC35 < 2(p− 1)/p to obtain

d

dt

∫
Ω

eχDv(aD
γ )p dx ≤ −2(p− 1)

p

∫
Ω

|∇(aD
γ )p/2|2 dx+ C41

∫
Ω

(aD
γ )p dx+ C42. (3.20)

By adding β
∫

Ω
(aD
γ )p dx to both sides of (3.20) we get

d

dt

∫
Ω

eχDv(aD
γ )p dx+β

∫
Ω

(aD
γ )p dx ≤ −2(p− 1)

p

∫
Ω

|∇(aD
γ )p/2|2 dx+(C41 +β)

∫
Ω

(aD
γ )p dx+C42. (3.21)
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We can now insert (3.19), where a = aD and β = 2(p− 1)/p into (3.21) and get

d

dt

∫
Ω

eχDv(aD
γ )p dx+

p− 1

p

∫
Ω

(aD
γ )p dx ≤ C43, (3.22)

which implies
d

dt

∫
Ω

eχDv(aD
γ )p dx+

p− 1

p eχD

∫
Ω

eχDv(aD
γ )p dx ≤ C43, (3.23)

and thus ∫
Ω

eχDv(aD
γ )p dx ≤ C44. (3.24)

Hence we have shown that
‖aD(t)‖Lp(Ω) ≤ C45. (3.25)

An application of Young’s inequality and (3.25) lead to∫
Ω

aD(aS
γ)p−1 dx ≤ p− 1

p

∫
Ω

(aS
γ)p dx+

1

p

∫
Ω

(aD)p dx

≤ C46

∫
Ω

(aS
γ)p dx+ C47. (3.26)

Inserting (3.26) into (3.13) yields

d

dt

∫
Ω

eχSv(aS
γ)pdx ≤ −4(p− 1)

p

∫
Ω

|∇(aS
γ)p/2|2 dx+ C48

∫
Ω

(aS
γ)p dx+ C49

∫
Ω

m(aS
γ)p dx+ C50. (3.27)

Since (3.17) and (3.19) are also valid for a = aS we can repeat the steps in (3.20)–(3.24) for (3.27) to get

‖aS(t)‖Lp(Ω) ≤ C51. (3.28)

Step 3: Lp bounds for all p ≥ 1. From Lemma 3.1 and the previous step,

‖aD(t)‖L(4/3)n (Ω), ‖aS(t)‖L(4/3)n (Ω) ≤ C52(n) <∞ for all n ∈ N, (3.29)

follows from induction. Hence, we have that

‖aD(t)‖Lp(Ω), ‖aS(t)‖Lp(Ω) ≤ C53(p) <∞ for all p ≥ 1. (3.30)

Step 4: L∞ bounds. For the step we employ this technique used in [1] and applied in the case of KS
system in [8]. We are in d = 2 space dimensions and we know from step 3 that there is ρ > d = 2 such
that ‖cD + cS‖Lρ(Ω) ≤ C20. Therefore we get by Lemma 3.2

‖m‖L∞(QT ) ≤ C54. (3.31)

Inserting (3.31) back into (3.12) we get that

d

dt

∫
Ω

eχDv(aD)p dx+
4(p− 1)

p

∫
Ω

|∇(aD)p/2|2 dx ≤ C55 p

∫
Ω

(aD)p dx for all p ≥ ρ. (3.32)

We define the sequence pk = 2k, k ∈ N and moreover, we apply the Gagliardo-Nirenberg inequality

‖ · ‖L2 ≤ C56‖ · ‖1/2W 1
2
‖ · ‖1/2L1 . (3.33)

Thus, we get for a ∈ {aD, aS} by (3.33) and Young’s inequality that∫
Ω

apk dx = ‖apk−1‖2L2(Ω) ≤ C57‖apk−1‖W 1
2 (Ω)‖apk−1‖L1(Ω) ≤ C57

(
1

εk
‖apk−1‖2L1(Ω) + εk‖apk−1‖2W 1

2 (Ω)

)
(3.34)
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which implies for sufficiently small εk∫
Ω

apk dx ≤ C57

(
1

εk
‖apk−1‖2L1(Ω) + εk‖∇apk−1‖2L2(Ω)

)
. (3.35)

Adding εke
χD
∫

Ω
(aD)pk dx to both sides of (3.32), choosing εk such that

(C55 pk + εke
χD )C57 εk ≤ 4(pk − 1)/pk < 4 (3.36)

in (3.35) for a = aD and inserting in (3.32) yield for k ≥ 2

d

dt

∫
Ω

eχDv(aD)pk dx+ εke
χD

∫
Ω

(aD)pk dx ≤ (C55 pk + εke
χD )C57

εk

(∫
Ω

(aD)pk−1 dx

)2

. (3.37)

The later implies that

d

dt

∫
Ω

eχDv(aD)pk dx ≤ −εk
∫

Ω

eχDv(aD)pk dx+
(C55 pk + εke

χD )C57

εk
M2
k−1, (3.38)

where

Mk = max

{
1, sup

0<t<T

∫
Ω

eχDv(aD)pk dx

}
. (3.39)

By Gronwall’s lemma we get from (3.38), that∫
Ω

eχDv(aD)pk dx ≤ max

{∫
Ω

eχDv0(aD
0 )pk dx,

(C55 pk + εke
χD )C57

ε2
k

M2
k−1

}
for k ≥ 2. (3.40)

