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Abstract. In this paper, we study two-dimensional multiscale chemotaxis

models based on a combination of the macroscopic evolution equation for
chemoattractant and microscopic models for cell evolution. The latter is gov-

erned by a Boltzmann-type kinetic equation with a local turning kernel opera-

tor which describes the velocity change of the cells. The parabolic scaling yields
a non-dimensional kinetic model with a small parameter, which represents the

mean free path of the cells. We propose a new asymptotic preserving numeri-
cal scheme that reflects the convergence of the studied micro-macro model to

its macroscopic counterpart—the Patlak-Keller-Segel system—in the singular

limit. The method is based on the operator splitting strategy and a suit-
able combination of the higher-order implicit and explicit time discretizations.

In particular, we use the so-called even-odd decoupling and approximate the

stiff terms arising in the singular limit implicitly. We prove that the resulting
scheme satisfies the asymptotic preserving property. More precisely, it yields

a consistent approximation of the Patlak-Keller-Segel system as the mean-free

path tends to 0. The derived asymptotic preserving method is used to get
better insight to the blowup behavior of two-dimensional kinetic chemotaxis

model.

1. Introduction. Chemotaxis is the movement of cells towards a chemical sub-
stance in a medium and it is often modeled by systems of PDEs. The classical PDE
chemotaxis model is the Patlak-Keller-Segel (PKS) system [49, 38, 39, 40], which
is derived at the macroscopic level in terms of the cell density and chemoattractant
concentration. In the two-dimensional (2-D) case, this model reads as

ρt = ∇ · (D∇ρ− χρ∇S), (1)

τSt = α∆S − βS + γρ, (2)

where x = (x, y) ∈ Ω ⊂ R2 are spatial variables and t is time, ρ(x, t) is the cell den-
sity and S(x, t) is the chemoattractant concentration, D and α are positive diffusion
constants, χ is the chemotactic sensitivity constant, and the positive constants γ
and β stand for the production and degradation rate of the chemoattractant, respec-
tively. The constant τ determines the type of the system: It is parabolic-parabolic
if τ = 1 and parabolic-elliptic for τ = 0. In recent years, several modifications of the
PKS system have also been studied; see, e.g., [5, 9, 26, 27, 28, 42, 50] and references
therein.

In order to describe the chemotaxis at the cellular (microscopic) level, a class
of Boltzmann-type kinetic equations has been developed. A stochastic approach
based on the velocity-jump process was introduced in [54] and was later used in the
framework of kinetic chemotaxis models in [1, 48, 52]. The velocity-jump process
characterizes the movement in two phases, namely, run and tumble. During the run
phase, the cells move (almost) linearly with constant speed and in the tumble phase,
they reorient their motion with a new velocity and direction. The Boltzmann-type
kinetic model reads as

ft + v · ∇xf =

∫
V

(T [S]f ′ − T ∗[S]f) dv′, (3)

where f := f(x, t,v) is the probability density function (pdf) of cells at the position
x with the velocity v = (u, v) ∈ V ⊂ R2 at a given time t, and f ′ := f(x, t,v′).
In (3), T [S] is the turning kernel operator, which describes the velocity change
from v′ to v at (x, t), that is, T [S] := T [S](x, t,v,v′) and T ∗[S] := T [S](x, t,v′,v).
Specifying the turning kernel T is a crucial point in the kinetic chemotaxis modeling,
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which will be discussed in the §2. Notice that the microscopic pdf f is related to
the macroscopic cell density ρ in the following way:

ρ(x, t) :=

∫
V

f(x, t,v) dv. (4)

Applying the parabolic scaling to (3) yields the following non-dimensionalized
kinetic equation (see, e.g., [7, 23, 47]):

εft + v · ∇xf =
1

ε

∫
V

(Tε[S]f ′ − T ∗ε [S]f) dv′ (5)

with the non-dimensional scaling parameter (mean-free path) ε and the new no-
tations: f := fε(x, t,v), f ′ := fε(x, t,v

′), Tε[S] := Tε[S](x, t,v,v′) and T ∗ε [S] :=
Tε[S](x, t,v′,v).

The question of convergence (in the singular limit as ε→ 0) of the kinetic model
(5) to the PKS system (1), (2) has been extensively studied. More precisely, the
global in time convergence was proven in the parabolic-elliptic case in [7]. In the
parabolic-parabolic case, only local convergence results were established; see [31].
We also refer the reader to [47] for more results on the limiting process.

It is well-known that if the total number of cells is sufficiently large, a concen-
tration phenomenon may occur and can be modeled by both the PKS (1), (2) and
kinetic-chemotaxis (5), (2) systems. It should be observed that under the assump-
tion that no-flux conditions are imposed at the boundary of the domain Ω, the total
mass

M :=

∫
Ω

ρ(x, t) dx (6)

is conserved for both models, but the solution behavior depends on the value of
M . For instance, the solution of the 2-D PKS system (1), (2) may develop δ-type
singularities in finite time if M is larger than some critical value Mc; see, e.g.,
[10, 20, 22, 24, 4, 46, 33, 16, 21]. Otherwise, the solution of (1), (2) exists globally
in time. In the parabolic-elliptic case (τ = 0), the critical mass values are explicitly
available, while this is not the case for the parabolic-parabolic system (τ = 1); see,
e.g., [50]. The kinetic-chemotaxis system (5), (2) exhibits a similar behavior, which
depends, however, not only on the value of the initial mass M , but also on the choice
of the specific kernel Tε; see, e.g., [3, 7]. At the same time, the kinetic-chemotaxis
system provides a more detailed description of the underlying cell dynamics and
thus may be advantageous in a variety of applications.

The goal of this paper is twofold. First, we develop an efficient and accurate
asymptotic preserving (AP) numerical method for the kinetic-chemotaxis system
(5), (2). Secondly, we use this AP method to experimentally study the blowup
behavior of the kinetic chemotaxis model and compare it with the macroscopic
PKS model for both parabolic-elliptic (τ = 0) and parabolic-parabolic (τ = 1)
cases.

