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Abstract. We develop a stochastic Galerkin method for a coupled Navier-Stokes-cloud system that models

dynamics of warm clouds. Our goal is to explicitly describe the evolution of uncertainties that arise due to

unknown input data, such as model parameters and initial or boundary conditions. The developed stochastic
Galerkin method combines the space-time approximation obtained by a suitable finite volume-finite method

with a spectral-type approximation based on the generalized polynomial chaos expansion in the stochastic

space. The resulting numerical scheme yields a second-order accurate approximation in both space and time
and exponential convergence in the stochastic space. Our numerical results demonstrate the reliability and

robustness of the stochastic Galerkin method for some typical atmospheric scenarios.

1. Introduction

Clouds constitute one of the most important component in the Earth-atmosphere system. They influence the
hydrological cycle and by interacting with radiation they control the energy budget of the system. However,
clouds are one of the most uncertain components, which, unlike the atmospheric flows, cannot be modeled
using first principles of physics.

Clouds are composed by myriads of water particles in different phases (liquid and solid), and thus they need
to be described by a large ensemble in a statistical sense. A common way of obtaining such an ensemble is
by using a mass or size distribution, which would lead to a Boltzmann-type evolution equation. Although
there are some approaches available in literature to formulate cloud models in such a way [4, 21, 22], a
complete and consistent description is missing. Since measurements of size distributions of cloud particles
are difficult, we are often restricted to averaged quantities such as, for example, mass of water per dry air
(mass concentrations). Therefore, models are often formulated in terms of so-called bulk quantities, that
is, mass and number concentrations of the respective water species. Many cloud processes are necessary to
describe the time evolution of the cloud as a statistical ensemble, that is, particle formation or annihilation,
growth/evaporation of particles, collision processes, and sedimentation due to gravity. For each of the
processes, we have to formulate a representative mathematical term in the sense of a rate equation. Although
for some processes the physical mechanisms are quite understood, the formulation of the process rates usually
contain uncertain parameters, thus cloud models come with inherent uncertainty. On the other hand, the
initial conditions for atmospheric flows and the embedded clouds are also not perfectly constrained, leading
to uncertainties in the environmental conditions. It is well-known from former studies that uncertainties
in cloud processes and in environmental conditions can lead to drastic changes in simulations, thus these
uncertainties influence predictability of moist atmospheric flows, clouds and precipitation in a crucial way;
for instance, the distribution of latent heat is changed, which in turn can influence frontogenesis [17] or
convection [15,29].

For investigations of the impact of these uncertain cloud model parameters as well as the impact of variations
in environmental conditions on atmospheric flows, sensitivity studies are usually carried out. Since one or
more parameters are (randomly) varied, the Monte Carlo approach can be used. This, however, requires a
large ensemble of simulations to be conducted, which makes Monte Carlo methods computationally expensive
and requires a very fine sampling of the parameter space and possible environmental conditions. We therefore
choose a different way of representing random variations by using spectral expansions in the stochastic space.
This approach enables us to investigate the impact of variations in cloud model parameters and initial
conditions on the evolution of moist flows with embedded clouds.

We consider a mathematical model of cloud dynamics that consists of the Navier-Stokes equations coupled
with the cloud evolution equations for the water vapor, cloud water and rain. In this model developed
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in [27, 40] and presented in Section 2, the Navier-Stokes equations describe weakly compressible flows with
viscous and heat conductivity effects, while microscale cloud physics is modeled by the system of advection-
diffusion-reaction equations.

In this paper, we study a stochastic version of the coupled Navier-Stokes-cloud model in order to account for
uncertainties in input quantities, such as model parameters, initial and boundary conditions, etc. Our main
goal is to design an efficient numerical method for quantifying uncertainties in solutions of the studied system.
In recent years, a wide variety of uncertainty quantification methods has been proposed and investigated in
the context of physical and engineering applications. These methods include stochastic Galerkin methods
based on generalized polynomial chaos (gPC) [9, 11, 14, 16, 18, 26, 39, 41, 45–48, 52], stochastic collocation
methods [28, 44, 50, 51], and multilevel Monte Carlo methods [33–36, 43]. Each of these groups of methods
has its own pros and cons. While results obtained by the Monte Carlo simulations are generally good,
the approach is not very efficient due to a large number of realizations required. Stochastic collocation
methods are typically more efficient than the Monte Carlo ones, since they only require solving the underlying
deterministic system at the certain quadrature nodes in the stochastic space. These data are then used to
reconstruct the gPC expansion using an appropriate set of orthogonal polynomials. Stochastic Galerkin
methods offer an alternative approach for computing the gPC expansion. In general, they are more rigorous
and efficient than the Monte Carlo and collocation ones; see, e.g., [12]. On the other hand, application of
the stochastic Galerkin method requires changes in the underlying code, because in this approach one needs
to solve a system of PDEs for the gPC expansion coefficients.