Hence
Mk ≤ max

{
1, |Ω|eχD‖(aD

0 )‖pkL∞(Ω), δkM
2
k−1

}
for k ≥ 2, (3.41)

where δk = max{1, (C55 pk + εke
χD )C57/ε

2
k}. Note that by (2.4) and (3.30) we can find a constant C58

such that
M1 + 1 ≤ C58, |Ω|eχD‖(aD

0 )‖pkL∞(Ω) ≤ C
pk
58 for k ≥ 1. (3.42)

From (3.41), (3.42) and δk ≥ 1 we get that

Mk ≤ δk δp1k−1 δ
p2
k−2 · · · δ

pk−2

2 δ
pk−1

1 Cpk58 . (3.43)

Furthermore, we get from (3.36) that εk can be chosen as εk = C59/pk, where the constant C59 is
independent of k. This yields

δk ≤ C60p
3
k

and hence

M
1/pk
k ≤ C

∑k−1
i=0 2i−k

60 23
∑k−1
i=0 2i−k(k−i)C58 ≤ C

1− 1
pk

60 23
∑k
i=1

i

2i C58. (3.44)

For 0 < t < T we note that max{1, ‖aD(·, t)‖Lpk (Ω)} ≤M
1/pk
k by 0 ≤ v ≤ 1 and when taking k →∞ in

(3.44) we eventually get
‖aD(·, t)‖L∞(Ω) ≤ C61. (3.45)

Using the bounds (3.31), (3.45) as well as the sequence pk = 2k, k ∈ N in (3.13) yields for k ≥ 2

d

dt

∫
Ω

eχSv(aS)pk dx+
4(pk − 1)

pk

∫
Ω

|∇(aS)pk−1 |2 dx ≤ C62 pk

∫
Ω

(aS)pk dx+C63 pk

∫
Ω

(aS)pk−1 dx. (3.46)

By Hölder’s inequality we estimate∫
Ω

(aS)pk−1 dx ≤ |Ω|1/pk
(∫

Ω

(aS)pk dx

)(pk−1)/pk

≤ C64

(∫
Ω

(aS)pk dx+ 1

)
(3.47)
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and get

d

dt

∫
Ω

eχSv(aS)pk dx+
4(pk − 1)

pk

∫
Ω

|∇(aS)pk−1 |2 dx ≤ C65 pk

(∫
Ω

(aS)pk dx+ 1

)
. (3.48)

We add again εke
χS
∫

Ω
(aS)pk dx on both sides of (3.48) and choose εk such that

(C65 pk + εke
χS )C57 εk ≤ 4(pk − 1)/pk < 4, (3.49)

where C57, and εk are chosen such that (3.35) is true for a = aS. By setting εk = C66/pk we find a
constant C67 > C57 such that

(C65 pk + εke
χS )C67

εk
≥ C65pk. (3.50)

Inserting (3.50) into (3.48) yields

d

dt

∫
Ω

eχSv(aS)pk dx ≤ −εk
∫

Ω

eχSv(aS)pk dx+
2(C65 pk + εke

χS )C67

εk
M2
k−1, (3.51)

where

Mk = max

{
1, sup

0<t<T

∫
Ω

eχSv(aS)pk
}
. (3.52)

Using the same argumentation as in (3.40)–(3.45) it follows for 0 < t < T that also

‖aS(t)‖L∞(Ω) ≤ C68, (3.53)

which completes the proof.

4 A priori estimate for ‖∇v(t)‖L4(Ω)

We begin by deriving estimates for ∇aD, aDt , ∇aS and aSt . Let us recall (1.6) and, hence, by (3.9) and
Lemma 3.2 we have

‖aD(t)‖L∞(Ω), ‖aS(t)‖L∞(Ω) and ‖m(t)‖W 1
∞(Ω) ≤ C. (4.1)

Lemma 4.1. Assume that (aD, aS, v,m) ∈ (C2,1(Q̄T ))4 is a solution of (2.1). Then for all t ∈ (0, T )
the following inequalities are fulfilled

‖∇aD(t)‖L2(Ω) ≤ C69e
χDµvt, ‖aDt ‖L2(Qt) ≤ C70t+ C71e

χDµvt (4.2)

‖∇aS(t)‖L2(Ω) ≤ C72e
χSµvt, ‖aSt ‖L2(Qt) ≤ C73t+ C74e

χSµvt. (4.3)

Proof. We begin by multiplying equation for aD in (2.1) by eχDvaD
t and integrating over Ω. We obtain∫

Ω

eχDv(aD
t )2 dx =

∫
Ω

aD
t ∇ ·

(
eχDv∇aD

)
dx+

∫
Ω

eχDvaD
t χDa

Dvmdx

−
∫

Ω

µEMT a
DeχDvaD

t dx+

∫
Ω

eχDvaD
t (µD − χDµv v)aDρdev dx =: ID1 + ID2 + ID3 + ID4 . (4.4)

Due to (2.1), the bounds from Theorem 2.1 and the no-flux boundary condition for aD we have

ID1 =

∫
Ω

aD
t ∇ ·

(
eχDv∇aD

)
dx

= −1

2

∫
Ω

(eχDv
∂

∂t
(|∇aD|2) dx (4.5)

= −1

2

d

dt

∫
Ω

eχDv(|∇aD|2) dx+
χD
2

∫
Ω

eχDv|∇aD|2vt dx

= −1

2

d

dt

∫
Ω

eχDv(|∇aD|2) dx+
χD
2

∫
Ω

eχDv|∇aD|2(−mv + µv vρdev) dx

≤ −1

2

d

dt

∫
Ω

eχDv(|∇aD|2) dx+
χDµv

2

∫
Ω

eχDv|∇aD|2 dx.
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By Cauchy’s inequality, the bounds from Theorem 2.1 and (4.1) we have