One of the difficulties in achieving an efficient approximation of (5), (2) is related
to the fact that the studied system is stiff when 0 < ε << 1. If a naive numer-
ical discretization is used, then one may need to take both spatial and temporal
discretization parameters to be proportional to O(ε) or even O(ε2) due to stability
restrictions, which may become unaffordable for small ε. To overcome this difficulty,
we develop an AP scheme, which yields a consistent approximation of the limiting
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macroscopic PKS system as ε → 0 and is stable on a coarse spatio-temporal grid
with the mesh parameters being independent of ε. The concept of AP methods was
introduced in [37, 41] to solve kinetic transport equations in diffusive regimes. The
main idea is based on a suitable operator splitting and odd-even decoupling as will
be presented §3 below. This approach was afterwards generalized for a variety of
kinetic models; see, e.g., [19, 34, 35, 14, 30, 13, 29, 11, 12, 43] and reference therein.

The AP property of our numerical approach is achieved by implementing an op-
erator splitting technique combined with an idea of the even-odd formulation; see,
e.g., [36, 6]. We split the system (5), (2) into the following three parts: a non-stiff
linear transport system, stiff nonlinear relaxation equations for the pdf, and the
macroscopic equation (2) for the chemoattractant concentration. The linear trans-
port system is then solved by a second-order upwind method, while the nonlinear
relaxation part is solved exactly. Finally, the chemoattractant equation is treated
either by fast Fourier transform (FFT) in the parabolic-elliptic case or by a semi-
discrete centered-difference discretization along with an implicit-explicit (IMEX)
time integration in the parabolic-parabolic case. We would like to stress that the
operator splitting has to be designed carefully so that the kinetic and macroscopic
parabolic/elliptic equations are coupled in the way that allows one to design an
efficient numerical method; see §3.2.

The paper is organized as follows. In §2, we describe a particular choice of the
turning kernel for the underlying kinetic-chemotaxis model. The numerical method
is developed in §3 and its AP property is then proven in §4. Finally, in §5, the
performance of the proposed AP scheme is illustrated on a number of numerical
examples suggesting that our AP method may be a suitable tool to get a better
insight to the blowup behavior of kinetic chemotaxis model in two-space dimension
for both parabolic-elliptic and parabolic-parabolic cases. We refer the reader to a
related study on blowup behavior [6], where only parabolic-elliptic one- and radially
symmetric two-dimensional models have been considered.

2. Local Turning Kernel. In this section, we select a specific turning kernel Tε,
which models the reorientation process of the cells and will be used in the kinetic
equation (5). To this end, we first write the formal asymptotic expansion (see, e.g.,
[7, 6, 23, 47, 15]):

Tε[S] = T0[S] + εT1[S] +O(ε2). (7)

Here, the leading term T0[S] = F (v) > 0 is the bounded velocity distribution at
the equilibrium, which satisfies the following assumptions:∫

V

F (v)dv = 1 and F (v) = F (|v|). (8)

The coefficient of the second term in (7), T1[S], describes the new favorable direction
of the cells and we consider the positive taxis towards the chemoattractant.

Throughout this paper, we employ the turning kernel operator introduced in [3],
which represents a small perturbation of the equilibrium state:

Tε[S](x, t,v,v′) = F (v) + ε(v · ∇S(x, t))+, (9)
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where a+ := max(a, 0). Consequently, the kinetic equation (5) becomes:

εft+v ·∇xf =
ρ

ε
[F (v) + ε(v · ∇S)+]− 1

ε
(1+εJ |∇S|)f, J :=

∫
V

(
v · ∇S
|∇S|

)
+

dv.

(10)

We note that the use of this local kernel may result in solutions that blow up in
finite time. On the other hand, alternative turning kernels have also been studied;
see, e.g., [7, 31, 32]. It should be observed that the solution properties depend on
the choice of the kernel. For instance, it was shown in [7] that the kinetic model (5),
(2) with certain global kernel operators has a global solution for any initial mass.
On the other hand, if the local kernel operator (9) is used, the solution may blow
up. Indeed, as it has been proven in [3] for the parabolic-elliptic case, if the total

mass M > Mc =
16π

|V |
, then the solution blows up, while if M < mc =

0.806π

|V |
, then

a classical solution exists globally in time. In [25], a different global kernel that
reflects the cell detection and response to an external signal in finite size radius was
proposed. In this case, the limiting PKS-type system contains a nonlocal sensing
term and the existence of the bounded global solution was proven.

We also note that in the parabolic-parabolic case, the criteria for blow up or
global existence are not explicitly known. In this paper, we develop an AP numerical
method for the kinetic chemotaxis model (10), (2) and then use it to numerically
investigate possible blowup scenarios in the parabolic-parabolic case.

3. Numerical Method. In this section, we present an AP scheme for the kinetic
equation (10) coupled with the chemoattractant concentration equation (2). To
this end, in §3.1, we first rewrite the system (5), (2) in the form convenient for
numerical simulations using an even-odd formulation; see, e.g. [36, 6]. Then, in
§3.2, we implement the Strang splitting approach, [53], by separating stiff and
non-stiff parts of the system. In this setup, the stiff subsystem is solved exactly
as described in §3.2.1, while the non-stiff subsystem becomes a system of linear
transport equations, which is solved by a second-order upwind method presented in
§3.2.2.

3.1. Even-Odd Formulation. In this section, we follow [36, 6] and introduce new
variables r1, j1, r2 and j2 by considering the so-called even-odd formulation. We
assume that v ∈ V := {v | |v| = v0} and denote by V + := {v = (u, v) ∈ V |u >
0, v > 0}. From now on, we consider v ∈ V + only and rewrite equation (10) as
the system of four equations obtained by substituting (u, v), (−u,−v), (u,−v), and
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(−u, v) into (10):

εft(u, v) + ufx(u, v) + vfy(u, v)

=
ρ

ε
[F (u, v) + ε(uSx + vSy)+]− 1

ε
(1 + εJ |∇S|)f(u, v),

εft(−u,−v)− ufx(−u,−v)− vfy(−u,−v)

=
ρ

ε
[F (−u,−v)− ε(uSx + vSy)+]− 1

ε
(1 + εJ |∇S|)f(−u,−v),

εft(u,−v) + ufx(u,−v)− vfy(u,−v)

=
ρ

ε
[F (u,−v) + ε(uSx − vSy)+]− 1

ε
(1 + εJ |∇S|)f(u,−v),

εft(−u, v)− ufx(−u, v) + vfy(−u, v)

=
ρ

ε
[F (−u, v)− ε(uSx − vSy)+]− 1

ε
(1 + εJ |∇S|)f(−u, v),

(11)

where f(±u,±v) is used instead of f(x, t,±u,±v) for the sake of simplicity. We
then define the new variables

r1(u, v) :=
1

2
[f(u,−v) + f(−u, v)], r2(u, v) :=

1

2
[f(u, v) + f(−u,−v)],

j1(u, v) :=
1

2ε
[f(u,−v)− f(−u, v)], j2(u, v) :=

1

2ε
[f(u, v)− f(−u,−v)],

(12)

with a one-to-one correspondence between them and f :

f(u, v) =


r2 + εj2, u > 0, v > 0,

r2 − εj2, u < 0, v < 0,

r1 + εj1, u > 0, v < 0,

r1 − εj1, u < 0, v > 0.