ID2 =

∫
Ω

eχDvaD
t χDa

Dvmdx (4.6)

=
1

4

∫
Ω

eχDv(aD
t )2 dx+ χ2

D

∫
Ω

eχDv(aD)2m2v2 dx

=
1

4

∫
Ω

eχDv(aD
t )2 dx+ C75. (4.7)

Analogously we obtain using (1.7a)

ID3 = −
∫

Ω

µEMT a
DeχDvaD

t dx ≤
1

4

∫
Ω

eχDv(aD
t )2 dx+ C76. (4.8)

By Cauchy’s inequality, the bounds from Theorem 2.1 and (4.1) we have

ID4 =

∫
Ω

eχDvaD
t (µD − χDµv v)aDρdev dx (4.9)

≤ C77

∫
Ω

eχDv|aD
t | dx

≤ 1

4

∫
Ω

eχDv|aD
t |2 dx+ C78.

Inserting (4.5)- (4.9) into (4.4) we obtain

1

4

∫
Ω

eχDv(aD
t )2 dx+

1

2

d

dt

∫
Ω

eχDv(|∇aD|2) dx ≤ χDµv
2

∫
Ω

eχDv|∇aD|2 dx+ C79, (4.10)

which implies
d

dt

∫
Ω

eχDv(|∇aD|2) dx ≤ χDµv
∫

Ω

eχDv|∇aD|2 dx+ 2C79. (4.11)

Applying Gronwall’s lemma to (4.11) implies∫
Ω

eχDv(|∇aD|2) dx ≤ C80e
χDµvt. (4.12)

Integrating both sides of (4.10) in time and using (4.12) gives∫ t

0

∫
Ω

eχDv(aD
t )2 dx ds ≤ 4C79t+ C81e

χDµvt. (4.13)

This completes the proof of the first line of (4.2). The proof of the second line is obtained analogously
by multiplying the equation for aS in (2.1) by eχSvaS

t and integrating over Ω.

The following lemma relates ‖∇v(t)‖Lp(Ω) with ‖∇aD(t)‖Lp(Ω) and ‖∇aS(t)‖Lp(Ω).
Lemma 4.2. Assume that (aD, aS, v,m) ∈ (C2,1(Q̄T ))4 is a solution of (2.1). Then the following
inequality holds

‖∇v(t)‖pLp(Ω) ≤ C82(T, p)
(
‖∇aD‖pLp(QT ) + ‖∇aS‖pLp(QT ) + 1

)
for any p > 1. (4.14)

Proof. We use the chain rule in (2.1) to obtain

∇vt = h14∇v −
(
v∇m+ µvve

χSv∇aS + µvve
χDv∇aD

)
(4.15)

with
h14 = −m+ µvρdev − µvveχSvχSaS − µvveχDvχDaD−1. (4.16)
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Further we use equation (4.15) and multiply it by p∇v|∇v|p−2. Employing (4.1), the bounds from
Theorem 2.1 and Young’s inequality we obtain

(|∇v|p)t = h14p|∇v|p −
(
pv∇v · ∇m|∇v|p−2 + pµvve

χSv∇aS · ∇v|∇v|p−2 + pµvve
χDv∇aD · ∇v|∇v|p−2

)
≤ µvp|∇v|p + p‖∇m‖L∞(Ω)|∇v|p−1 + pµve

χD |∇aD||∇v|p−1 + pµve
χS |∇aS||∇v|p−1

≤ C83|∇v|p + C84|∇aD|p + C85|∇aS|p + C86. (4.17)

By integration over Ω we get

d

dt

∫
Ω

|∇v|p dx ≤ C87

(∫
Ω

|∇v|p dx+

∫
Ω

|∇aD|p dx+

∫
Ω

|∇aS|p dx+ 1

)
, (4.18)

which yields also

d

dt

(∫
Ω

|∇v|p dx+ 1

)
≤ C88

(∫
Ω

|∇aD|p dx+

∫
Ω

|∇aS|p dx+ 1

)(∫
Ω

|∇v|p dx+ 1

)
. (4.19)

The estimate (4.14) follows by the Gronwall Lemma applied to (4.19).

Our next lemma provides L4(QT )-bounds for ∇aD, ∇aS which only depend on T , thereby ruling out
finite time blowup of these norms.
Lemma 4.3. Assume that (aD, aS, v,m) ∈ (C2,1(Q̄T ))4 is a solution of (2.1). Then the following
inequalities are satisfied∫ T

0

‖∆aD(t)‖2L2(Ω) dt ≤ C89(T ) and

∫ T

0

‖∆aS(t)‖2L2(Ω) dt ≤ C90(T ) (4.20)

as well as ∫ T

0

‖∇aD(t)‖4L4(Ω) dt ≤ C91(T ) and

∫ T

0

‖∇aS(t)‖4L4(Ω) dt ≤ C92(T ) (4.21)

Proof. Due to the bounds in Theorem 2.1 and (4.1) we may rewrite the equations for aD, aS of (2.1) as

aD
t = ∆aD + χD∇v · ∇aD + h15, (4.22)

aS
t = ∆aS + χS∇v · ∇aS + h16, (4.23)

with

‖h15‖L∞(Ω) = ‖χDaDvm− µEMT a
D + (µD − χDµv v)aDρdev‖L∞(Ω) ≤ C93, (4.24)

‖h16‖L∞(Ω) = ‖χSaSvm+ µEMT a
DeχDv−χSv + (µS − χSµv v)aSρdev‖L∞(Ω) ≤ C94. (4.25)

From equations (4.22), (4.24) and the estimate (4.2) we get for any 0 ≤ t ≤ T∫ t

0

‖∆aD(s)‖2L2(Ω) ds ≤ C95T
2 + C96e

2χDT + 2χ2
D

∫ t

0

‖∇v · ∇aD‖2L2(Ω) ds, (4.26)∫ t

0

‖∆aS(s)‖2L2(Ω) ds ≤ C97T
2 + C98e

2χST + 2χ2
S

∫ t

0

‖∇v · ∇aS‖2L2(Ω) ds. (4.27)

The last term on the right hand side needs to be estimated further. Using Hölder’s inequality, equation
(4.14) for p = 4 and √

y + z ≤ √y +
√
z for all y, z ≥ 0
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we obtain the following estimate for I ∈ {S,D} and J ∈ {S,D} \ {I} for all 0 ≤ t ≤ T∫ t

0

‖∇v · ∇aI‖2L2(Ω) ds ≤
∫ t

0

‖∇v‖2L4(Ω)‖∇a
I‖2L4(Ω) ds

=

∫ t

0

(
‖∇v‖4L4(Ω)‖∇a

I‖4L4(Ω)

)1/2

ds

≤
(∫ t

0

1 ds
)1/2(∫ t

0

‖∇v‖4L4(Ω)‖∇a
I‖4L4(Ω) ds

)1/2

=
√
t
(∫ t

0

‖∇v‖4L4(Ω)‖∇a
I‖4L4(Ω) ds

)1/2

≤
√
t
(∫ t

0

eC99t

[
C100 + C101

∫ s

0

‖∇aI‖4L4(Ω) + ‖∇aJ‖4L4(Ω) dτ

]
‖∇aI‖4L4(Ω) ds

)1/2

=
√
t
{∫ t

0

[
C100e

C99T ‖∇aI‖4L4(Ω) +
C101

2
eC99T

d

ds

(∫ s

0

‖∇aI‖4L4(Ω) dτ
)2]

ds

+ C101e
C99T

∫ t

0

‖∇aI‖4L4(Ω) ds

∫ t

0

‖∇aJ‖4L4(Ω) ds
}1/2

≤
√
t
{
C100e

C99T

∫ t

0

‖∇aI‖4L4(Ω) ds+ C101e
C99T

(∫ t

0

‖∇aI‖4L4(Ω) ds
)2

+ C101e
C99T

(∫ t

0

‖∇aJ‖4L4(Ω) ds
)2}1/2

≤
√
t
√
C100e

C99
2 T
(∫ t

0

‖∇aI‖4L4(Ω) ds
)1/2

+
√
t
√
C101e

C99
2 T

∫ t

0

‖∇aI‖4L4(Ω) ds

+
√
t
√
C101e

C99
2 T

∫ t

0

‖∇aJ‖4L4(Ω) ds

≤
√
t(
√
C100 +

√
C101)e

C99
2 T

∫ t

0

‖∇aI‖4L4(Ω) ds+
√
T
√
C100e

C99
2 T

+
√
t
√
C101e

C99
2 T

∫ t

0

‖∇aJ‖4L4(Ω) ds. (4.28)

Since we consider the case of two space dimensions, the Gagliardo-Nirenberg inequality, and the estimate
‖D2w‖L2(Ω) ≤ C‖∆w‖L2(Ω) for any w ∈ H2(Ω) with ∂w

∂ν = 0 on ∂Ω imply the following inequalities for
any 0 ≤ t ≤ T : ∫ t

0

‖∇aD‖4L4(Ω) ds ≤ C102e
2χDµvT

∫ t

0

‖∆aD‖2L2(Ω) ds+ C103Te
4χDµvT , (4.29)∫ t

0

‖∇aS‖4L4(Ω) ds ≤ C104e
2χSµvT

∫ t

0

‖∆aS‖2L2(Ω) ds+ C105Te
4χSµvT . (4.30)

Inserting (4.29) and (4.30) into (4.28) we obtain∫ t

0

‖∇v · ∇aI‖2L2(Ω) ds

≤
√
tC106e

C107T
(∫ t

0

‖∆aD‖2L2(Ω) ds+

∫ t

0

‖∆aS‖2L2(Ω) ds
)

+ C108

√
T (1 + T )eC109T . (4.31)

By taking the maximum of the constants in the individual estimates of aD and aS, we obtain the same
constants in (4.31). Inserting (4.31) into (4.26) implies∫ t

0

‖∆aD‖2L2(Ω) ds ≤ 2
√
tχ2
DC106e

C107T
(∫ t

0

‖∆aD‖2L2(Ω) ds+

∫ t

0

‖∆aS‖2L2(Ω) ds
)

+ C110(T ) (4.32)∫ t

0

‖∆aS‖2L2(Ω) ds ≤ 2
√
tχ2
SC106e

C107T
(∫ t

0

‖∆aD‖2L2(Ω) ds+

∫ t

0

‖∆aS‖2L2(Ω) ds
)

+ C111(T ). (4.33)
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Adding the two estimates above yields∫ t

0

‖∆aD‖2L2(Ω) ds+

∫ t

0

‖∆aS‖2L2(Ω) ds

≤ 2
√
t(χ2

D + χ2
S)C106e

C107T
(∫ t

0

‖∆aD‖2L2(Ω) ds+

∫ t

0

‖∆aS‖2L2(Ω) ds
)

+ C112(T ), (4.34)

so that(
1− 2

√
t(χ2

D + χ2
S)C106e

C107T
)(∫ t

0

‖∆aD‖2L2(Ω) ds+

∫ t

0

‖∆aS‖2L2(Ω) ds
)
≤ C113(T ). (4.35)