(13)

It is instructive to point out that the macroscopic cell density ρ can be obtained
from (4) and (12) in terms of the new variables r1 and r2:

ρ(x, t) = 2

∫
V +

[r1(x, t,v) + r2(x, t,v)] dv. (14)

Substituting (13) into (11), yields the following system:

(r1)t + u(j1)x − v(j1)x =
ρ

2ε2
[2F (u, v) + ε|uSx − vSy|]−

1

ε2
(1 + εJ |∇S|) r1,

(j1)t +
1

ε2
u(r1)x −

1

ε2
v(r1)y =

ρ

2ε2
(uSx − vSy)− 1

ε2
(1 + εJ |∇S|)j1,

(r2)t + u(j2)x + v(j2)y =
ρ

2ε2
[2F (u, v) + ε|uSx + vSy|]−

1

ε2
(1 + εJ |∇S|)r2,

(j2)t +
1

ε2
u(r2)x +

1

ε2
v(r2)y =

ρ

2ε2
(uSx + vSy)− 1

ε2
(1 + εJ |∇S|)j2.

(15)

Since the left-hand sides of the second and fourth equations in (15) include stiff terms

with the
1

ε2
coefficients, we add and subtract u(r1)x − v(r1)y and u(r2)x + v(r2)y

from the second and fourth equations, respectively, so that we finally obtain the
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following system for r1, j1, r2 and j2:

(r1)t + u (j1)x − v (j1)y

=
ρ

2ε2
(2F (u, v) + ε|uSx − vSy|)−

1

ε2
(1 + εJ |∇S|)r1,

(j1)t + u (r1)x − v (r1)y

=
ρ

2ε2
(uSx − vSy)− 1

ε2

[
(1 + εJ |∇S|)j1 + (1− ε2)u (r1)x − (1− ε2)v (r1)y

]
,

(r2)t + u (j2)x + v (j2)y

=
ρ

2ε2
(2F (u, v) + ε|uSx + vSy|)−

1

ε2
(1 + εJ |∇S|)r2,

(j2)t + u (r2)x + v (r2)y

=
ρ

2ε2
(uSx + vSy)− 1

ε2

[
(1 + εJ |∇S|)j2 + (1− ε2)u (r2)x + (1− ε2)v (r2)y

]
,

(16)
in which, all of the stiff terms are moved to the right-hand side.

3.2. Operator Splitting. In order to develop an efficient numerical method, we
implement the operator splitting, in which the left-hand (non-stiff) and right-hand
(stiff) sides of the system (16) are treated separately. To this end, we first introduce
the vector W := (r1, j1, r2, j2)T and write the system (16), (2) in the following form:{

Wt +A1Wx +A2Wy = R,
τSt = α∆S − βS + γρ,

(17)

where

A1 =


0 u 0 0
u 0 0 0
0 0 0 u
0 0 u 0

 , A2 =


0 −v 0 0
−v 0 0 0
0 0 0 v
0 0 v 0

 , (18)

and

R =


ρ

2ε2 (2F (u, v) + ε|uSx − vSy|)− 1
ε2 (1 + εJ |∇S|)r1

ρ
2ε2 (uSx − vSy)− 1

ε2

[
(1 + εJ |∇S|)j1 + (1− ε2)u (r1)x − (1− ε2)v (r1)y

]
ρ

2ε2 (2F (u, v) + ε|uSx + vSy|)− 1
ε2 (1 + εJ |∇S|)r2

ρ
2ε2 (uSx + vSy)− 1

ε2

[
(1 + εJ |∇S|)j2 + (1− ε2)u (r2)x + (1− ε2)v (r2)y

]
 .

We then implement the splitting approach by considering the following two subsys-
tems: {

Wt = R,
τSt = 0,

(19){
Wt +A1Wx +A2Wy = 0,
τSt = α∆S − βS + γρ.

(20)

We note that in the subsystem (19), only the W variable is evolved in time while
S remains unchanged there.

Assuming that the solution at time t is available, we evolve it to the next time
level using an operator splitting algorithm, [44, 45, 53], of either the first order:(

W (x, t+ ∆t,v)
S(x, t+ ∆t)

)
≈ L2(∆t)L1(∆t)

(
W (x, t,v)
S(x, t)

)
, (21)
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or the second-order:(
W (x, t+ ∆t,v)
S(x, t+ ∆t)

)
≈ L1(∆t/2)L2(∆t)L1(∆t/2)

(
W (x, t,v)
S(x, t)

)
. (22)

Here, L1 and L2 stand for numerical solution operators for the stiff, (19), and
non-stiff , (20), subsystems, respectively.

Remark 1. It should be observed that the order of the operators in (21) and (22)
is interchangeable.

Remark 2. For simplicity of presentation, we will describe the numerical schemes
used to solve each one of the subsystems (19) and (20) in the context of the first-
order operator splitting (21). We also use the first-order splitting in the proof of the
AP property of the proposed scheme. However, in all of the numerical experiments
reported in §5, we implement the second-order operator splitting (22) to decrease
the effect of splitting errors on the computed solutions.

Before proceeding with the description of numerical methods for the subsystems
(19) and (20), we consider a computational domain, Ω×V +, where Ω = [−Lx, Lx]×
[−Ly, Ly] and V + was introduced in the beginning of §3.1. The spatial domain Ω
is partitioned into uniform Cartesian cells Ci,j := [xi− 1

2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
] of size

∆x∆y with the cell centers (xi, yj) = (xi− 1
2
+∆x/2, yj− 1

2
+∆y/2); i = 1, . . . , Nx, j =

1, . . . , Ny. We also introduce a uniform grid in the velocity domain V + consisting
of Nθ grid points:

vk = (v0 cos θk, v0 sin θk), θk = (k − 1/2)∆θ, ∆θ =
π/2

Nθ
, k = 1, . . . , Nθ. (23)

We also denote by ρni,j ≈ ρ(xi, yj , t
n), Sni,j ≈ S(xi, yj , t

n), W n
i,j,k ≈W (xi, yj , t

n,vk),

and Fk := F (vk).