Choosing

t1 = t1(T ) =
1(

4(χ2
D + χ2

S)C106eC107T
)2

we obtain ∫ t

0

‖∆aD‖2L2(Ω) ds+

∫ t

0

‖∆aS‖2L2(Ω) ds ≤ 2C114(T ) for all 0 ≤ t ≤ t1 . (4.36)

If t1(T ) ≥ T we have completed the proof of the lemma. If t1(T ) < T we may repeat the procedure
described above by taking t0 = t1(T ) as new initial datum. Since t1(T ) only depends on T we can extend
the estimate (4.34) to the whole time interval [0, T ] after finitely many steps. This completes the proof
of (4.20). The bounds now (4.21) follow by combing (4.20) and (4.29),(4.30).

We are now in position to state the main result of this section, i.e., ‖∇v(·)‖L4(Ω) does not blow up in
finite time.
Lemma 4.4. Assume that (aD, aS, v,m) ∈ (C2,1(Q̄T ))4 is a solution of (2.1). Then the following
inequality is fulfilled

‖∇v(t)‖L4(Ω) ≤ C115(T ) . (4.37)

Proof. Follows directly by combining (4.21) with (4.14).

5 Proof of the global existence Theorem 1.1

In this section we show existence and uniqueness of classical solutions of (2.1) based on the local well-
posedness results and a priori estimates from the previous sections. We begin by establishing uniform in
time bounds for ‖aD(·)‖C2(Ω), ‖aS(·)‖C2(Ω), ‖v(·)‖C1(Ω), ‖m(·)‖C2(Ω).

Lemma 5.1. Let (aD, aS, v,m) ∈
(
C2,1(QT )

)4
be a solution of (2.1), and let (1.6) hold. Then for all

t ∈ (0, T )
‖aD(t)‖C2(Ω), ‖aS(t)‖C2(Ω), ‖v(t)‖C1(Ω), ‖m(t)‖C2(Ω) ≤ C116(T ). (5.1)

Proof. Using (2.1) we can rewrite the equations for aD and aS as

aD
t = ∆aD + χD∇v · ∇aD + h17a

D in Ω× (0, T ), (5.2)

aS
t = ∆aS + χS∇v · ∇aS + h18a

S + µEMT a
DeχDv−χSv in Ω× (0, T ), (5.3)

where

h17 = −µEMT + (µD − χDµvv)ρdev + χDvm, (5.4)

h18 = (µS − χSµvv)ρdev + χSvm. (5.5)

By employing (4.14) for p = 4, 0 ≤ v ≤ 1, (4.1), and (1.7a) we have

‖∇v(t)‖L4(Ω), ‖h17(t)‖L∞(Ω), ‖h18(t)‖L∞(Ω), ‖µEMT a
D(t)eχDv−χSv‖L∞(Ω) ≤ C117(T ). (5.6)
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This allows us to use the maximal parabolic regularity result in Lp, see Theorem A.1, for both equations
(5.2), (5.3) to obtain

‖aD‖W 2,1
4 (QT ), ‖a

S‖W 2,1
4 (QT ) ≤ C118(T ). (5.7)

Thanks to the Sobolev embedding A.4 there is a constant C119(p) such that for all p > 1 it holds

‖∇aD‖Lp(QT ), ‖∇aS‖Lp(QT ) ≤ C119(p)C118(T ), (5.8)

which yields together with (4.14) that

‖∇v(t)‖Lp(Ω) ≤ C120(p, T ) for all p > 1. (5.9)

Using Theorem A.2 again for (5.2), (5.3) together with (5.6) and (5.9), we get

‖aD‖W 2,1
p (QT ), ‖a

S‖W 2,1
p (QT ) ≤ C121(p, T ) for all p > 1. (5.10)

Moreover, applying A.1 again in equation for m in (2.1) we obtain

‖m‖W 2,1
p (QT ) ≤ C122(p) for all p > 1. (5.11)

Applying the Sobolev embedding A.3 to (5.10), (5.11) for a fixed p > 5 yields for λ = 1− 5/p

‖aD‖C1+λ,(1+λ)/2(Q̄T ), ‖aS‖C1+λ,(1+λ)/2(Q̄T ), ‖m‖C1+λ,(1+λ)/2(Q̄T ) ≤ C123(T ). (5.12)

By considering 0 ≤ v ≤ 1, the equation for aS in (2.1) together with (5.12) as well as (2.46), (2.43), and
(2.44) with (5.12) we get

‖v‖C1,1(Q̄T ) ≤ C124(T ). (5.13)

Using now the same arguments as in the proof of Theorem 2.2 we obtain

‖aD‖C2+λ,1+λ/2(Q̄T ), ‖aS‖C2+λ,1+λ/2(Q̄T ), ‖m‖C2+λ,1+λ/2(Q̄T ) ≤ C125(T ). (5.14)

Estimate (5.1) follows from (5.14) and (5.13).

Finally we can prove the existence and uniqueness of the global classical solutions, as stated in the main
Theorem 1.1.

Proof of the main Theorem 1.1. Due to the equivalence of (1.1) and (2.1) the proof is a consequence
of Theorem 2.1, Theorem 2.2 and Lemma 5.1. Indeed we know that there exist (regular) local-in-time
solutions due to Theorem 2.1 and Theorem 2.2. If they only existed until some maximal final time
Tmax < ∞, then the a priori bounds in Lemma 5.1 would enable us to use Theorem 2.1 in order to
extend the solution beyond Tmax and Theorem 2.2 would ensure the regularity of this extension. This
shows that there cannot be a finite maximal time of existence.

6 Numerical simulations

We perform in this section a series of numerical experiments to demonstrate the dynamics of the system
(1.1) and the effect that the constraints placed on its parameters have. As the primary aim of the paper
is the mathematical analysis of the model we refrain from a detailed numerical investigation and refer
to [39, 14] for more details.

In the first numerical experiment, the parameters we consider satisfy the constraints (1.6), and the
solutions exhibit a smooth profile that smears-out even more with time. In the second experiment we
consider similar initial conditions and a parameter set that violates (1.6); this time the solutions exhibit
steeper gradients and more complex and dynamic structures.

The numerical results presented here should be understood as indications of the influence that the
parameters have on the dynamics of the solutions, not as evidence that the analysis results of this work
are no longer valid when the constraints (1.6) are violated.
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To numerically solve the system (1.1) we first rewrite it in the more convenient form

wt(x, t) = A(w(x, t)) +D(w(x, t)) +R(w(x, t)), x ∈ Ω, (6.1)

with w(x, t) :=
(
cD(x, t), cS(x, t), v(x, t), m(x, t)

)T
, and where

A(w) =


−χD∇ ·

(
cD∇v

)
−χS∇ ·

(
cS∇v

)
0
0

 , R(w) =


−µEMT c

D + µD c
D(1− cS − cD − v)

µEMT c
D + µS c

S(1− cS − cD − v)
−mv + µv v(1− cS − cD − v)

cS + cD −m

 , D(w) =


∆cD

∆cS

0
∆m

 ,

denote the advection, reaction, and diffusion operators respectively.

We consider a uniform spatial discretization grid with diameter h, and denote by wh(t) the piecewise
constant Finite Volume (FV) approximation of the exact solution w, that satisfies the semi-discrete
numerical scheme

∂twh = A(wh) +R(wh) +D(wh). (6.2)

The operatorsA, R, and D are discrete approximations of the advection, reaction, and diffusion operators
A, R, and D in (6.1) respectively. For the diffusion terms we use central differences, and we employ
central upwind numerical fluxes for the advection terms. At the interfaces of the computational cells we
use values of wh reconstructed by the minimized-central (MC) limiter, [49].

We solve (6.2) with an Implicit-Explicit Runge-Kutta (IMEX-RK) numerical method, [30], that is based
on the time splitting of (6.2), in explicit and implicit terms, in the form

∂twh = I(wh) + E(wh). (6.3)

In the typical case, and also in the current paper, the advection terms are treated explicitly, the diffusion
terms implicitly, and the reaction terms partly explicitly and partly implicitly. The particular choice
depends primarily on the stiffness of the reaction terms but also on the nature of their (possible) non-
linearity.

For the implicit part of the scheme we employ a diagonally implicit RK method and an explicit RK for
the explicit part 

W∗
i = wn

h + τn

i−2∑
j=1

āi,jEj + τnāi,i−1Ei−1, i = 1, . . . , s

Wi = W∗
i + τn

i−1∑
j=1

ai,jIj + τnai,iIi, i = 1, . . . , s

wn+1
h = wn

h + τn

s∑
i=1

b̄iEi + τn

s∑
i=1

biIi

, (6.4)

where s = 4 are the stages of the IMEX method, Ei = E(Wi), Ii = I(Wi), i = 1 . . . s, {b̄, Ā}, {b, A}
are respectively the coefficients for the explicit and the implicit part of the scheme, given in the Butcher
Tableau in Table 1, see also [21].

We solve the linear systems in (6.4) using the iterative biconjugate gradient stabilized Krylov subspace
method [24, 48].

Experiment 1. In this first experiment the parameter constraints (1.6) are satisfied. We consider the
domain Ω = [−7, 7]× [−12, 5] and the initial conditions(

cD(x, 0), cS(x, 0), v(x, 0), m(x, 0)
)

=
(

0.7 e−5Xy<g(x)(x)(y−g(x))2 , 0, 0.2, 0
)
, (6.5)

with g(x) = 0.7 sin(1.4x) + 0.004x3 + 2 and x = (x, y) ∈ Ω. The parameters are chosen as

(χD, χS , µD, µS , µv) =
(
8 · 10−3, 400, 0.2, 0.1, 2.5 · 10−4

)
, (6.6)
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Table 1: Butcher tableaux for the explicit (upper) and the implicit (lower) parts of the third order IMEX
scheme (6.4), see also [21].

0

1767732205903
2027836641118

1767732205903
2027836641118

3
5

5535828885825
10492691773637

788022342437
10882634858940

1 6485989280629
16251701735622 − 4246266847089

9704473918619
10755448449292
10357097424841

1471266399579
7840856788654 − 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

0 0

1767732205903
2027836641118

1767732205903
4055673282236

1767732205903
4055673282236

3
5

2746238789719
10658868560708 − 640167445237

6845629431997
1767732205903
4055673282236

1 1471266399579
7840856788654 − 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

1471266399579
7840856788654 − 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

and the EMT coefficient µEMT is set to the constant value µEMT = 0.55. In this experiment we have
considered and compared the cases with explicit and implicit discretization of the EMT terms and the
results were indistinguishable. The discretization of the cell proliferation, the ECM remodelling, and the
rest of the reaction terms is explicit. Note moreover that the parameters satisfy the restrictions (1.6).

We present the simulation results for this experiment in Figure 2, and mostly focus on the dynamics of
the CSCs. We can clearly see that the CSCs escape the main body of the tumour and invade the ECM
in a more dynamic way that the DCCs. We also see the formation of smooth CSC “invasion islands”
that merge with each other and smear-out further. At the same time, the DCCs evolve mostly under
the influence of diffusion.