3.2.1. L1: Numerical Solution of the Stiff Subsystem (19). In this section, we
present a numerical scheme for the stiff subsystem (19). We start by solving the
equations for r1 and r2,

(r1)t =
ρ

2ε2
(2F (u, v) + ε|uSx − vSy|)−

1

ε2
(1 + εJ |∇S|)r1,

(r2)t =
ρ

2ε2
(2F (u, v) + ε|uSx + vSy|)−

1

ε2
(1 + εJ |∇S|)r2,

(24)

keeping in mind that the chemoattractant concentration S satisfies τSt = 0.
It is instructive to point out that not only S, but also the macroscopic cell density

ρ does not change in time during this substep. Indeed, from (14) and (24) we obtain

ρt = 2

∫
V +

[r1 + r2]dv =
ρ

ε2

[ ∫
V +

4F (v) dv + ε

∫
V +

(
|uSx − vSy|+ |uSx + vSy|

)
dv

]

− 2

ε2
(1 + εJ |∇S|)

∫
V +

[r1 + r2]dv = 0,

which follows directly from (8) and the definition of J in (10).
We assume that the numerical solution is available at time level t = tn and denote

by (
W ∗

i,j,k

S∗i,j

)
:= L1(∆t)

(
W n

i,j,k

Sni,j

)
. (25)
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Taking into account that ρ∗i,j = ρni,j and S∗i,j = Sni,j , we obtain the following semi-
discrete approximations for (r1)∗i,j,k and (r2)∗i,j,k from (24):

d

dt
(r1)∗i,j,k +

1

ε2
(1 + εJ |∇Sni,j |)(r1)∗i,j,k =

ρni,j
2ε2

(2Fk + ε|uk(Sx)ni,j − vk(Sy)ni,j |),

d

dt
(r2)∗i,j,k +

1

ε2
(1 + εJ |∇Sni,j |)(r2)∗i,j,k =

ρni,j
2ε2

(2Fk + ε|uk(Sx)ni,j + vk(Sy)ni,j |).
(26)

Here, we approximate the derivatives (Sx)ni,j and (Sy)ni,j with the central differences,

(Sx)ni,j =
Sni+1,j − Sni−1,j

2∆x
, (Sy)ni,j =

Sni,j+1 − Sni,j−1

2∆y
,

and compute |∇Sni,j | =
√

((Sx)ni,j)
2 + ((Sy)ni,j)

2.

The linear ODEs in (26) are then solved exactly in time to obtain

(r1)∗i,j,k = ηi,j(r1)ni,j,k +
1− ηi,j

1 + εJ |∇Sni,j |

(
Fk +

ε

2
|uk(Sx)ni,j − vk(Sy)ni,j |

)
ρni,j ,

(r2)∗i,j,k = ηi,j(r2)ni,j,k +
1− ηi,j

1 + εJ |∇Sni,j |

(
Fk +

ε

2
|uk(Sx)ni,j + vk(Sy)ni,j |

)
ρni,j ,

(27)

where

ηi,j = exp
{
− ∆t

ε2
(1 + εJ |∇Sni,j |)

}
.

We now solve the equations for j1 and j2:

(j1)t =
ρ

2ε2
(uSx − vSy)− 1

ε2

[
(1 + εJ |∇S|)j1 + (1− ε2)u (r1)x − (1− ε2)v (r1)y

]
,

(j2)t =
ρ

2ε2
(uSx + vSy)− 1

ε2

[
(1 + εJ |∇S|)j2 + (1− ε2)u (r2)x + (1− ε2)v (r2)y

]
.

(28)

Equipped with the updated values of (r1)∗i,j,k and (r2)∗i,j,k, we use the central dif-
ferences to compute

((rm)x)∗i,j,k =
(rm)∗i+1,j,k − (rm)∗i−1,j,k

2∆x
,

((rm)y)∗i,j,k =
(rm)∗i,j+1,k − (rm)∗i,j−1,k

2∆y
, m = 1, 2,

(29)

substitute them into (28) and arrive at the following semi-discrete approximations
for (j1)∗i,j,k and (j2)∗i,j,k:

d

dt
(j1)∗i,j,k +

1

ε2
(1 + εJ |∇S∗i,j |)(j1)∗i,j,k =

− 1

ε2

[
(1−ε2)uk((r1)x)∗i,j,k − (1− ε2)vk((r1)y)∗i,j,k

]
+
ρni,j
2ε2

[
uk(Sx)ni,j − vk(Sy)ni,j

]
,

d

dt
(j2)∗i,j,k +

1

ε2
(1 + εJ |∇S∗i,j |)(j2)∗i,j,k =

− 1

ε2

[
(1−ε2)uk((r2)x)∗i,j,k + (1− ε2)vk((r2)y)∗i,j,k

]
+
ρni,j
2ε2

[
uk(Sx)ni,j + vk(Sy)ni,j

]
.

(30)

Finally, we solve the linear ODEs (30) exactly to obtain (j1)∗i,j,k and (j2)∗i,j,k)T (for

the sake of brevity, we omit the precise formulae).
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3.2.2. L2: Numerical Solution of the Non-Stiff Subsystem (20). In this section, we
describe the numerical solution operator L2 and denote by(

W n+1
i,j,k

Sn+1
i,j

)
:= L2(∆t)

(
W ∗

i,j,k

S∗i,j

)
= L2(∆t)L1(∆t)

(
W n

i,j,k

Sni,j

)
.

As one can see from (20), the linear hyperbolic system

Wt +A1Wx +A2Wy = 0 (31)

with the constant coefficient matrices A1 and A2 given by (18) is, in fact, decoupled
from the chemoattractant concentration equation. The latter is either the Poisson
equation

α∆S = βS − γρ, (32)

if τ = 0, or the parabolic equation

St = α∆S − βS + γρ. (33)

if τ = 1. Therefore, we will first evolve the solution of (31) to obtain W n+1
i,j,k , from

which the values of the macroscopic density ρn+1
i,j will be calculated and used in

either (32) or (33) to compute Sn+1
i,j .