Experiment 2. In this second experiment, the parameters considered violate the constraints (1.6). In
some more detail, we consider the domain Ω = [−5 · 103, 5 · 103]× [−5 · 103, 5 · 103] and endow (1.1) with
the initial conditions(

cD(x, 0), cS(x, 0), v(x, t), m(x, 0)
)

=
(

0.7 e−5Xy<g(x)(x)(y−g(x))2 , 0, 0.2, 0
)
, (6.7)

where g(x) = 1.5 ·103 sin(9 ·10−4x)+2.4 ·10−5x3 +2 ·103 and x = (x, y) ∈ Ω. These initial conditions are
similar to the ones in Experiment 1, in the sense that they also represent (a two-dimensional transverse
section of) an organotypic assay with sinusoidal profile, see e.g. [29, 18].

The parameters employed here are inspired by [39], where particular assumptions of biological nature
where made, and they read

(χD, χS , µD, µS , µv) =
(
1.2 · 104, 106, 0.2, 0.1, 0.01

)
. (6.8)

It can be easily seen that these parameters violate the constraints (1.6).

Following [39] again, we set the EMT coefficient µEMT to depend on the DCC density in the following
way

µEMT = µM
cµEMT,1c

D

cµEMT,2 + cµEMT,1c
D
. (6.9)

The coefficients µM , cµEMT,1, cµEMT,2 > 0 are constants that reflect, through the above relation, the
particular EMT triggering mechanism that is considered in [39]. It can be easily seen that µEMT is Lips-
chitz continuous as a function of cD (and also has a Lipschitz continuous first derivative) and satisfies the
required boundedness condition (1.7a). To ease the computations, we have discretized in this experiment
the EMT terms, as well as the proliferation, remodelling, and degradation terms, explicitly.
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Figure 2: Simulation results of the Experiment 1. Showing here the spatial distribution of the DCC and CSC
densities at several time instances. The CSCs invade the ECM by forming smooth “islands” that merge and
smear-out further with time. On the other hand, the evolution of the DCCs is mostly diffusion dominated.

The simulation results for this experiment are presented in Figure 3 where, again, we focus on the
dynamics of the CSCs. We clearly see that the CSCs escape the main body of the tumour and invade
the ECM in a more dynamic way than the DCCs. We also see that the dynamics that the CSCs exhibit
are much richer than in Experiment 1, namely they invade the ECM with a number of small waves and
invasion “islands” which, as they interact with each other, they create a complex landscape.

Such invasion-patterns are typical in organotypic assays of several types of cancer, see e.g. [29, 18], and
constitute a sought-for property in the field of cancer growth and invasion modelling and simulation, we
refer indicatively to [7, 2, 41, 22].

Furthermore, it was seen in [39] that the choice of a non-constant EMT coefficient µEMT as in (6.9),
leads potentially to a CSC profile that is substantially lower than the density of the DCC tumour, and
so it remains below “detection levels”. On the contrary, constant EMT coefficients µEMT lead to CSC
densities that quickly rise to the levels of the DCC density and can be easily detected.

This particular property of the non-constant µEMT (6.9) serves as a potential mathematical explanation
of the difficulty to detect CSCs, and justifies to a large extent, the numerical (in [14, 39]) and analytical
(in the current paper) study of the model (1.1).
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A Parabolic theory

We consider the problem

ut −D∆u+

d∑
i=1

ai
∂u

∂xi
+ au = f in QT , (A.1)

∂νu = 0 on ∂Ω× (0, T ), (A.2)

u(·, 0) = u0 in Ω, (A.3)

where D ∈ R+, and a, ai are real valued functions in QT . For the initial condition we assume for a fixed
λ ∈ (0, 1) that

u0(x) ≥ 0, u0 ∈ C2+λ(Ω), (A.4)

and the compatibility condition
∂νu0 = 0. (A.5)

Furthermore, we assume a bounded domain Ω with

∂Ω ∈ C2+λ, (A.6)

and QT = Ω× (0, T ).
Theorem A.1. Let the conditions (A.4) and (A.5) hold, and let the coefficients in (A.1) satisfy

a , ai∈ Ld+2(QT ), f ∈ Lp(QT ) 1 ≤ i ≤ d, ∂Ω ∈ C2,

for d+ 2 < p and assume that

lim
τ→0
‖a‖Lp(Ω×(t,t+τ)) = lim

τ→0
‖ai‖Lp(Ω×(t,t+τ)) = 0.

Then the problem (A.1)– (A.3) has a unique solution

u ∈W 2,1
p (QT ),

which can be bounded by

‖u‖W 2,1
p (QT ) ≤ C

(
‖f‖Lp(Ω) + ‖u0‖2−2/p

Lp(Ω)

)
.

Proof. Follows from [25, Theorem 9.1 p. 342].

Theorem A.2. Assume that,

a , ai, f ∈ Cλ,λ/2(Q̄T ) 1 ≤ i ≤ d, 0 < T < 1, ∂Ω ∈ C2+λ

and that (A.4), (A.5) are satisfied. Then the problem (A.1)– (A.3) has a unique solution

u ∈ Cλ+2,λ/2+1(Q̄T ).

Proof. Follows from [25, Theorem 5.3 p. 320].
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Theorem A.3. Assume that Ω satisfies a weak cone condition and d ∈ {1, 2, 3}. If p > 5, then

‖u‖C1+λ,(1+λ)/2(Q̄T ) ≤ C‖u‖W 2,1
p (QT ), λ = 1− 5

p
,

for all u ∈W 2,1
p (QT ).