Upwind method for (31). We begin with the derivation of a second-order semi-
discrete upwind approximation for the system (31). To this end, we first introduce
the matrix

Q =


−1 1 0 0
1 1 0 0
0 0 −1 1
0 0 1 1

 ,

which is used to simultaneously diagonalize the matrices A1 and A2. We then define
a change of variables U := Q−1W and rewrite the system (31) in the diagonal form:

Ut +B1Ux +B2Uy = 0, (34)

where B1 and B2 are the following diagonal matrices:

B1 := Q−1A1Q = diag(−u, u,−u, u), B2 := Q−1A2Q = diag(v,−v,−v, v).

Next, we split B1 and B2 into the sum of non-negative and non-positive definite
matrices:

B1 = B+
1 +B−1 , B+

1 := diag(0, u, 0, u), B−1 := diag(−u, 0,−u, 0),

B2 = B+
2 +B−2 , B+

2 := diag(v, 0, 0, v), B−2 := diag(0,−v,−v, 0),

and rearrange (34) in an equivalent form:

Ut +B+
1 Ux +B−1 Ux +B+

2 Uy +B−2 Uy = 0.

Multiplying the last equation by Q, we recover the original system (31):

Wt +A+
1 Wx +A−1 Wx +A+

2 Wy +A−2 Wy = 0, (35)
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where

A+
1 := QB+

1 Q
−1 =

1

2


u u 0 0
u u 0 0
0 0 u u
0 0 u u

 ,

A−1 := QB−1 Q
−1 =

1

2


−u u 0 0
u −u 0 0
0 0 −u u
0 0 u −u

 ,

A+
2 := QB+

2 Q
−1 =

1

2


v −v 0 0
−v v 0 0
0 0 v v
0 0 v v

 ,

A−2 := QB−2 Q
−1 =

1

2


−v −v 0 0
−v −v 0 0
0 0 −v v
0 0 v −v

 .

We note that A+
1 and A+

2 are non-negative definite, while A−1 and A−2 are non-
positive definite so that and one can easily design upwind finite-difference schemes
for the system (35). According to the upwind approach, we introduce the second-
order forward and backward finite-difference approximations for the spatial deriva-
tives in (35):

(W+
x )i,j,k =

−Wi+2,j,k + 4Wi+1,j,k − 3Wi,j,k

2∆x
,

(W−
x )i,j,k =

3Wi,j,k − 4Wi−1,j,k + Wi−2,j,k

2∆x
,

(W+
y )i,j,k =

−Wi,j+2,k + 4Wi,j+1,k − 3Wi,j,k

2∆y
,

(W−
y )i,j,k =

3Wi,j,k − 4Wi,j−1,k + Wi,j−2,k

2∆y
,

which are then used to construct the following second-order semi-discrete upwind
scheme for (31):

d

dt
Wi,j,k = −A+

1 (W−
x )i,j,k −A−1 (W+

x )i,j,k −A+
2 (W−

y )i,j,k −A−2 (W+
y )i,j,k. (36)

The system of time dependent ODEs (36) should be numerically integrated in time
using a stable and sufficiently accurate ODE solver. For example, using the first-
order forward Euler method, a fully discretization of (36) can be written in the flux
form as follows:

W n+1
i,j,k = W ∗

i,j,k −
∆t

∆x

(
Hi+ 1

2 ,j,k
−Hi− 1

2 ,j,k

)
− ∆t

∆y

(
Gi,j+ 1

2 ,k
−Gi,j− 1

2 ,k

)
, (37)

where

Hi+ 1
2 ,j,k

= A+
1

3W ∗
i,j,k −W ∗

i−1,j,k

2
+A−1

3W ∗
i+1,j,k −W ∗

i+2,j,k

2
,

Gi,j+ 1
2 ,k

= A+
2

3W ∗
i,j,k −W ∗

i,j−1,k

2
+A−2

3W ∗
i,j+1,k −W ∗

i,j+2,k

2
.

(38)

It is important to stress that according to the definitions in (12), both r1 and
r2 (and hence ρ, see (14)) should be positive, which is not guaranteed unless the
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scheme (37), (38) is used with a very small (possibly impractical) timestep ∆t. We
therefore implement a draining timestep technique, which was introduced in [2]. To
this end, we denote by

(∆t dr
i,j,k)(m)

:=
∆x∆y(rm)∗i,j,k

∆y
[
(H

(m)

i+ 1
2 ,j,k

)+ + (−H(m)

i− 1
2 ,j,k

)+

]
+ ∆x

[
(G

(m)

i,j+ 1
2 ,k

)+ + (−G(m)

i,j− 1
2 ,k

)+

]
+ δ

,

(39)

where m = 1, 2, (·)+ := max(·, 0), and δ is a small positive number taken to be
δ = 10−14 in the numerical examples reported in §5. We then replace the first
(m = 1) and third (m = 2) equations in (37) with

(rm)n+1
i,j,k = (rm)∗i,j,k −

∆t
(m)

i+ 1
2 ,j,k

H
(m)

i+ 1
2 ,j,k
−∆t

(m)

i− 1
2 ,j,k

H
(m)

i− 1
2 ,j,k

∆x

−
∆t

(m)

i,j+ 1
2 ,k
G

(m)

i,j+ 1
2 ,k
−∆t

(m)

i,j− 1
2 ,k
G

(m)

i,j− 1
2 ,k

∆y
,

(40)

where

∆t
(m)

i+ 1
2 ,j,k

= min(∆t/2, (∆t dr
I,j,k)(m)), I = i+

1

2
−

sgn
(
H

(m)

i+ 1
2 ,j,k

)
2

,

∆t
(m)

i,j+ 1
2 ,k

= min(∆t/2, (∆t dr
i,J,k)(m)), J = j +

1

2
−

sgn
(
G

(m)

i,j+ 1
2 ,k

)
2

.

(41)

We note that using (39)–(41) we, in fact, limit the fluxes through the boundaries
of spatial cell (i, j) to prevent too much mass living the cell yielding unphysical
negative values of r1 or r2. It can be easily verified that now (r1)n+1

i,j,k ≥ 0 and

(r3)n+1
i,j,k ≥ 0, and thus ρn+1

i,j , which is computed from (14) using the midpoint rule,
is non-negative, namely,

ρn+1
i,j = 2v0

Nθ∑
k=1

[
(r1)n+1

i,j,k + (r2)n+1
i,j,k

]
∆θ ≥ 0, ∀i, j. (42)

Remark 3. Even though, we show here only one forward Euler step, in all of our
computations below, we solve the semi-discrete system (36) using the three-stage
third-order strong stability preserving (SSP) Runge-Kutta method: see, e.g., [18,
17, 51]. Since SSP methods consist of a convex combination of forward Euler steps,
the computed values of (r1)n+1

i,j,k and (r2)n+1
i,j,k, as well as ρn+1

i,j , are still guaranteed
to be non-negative.

Spectral methods for (32) and (33). Equipped with the point values of the macro-
scopic density, ρn+1

i,j at time level t = tn+1, we implement the spectral method to
update the values of the chemoattractant concentration S. To this end, we remind
the reader that the Neumann boundary conditions are imposed for both S and ρ.

Therefore, the discrete Fourier coefficients Ŝ`,m(t) and ρ̂`,m(t) can be computed
from the available point values Si,j(t) and ρi,j(t), respectively, using the fast cosine
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Fourier transform and the solution at time t can be approximated by

S(x, y, t) ≈
∑
`,m

Ŝ`,m(t) cos

(
π`x

Lx

)
cos

(
πmy

Ly

)
,

ρ(x, y, t) ≈
∑
`,m

ρ̂`,m(t) cos

(
π`x

Lx

)
cos

(
πmy

Ly

)
.

(43)

Substituting (43) into (2) yields

τ
d

dt
Ŝ`,m(t) + ω`,mŜ`,m(t) = γ ρ̂`,m(t), ω`,m := α(`2 +m2) + β. (44)

In the elliptic (τ = 0) case, the values Ŝn+1
`,m are immediately computed from

Ŝ n+1
`,m =

γ

ω`,m
ρ̂n+1
`,m . (45)

In the parabolic (τ 6= 0) case, equation (44) can be solved exactly on the interval
[tn, tn+1]:

Ŝn+1
`,m = e−ω`,m∆tŜ n`,m + γ

tn+1∫
tn

ρ̂`,m(s)e−ω`,m(s−tn−∆t) ds.

We then approximate the integral in the last equation using the trapezoidal rule to
obtain

Ŝ n+1
`,m = e−ω`,m∆tŜ n`,m +

γ∆t

2

[
ρ̂n`,m + e−ω`,m∆t ρ̂n+1

`,m

]
. (46)

Finally, we use the inverse fast cosine Fourier transform to compute the point values

{Sn+1
i,j } out of the set of the discrete Fourier coefficients {Ŝ n+1

`,m }.

4. AP Property. As it was mentioned in the Introduction, the solutions of the
studied kinetic-chemotaxis model are expected to converge to the corresponding
solutions of PKS system as ε → 0. In this section, we show that the proposed
numerical scheme for (10), (2) provides a consistent discretization of (1), (2) in
the limiting ε → 0 case. In other words, the numerical method is AP. For the
simplicity of the presentation, we prove the AP property for the first-order splitting
(21) and note that a straightforward extension to the second-order splitting (22)
can be derived.

We first observe that when ε→ 0 the equations in (27) reduce to

(r1)∗i,j,k = ρni,jFk, (r2)∗i,j,k = ρni,jFk. (47)

We then substitute (47) into (30) and derive the following formulae in the ε → 0
limit:

(j1)∗i,j,k =
ρni,j
2

[
uk(Sx)ni,j − vk(Sy)ni,j

]
− ukFk(ρx)ni,j + vkFk(ρy)ni,j ,

(j2)∗i,j,k =
ρni,j
2

[
uk(Sx)ni,j + vk(Sy)ni,j

]
− ukFk(ρx)ni,j − vkFk(ρy)ni,j ,

(48)

where (ρx)ni,j and (ρy)ni,j are obtained from (29) and (42) and equal to

(ρx)ni,j =
ρni+1,j − ρni−1,j

2∆x
, (ρy)ni,j =

ρni,j+1 − ρni,j−1

2∆y
.
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Next, we consider the first and third equations in the semi-discrete upwind
scheme (36), which after the forward Euler time discretization read as

(r1)n+1
i,j,k − (r1)∗i,j,k

∆t

= −1

2

[
uk((r1)−x )∗i,j,k + uk((j1)−x )∗i,j,k − uk((r1)+

x )∗i,j,k + uk((j1)+
x )∗i,j,k

+ vk((r1)−y )∗i,j,k − vk((j1)−y )∗i,j,k − vk((r1)+
y )∗i,j,k − vk((j1)+

y )∗i,j,k

]
,

(r2)n+1
i,j,k − (r2)∗i,j,k

∆t

= −1

2

[
uk((r2)−x )∗i,j,k + uk((j2)−x )∗i,j,k)− uk((r2)+

x )∗i,j,k + uk((j2)+
x )∗i,j,k

+ vk((r2)−y )∗i,j,k + vk((j2)−y )∗i,j,k − vk((r2)+
y )∗i,j,k + vk((j2)+

y )∗i,j,k

]
.

(49)

Substituting (47) and (48) into (49), adding the above two equations and multiply-
ing by 2 yield

2
[
(r1)n+1

i,j,k + (r2)n+1
i,j,k

]
= 4ρni,jFk −∆t

[
(∆x)3(ρxxxx)ni,jukFk + (∆y)3(ρyyyy)ni,jvkFk

+2((ρSx)x)ni,ju
2
k + 2(ρSy)y)ni,jv

2
k − 4(ρxx)ni,ju

2
kFk − 4(ρyy)ni,jv

2
kFk

]
,

(50)
where we have used the following notations:

(ρxx)ni,j :=
−ρni+3,j + 4ρni+2,j + ρni+1,j − 8ρni,j + ρni−1,j + 4ρni−2,j − ρni−3,j

8(∆x)2
,

(ρyy)ni,j :=
−ρni,j+3 + 4ρni,j+2 + ρni,j+1 − 8ρni,j + ρni,j−1 + 4ρni,j−2 − ρni,j−3

8(∆y)2
,

(ρxxxx)ni,j :=
ρni+2,j − 4ρni+1,j + 6ρni,j − 4ρni−1,j + ρni−2,j

(∆x)4
,

(ρyyyy)ni,j :=
ρni,j+2 − 4ρni,j+1 + 6ρni,j − 4ρni,j−1 + ρni,j−2

(∆y)4
,

((ρSx)x)ni,j :=
1

8(∆x)2

[
− ρni+2,j(S

n
i+3,j − Sni+1,j) + 4ρni+1,j(S

n
i+2,j − Sni,j)

− 4ρni−1,j(S
n
i,j − Sni−2,j) + ρni−2,j(S

n
i−2,j − Sni−3,j)