Proof. Follows from [25, Lemma 3.3 p. 80].

Theorem A.4. Assume that Ω satisfies a weak cone condition and d = 2. If q ≥ 4 and u ∈ W 2,1
p (QT )

then
‖∇u‖Lp(Q̄T ) ≤ C(p)‖u‖W 2,1

q (QT ), for all p > 4.

Proof. Follows from [25, Lemma 3.3 p. 80].

B Proof of Lemma 3.2

Proof. Let Aρ be the sectorial operator defined by Aρu = −∆u over the domain

D(Aρ) =

{
u ∈W 2,ρ(Ω) with

∂u

∂ν

∣∣∣
ΓT

= 0

}
.

We will be needing the following embedding properties of the domains of fractional powers of the operators
Ap + 1:

D
(
(Ap + 1)β

)
↪→W 1

p (Ω), for β >
1

2
, (B.1a)

D
(
(Ap + 1)β

)
↪→ Cδ(Ω), for β − d

2p
>
δ

2
≥ 0 , (B.1b)

and refer to [17, 15] and the references therein for further details.

We consider the representation formula for the solution of the equation for m in (1.1)

m(t) = e−t(Aρ+1)m0︸ ︷︷ ︸
B1(t)

+

∫ t

0

e−(t−r)(Aρ+1)
(
cD(r) + cS(r)

)
dr︸ ︷︷ ︸

B2(t)

, t ∈ (0, T ).

To deduce a control over m we consider the two components separately.

For B1(t).

• If 2 ≤ q ≤ ∞, then B1 and m0 have the same regularity, see [17], and hence

‖B1(t)‖W 1
q (Ω) ≤ C ‖m0‖W 1

q (Ω). (B.2a)

• If q < 2, then
‖B1(t)‖W 1

q (Ω) ≤ ‖B1(t)‖W 1
2 (Ω) ≤ C ‖m0‖W 1

2 (Ω). (B.2b)

For B2(t).
We consider the analytic semigroup

(
e−tAρ

)
t≥0

, which has the properties

‖(Aρ + 1)βe−t(Aρ+1)u‖Lp(Ω) ≤ ct−βe−v1t‖u‖Lp

for all u ∈ Lp(Ω), t ≥ 0, and for some v1 > 0, and

‖e−tAρu‖Lq(Ω) ≤ ct−
d
2 ( 1
p−

1
q )‖u‖Lp(Ω)
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, for all t ∈ (0, 1) and 1 ≤ p < q <∞, see also [17].

Accordingly we can write the following Lρ-Lq estimate, for τ > 0

‖(Aρ + 1)βe−2τAρu‖Lq(Ω) =‖(Aρ + 1)βe−τ(Aρ+1)e−τAρeτu‖Lq(Ω)

≤cτ−βe−v1τ‖e−τAρeτu‖Lq(Ω)

≤c̃τ−βe−v1ττ−
d
2 ( 1
ρ−

1
q )‖eτu‖Lp(Ω)

≤c̃τ−β−
d
2 ( 1

ρ−
1
q )e(1−v1)τ‖u‖Lp(Ω),

or by setting t = 2τ ,

‖(Aρ + 1)βe−tAρu‖Lq(Ω) ≤c̃
(
t

2

)−β− d2 ( 1
ρ−

1
q )
e(1−v1) t2 ‖u‖Lp(Ω)

≤Ct−β−
d
2 ( 1

ρ−
1
q )e(1−µ)te−

t
2 ‖u‖Lp(Ω)

≤Ct−β−
d
2 ( 1

ρ−
1
q )e(1−µ)t‖u‖Lp(Ω) (B.3)

for some µ > 0.

Applying now (B.3) to B2, it reads

‖ (Aρ + 1)
β
B2‖Lq(Ω) ≤ C

∫ t

0

(t− r)−β−
d
2 ( 1

ρ−
1
q )e−µ(t−r)‖u(r)‖Lρ(Ω)dr

≤ C sup
t
‖u(t)‖Lρ(Ω)

∫ t

0

(t− r)−β−
d
2 ( 1

ρ−
1
q )e−µ(t−r)dr ,

where the integral is finite, and in effect B2(t) ∈ D((Aρ + 1)β), as long as

−β − d

2

(
1

ρ
− 1

q

)
> −1. (B.4)

In order to obtain bounds for suitable norms of B2 (and m) we distinguish the following sub-cases:

• If ρ < d then there exist 1
2 < β < 1 such that (B.4) reads

q <
1

1
ρ −

1
d + 2

d

(
β − 1

2

) .
By the embedding now (B.1a) of the domain of the operator (Aq + 1)

β
we deduce that

‖B2(t)‖W 1
q (Ω) ≤ C, (B.5)

which along with the bounds (B.2a) and(B.2b) of ‖B1‖ leads to (3.2).

• If ρ = d, the condition (B.4) recasts into

β <
1

2
+

d

2q
,

which is satisfied by some 1
2 < β < 1 for every q > ρ = d, and thus (3.2) follows for q <∞.

• If ρ > d there by (B.4) β < 1− d
2ρ + d

2q and since 1
2 + d

2q < 1− d
2ρ + d

2q there exist β such that

1

2
+

d

2q
< β < 1− d

2ρ
+

d

2q
,

such that the embedding (B.1b) is valid for δ = 1, and reads

D
(
(Aq + 1)β

)
↪→ C1(Ω̄),

from which (3.2) yields for q =∞.
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