]
,

((ρSy)y)ni,j :=
1

8(∆y)2

[
− ρni,j+2(Sni,j+3 − Sni,j+1) + 4ρni,j+1(Sni,j+2 − Sni,j)

− 4ρni,j−1(Sni,j − Sni,j−2) + ρni,j−2(Sni,j−2 − Sni,j−3)
]
.
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We now multiply (50) by v0∆θ, sum it over all k, and use (42) to obtain

ρn+1
i,j = ρni,jv0

Nθ∑
k=1

4Fk∆θ

− v0∆t
[
(∆x)3(ρxxxx)ni,j

Nθ∑
k=1

ukFk∆θ + (∆y)3(ρyyyy)ni,j

Nθ∑
k=1

vkFk∆θ

+ 2((ρSx)x)ni,j

Nθ∑
k=1

u2
k∆θ + 2((ρSy)y)ni,j

Nθ∑
k=1

v2
k∆θ

− 4(ρxx)ni,j

Nθ∑
k=1

u2
kFk∆θ − 4(ρyy)ni,j

Nθ∑
k=1

v2
kFk∆θ

]
.

(51)

We finally use (8), (23), and the approximation property of the midpoint rule to
establish the following estimates and identities:

v0

Nθ∑
k=1

4Fk∆θ = 1 +O((∆θ)2),

v0

Nθ∑
k=1

ukFk∆θ ≤ v2
0

4
+O((∆θ)2), v0

Nθ∑
k=1

vkFk∆θ ≤ v2
0

4
+O((∆θ)2),

2v0

Nθ∑
k=1

u2
k∆θ = 2v0

Nθ∑
k=1

v2
k∆θ = v0

Nθ∑
k=1

(u2
k + v2

k)∆θ =

Nθ∑
k=1

v4
0∆θ ≈ χ,

4v0

Nθ∑
k=1

u2
kFk∆θ = 4v0

Nθ∑
k=1

v2
kFk∆θ = 2v0

Nθ∑
k=1

(u2
k + v2

k)Fk∆θ = 2

Nθ∑
k=1

v4
0Fk∆θ ≈ D,

which can be used to show that (51) provides a consistent approximation of (1).

5. Numerical Results. In this section, we test the proposed AP scheme on several
numerical examples and also study the behavior of the solutions of the kinetic-
chemotaxis system (10), (2) in the ε→ 0 regime. In all of the examples below, we
take v0 = 1 and Nθ = 32. The parameter ε = 1 in Example 1 and ε = 10−5 in all
other examples.

Example 1—Parabolic-Elliptic System. In this example taken from [6], we consider
the system (10), (2) in the parabolic-elliptic (τ = 0) and non-stiff (ε = 1) regime
with α = γ = 1, β = 0, and F (v) ≡ 1/(2π). The system is solved on the domain
Ω = [−2, 2]× [−2, 2] and subject to the following Gaussian-shaped initial data:

f(x, y, 0,v) =
1

2π
ρ(x, y, 0), ρ(x, y, 0) =

15M

π
e−15(x2+y2),

where M is a total mass.
According to the theoretical results in [3], there are two critical mass thresholds:

if M > Mc = 8, the solution blows up in finite time, while if M < mc = 0.403,
a global classical solution exists. It is still, however, unclear whether the solution
remains bounded if mc ≤M ≤Mc.

We investigate the solution behavior by computing the ratio ||ρ||∞/M for differ-
ent values of M . We run the computations on a uniform grid with Nx = Ny = 128
until final time T = 6. The results are presented in Figure 1 for M = 1, 5, 7, 8 and
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9. As one can see, when M = 1 the maximum density decays for all times while for
other values of M the solution exhibits an initial growth. For M = 5 and M = 7, the
maximum density decays at later times and the solution clearly remains bounded.
At the same time, for M = 9, which is above the critical threshold Mc = 8, the max-
imum density increases and eventually saturates. In fact, this solution blows up and
its maximum saturation phenomenon is attributed to the fact that the magnitude
of finite-difference approximations of δ-type singularities is always proportional to
1/(∆x∆y). The blowup is also confirmed by the data presented in the Figure 2
(right), where we plot the time evolution of ||ρ||∞ computed on three consecutive
meshes: as one can see, at time T = 6 the value of ||ρ||∞ increases by a factor of
four as the grid is refined. This behavior of ||ρ||∞ is clearly different from the one
observed in the case of M = 7 < Mc shown in Figure 2 (left).

Figure 1. Example 1: Behavior of ||ρ||∞/M in time for varying
values of M ; Nx = Ny = 128.

Figure 2. Example 1: Behavior of ||ρ||∞ in time for M = 7 (left)
and M = 9 (right) on three consecutive meshes.

Example 2—Parabolic-Parabolic System: Blowup at the Center. In this example,
we consider the system (10), (2) in the parabolic-parabolic (τ = 1) and stiff (ε� 1)
regime with α = β = γ = 1, and F (v) ≡ 1/(2π). The system is solved on the
domain Ω = [−1/2, 1/2]× [−1/2, 1/2] and subject to the following initial data:

f(x, y, 0,v) =
1

2π
ρ(x, y, 0), ρ(x, y, 0) =

100M

π
e−100(x2+y2), (52)
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where M is a total mass.
Example 2a. We first consider the case when the initial chemoattractant concen-
tration is a Gaussian-shaped function given by

S(x, y, 0) = 500e−50(x2+y2). (53)

We study the time evolution of maximum density for three different values of the
initial mass, M = 1, 8 and 11. In Figure 3, we plot ||ρ||∞ as a function of time for
four consecutive meshes. We conclude that the behavior of the solution depends
on the total mass: if M is large enough, the maximum norm of the cell density
grows rapidly and saturates after blowup due to the finite-difference approximation
limitation as discussed in Example 1. However, for smaller M , the maximum density
first increases and then decreases without blowing up.

Figure 3. Example 2a: Behavior of ||ρ||∞ in time for M = 1 (left),
M = 8 (middle) and M = 11 (right) on four consecutive meshes.

The blowup phenomenon is illustrated in Figure 4, where we plot the computed
density at the post-blowup time T = 5 × 10−4 for M = 11 on two different grids
with Nx = Ny = 128 (left) and Nx = Ny = 256 (right). Our extensive numerical
experiments indicate that the blowup starts at M = 8.

Figure 4. Example 2a: The density ρ(x, y, T = 0.0005) forM = 11
computed on the meshes with: Nx = Ny = 128 (left) and Nx =
Ny = 256 (right).

Example 2b. We then consider the same initial boundary value problem with zero
initial chemoattractant:

S(x, y, 0) = 0. (54)

In this case, the spiky structure at the center of the computational domain de-
velops much slower that in Example 2a, since S is not concentrated at the center
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initially. This seems to affect the value of the critical mass. For instance, when
M = 8, the solution does not blow up in contrast to Example 2a; see Figure 5
(left), where we plot ||ρ||∞ as a function of time for three consecutive meshes.
When larger values of M are considered, the solution blows up as expected; see
Figure 5. It should be pointed out, however, that one can observe rapid change in
the solution magnitudes for both M = 9.5 and M = 11, but these changes occur
after the blowup times. The latter can be estimated as t = 0.24 (for M = 9.5) and
t = 0.058 (for M = 11), since at these times the ratio of ||ρ||∞ computed on the
256× 256 and 128× 128 grids becomes 4. Consequently, the numerical experiments
indicate for M = 9.5.

Figure 5. Example 2b: Behavior of ||ρ||∞ in time for M = 8 (left),
M = 9.5 (middle) and M = 11 (right) on three consecutive meshes.

We conclude this example with an experimental convergence study. To this end,
we take a small final time T = 0.01 and measure the experimental convergence rate
for the density in the L∞-norm by computing

rate4N = log2

(
||e2N ||∞
||e4N ||∞

)
,

where ||e2N ||∞ := ||ρN−ρ2N ||∞
max{ρ2N} is the estimated relative L∞-error, and ρN is the

solution computed on a mesh with N = Nx = Ny.
The results presented in Table 1 clearly demonstrate second order of accuracy of

the proposed AP scheme.

M = 8 M = 9.5 M = 11
N ||e2N ||∞ rate4N ||e2N ||∞ rate4N ||e2N ||∞ rate4N

32 1.5680E-02 - 2.9056E-02 - 4.9613E-02 -
64 3.2150E-03 2.2860 8.1861E-03 1.8276 1.6752E-02 1.5663
128 8.4486E-04 1.9280 2.1204E-03 1.9488 4.5867E-03 1.8688
256 2.0985E-04 2.0093 5.3892E-04 1.9761 1.1662E-03 1.9756

Table 1. Example 2b: L∞- errors for M = 8, 9.5 and 11 (from left
to right).

Example 3—Parabolic-Parabolic System: Blowup at the Corner. In our last ex-
ample, we study the model (10), (2) in the parabolic-parabolic (τ = 1) and stiff
(ε << 1) regime with α = β = γ = 1, and F (v) ≡ 1/(2π). The system is solved on
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the domain Ω = [−1/2, 1/2]× [−1/2, 1/2] and subject to the same initial data as in
Example 2b, but shifted by (0.25, 0.25) from the center of the domain:

f(x, y, 0,v) =
1

2π
ρ(x, y, 0), ρ(x, y, 0) =

100M

π
e−100((x−0.25)2+(y−0.25)2),

S(x, y, 0) = 0,

where M stands for a total mass.
According to the analytical results in [20] and the numerical simulations in [8], the

solution of the PKS model with the corresponding initial and boundary conditions
moves towards the upper right corner of the computational domain and blows up
there. In view of these results, it is interesting to numerically investigate whether
the solution of the kinetic chemotaxis model behaves similarly.

In Figures 6 - 8, we plot the density computed on the uniform grid with Nx =
Ny = 128 for M = 3, 7 and 11. The time evolution is shown on each of these
figures (from left to right). As one can see, in all of the cases, even when M = 3,
the solution blows up though the blowup time is much smaller for larger values
of M . One can also clearly see that the solutions propagate towards the upper
corner of the computational domain. However, when M = 11, the solution blows
up much earlier than it would reach the corner. We have also performed the same
numerical experiments with ε = 10−8 and the obtained results were very similar.
This indicated that for larger initial masses the solutions of the kinetic chemotaxis
model may not converge to the corresponding PKS solution.

Figure 6. Example 3: The displacement of the density for M = 3.

6. Conclusions. In the present paper, we have derived and studied a new asymp-
totic preserving method for the kinetic chemotaxis model in two space dimensions.
For time evolution of the cell distribution we have used the Boltzmann-type ki-
netic equation with a local turning kernel operator, which describes the change in
cell orientation. For the chemoattractant both the elliptic and parabolic cases are
considered. The Patlak-Keller-Segel model for chemotaxis can be recovered in the
singular limit of the kinetic model, when the mean free path converges to 0. It is
well-known that the solutions of both the kinetic and Patlak-Keller-Segel models



20 A. CHERTOCK, A. KURGANOV, M. LUKÁČOVÁ-MEDVIĎOVÁ AND Ş. N. ÖZCAN

Figure 7. Example 3: The displacement of the density for M = 7.

Figure 8. Example 3: The displacement of the density for M = 11.

may blow up in finite time, when the initial mass is larger than a critical mass. The
critical values, however, are different for macroscopic and kinetic models.

Computing these blowing up solutions requires a reliable and efficient approxi-
mation of singular functions or distributions. Our numerical method is based on the
so-called even-odd decoupling followed by the Strang splitting and a suitable com-
bination of the evolution of the chemoattractant, relaxation and transport steps for
the evolution of cell density. Using the splitting allows one to exactly solve the stiff
relaxation system whereas the transport system is linear and is numerically solved
using an upwind approach. The macroscopic equations for the chemoattractant are
treated by the spectral method.
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We have proven that as far as the global solution exists, our numerical scheme is
asymptotic preserving and yields a consistent approximation of the Patlak-Keller-
Segel model when the mean free path converges to 0. Our numerical experiments
indicate that in the blowing up regime, the solutions of the kinetic chemotaxis and
Patlak-Keller-Segel systems may behave differently. To the best of our knowledge,
this does not contradict the theoretical results since after the blowup time the
solutions can only be understood as measure-valued solutions for which no rigorous
analysis is available.

In the future works, we intend to study the kinetic model with global turning
kernels and to analyze whether there is a global weak solution for both parabolic
and elliptic chemoattractant equation for general two dimensional initial data.
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[15] F. Filbet, P. Laurençot and B. Perthame, Derivation of hyperbolic models for chemosensitive

movement, Journal of Mathematical Biology, 50 (2005), 189–207.
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