We develop a new stochastic Galerkin method for the coupled Navier-Stokes-cloud system. We restrict our
consideration to the case in which the uncertainties are only in the cloud dynamics; extension to the full
stochastic Navier-Stokes-cloud model is left to future studies. Thus, we need to solve the deterministic Navier-
Stokes equations coupled with the PDE system for the gPC expansion coefficients for the cloud variables.
Our numerical method is an extension of the approach proposed in [27] for the purely deterministic version of
the coupled Navier-Stokes-cloud system. This method is based on the operator splitting approach, in which
the system is split into the macroscopic Navier-Stokes equations and microscopic cloud model with random
inputs. The Navier-Stokes equations are then solved by an implicit-explicit (IMEX) finite-volume method,
while for the cloud equations we develop a stochastic Galerkin method based on the gPC. The resulting gPC
coefficient system is numerically solved by a finite-volume method combined with an explicit Runge-Kutta
method with an enlarged stability region [32].

The paper is organized as follows. We start in Section 2 with the description of the deterministic Navier-
Stokes-cloud model. We then continue in Section 3 with the presentation of the stochastic model. Sections 4
and 5 are devoted to the numerical method for the deterministic and stochastic models, respectively. Finally,
in Sections 6 and 7, we report on numerical experiments for well-known meteorological benchmarks—rising
warm bubble and Rayleigh-Bénard convection—for the deterministic and stochastic models, respectively.
Our numerical results clearly demonstrate that the proposed stochastic Galerkin method is capable of quan-
tifying the uncertainties of complex atmospheric flows.

2. Deterministic mathematical model

We study a mathematical model of cloud dynamics, which is based on the compressible nonhydrostatic
Navier-Stokes equations for moist atmosphere (that is, mixture of ideal gases dry air and water vapor),

ρt +∇ · (ρu) = 0,

(ρu)t +∇ ·
(
ρu⊗ u + p Id− µmρ

(
∇u + (∇u)>

))
= −ρge3, (2.1)

(ρθ)t +∇ · (ρθu− µhρ∇θ) = Sθ,
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and evolution equations for cloud variables,

(ρqv)t +∇ · (ρqvu− µqρ∇qv) = ρ(−C + E),

(ρqc)t +∇ · (ρqcu− µqρ∇qc) = ρ(C −A1 −A2), (2.2)

(ρqr)t +∇ · (−vqρqre3 + ρqru− µqρ∇qr) = ρ(A1 +A2 − E).

Here, ρ is the density, u is the velocity vector, θ is the moist potential temperature, p is the pressure, g
is the acceleration due to gravity, µm is the dynamic viscosity, µh the thermal conductivity, and µq the
cloud diffusivity. We denote by t the time variable and by x the space vector; x = (x1, x2, x3) in the three-

dimensional (3-D) and x = (x1, x3) in the two-dimensional (2-D) cases. Furthermore, e3 = (0, 0, 1)
>

and

e3 = (0, 1)
>

in the 3-D and 2-D cases, respectively. We set µm = 10−3 and µh = 10−2 = µq. Note that
the systems (2.1) and (2.2) are coupled through the source term Sθ, which represents the impact of phase
changes and will be defined below, see (2.6). The temperature T can be obtained from the moist adiabatic
ideal gas equation

T =
R

Rm
θ

(
p

p0

)Rm/cp
, (2.3)

where p0 = 105 [Pa] is the reference pressure at sea level. In addition to the usual definition of a potential
temperature, we useRm = (1−qv−qc−qr)R+qvRv with the ideal gas constant of dry airR = 287.05 [J/(kg·K)],
the gas constant of water vapor Rv = 461.51 [J/(kg·K)] and the specific heat capacity of dry air for constant
pressure cp = 1005 [J/(kg·K)]. In order to close the system, we determine the pressure from the equation of
state that includes moisture

p = p0

(
Rρθ

p0

)γm
with γm =

cp
cp −Rm

. (2.4)

We note that in the dry case Rm reduces to R, Sθ = 0 and the moist ideal gas equation as well as the moist
equation of state become their dry analogon.

In this paper, we restrict our investigations to clouds in the lower part of the troposphere, that is, to clouds
consisting of liquid droplets exclusively. All of the processes involving ice particles are left for future research.
For the representation of liquid clouds in our model we use the so-called single moment scheme, that is,
equations for the bulk quantities of mass concentrations of different water phases. For the representation of
the relevant cloud processes we adapt a recently developed cloud model [40]. Note that for bulk models, the
process rates cannot be derived completely from first principles. Consequently, some uncertain parameters
show up naturally. This underlies the need of a rigorous sensitivity study which is the goal of the present
paper.

Generally, we follow the standard approach in cloud physics modeling for separating hydrometeors of different
sizes, as firstly introduced in [19]. This relies on the observations that small droplets have a negligible falling
velocity. In addition, measurements indicate two different modes of droplets in the size distribution, which
can be associated to small cloud droplets and large rain drops [49]. Thus, we use the cloud variables qc and qr
indicating mass concentration of (spatially stationary) cloud droplets and (falling) rain drops, respectively,
and the water vapor concentration qv, that is,

q` =
mass of dry air

mass of the respective phase
for ` ∈ {v, c, r}.

The rest of this section is devoted to a description of the different terms on the right-hand side (RHS) of
(2.2), which represents the following relevant cloud processes.

• Condensation/evaporation of cloud droplets

Cloud droplets can be formed by the activation of so-called cloud condensation nuclei. Liquid aerosol
particles can grow by water vapor uptake to larger sizes; this effect can be described by the Köhler
theory; see, e.g., [23, 38]. As described in detail in [40], we represent the cloud droplet number
concentration nc by a nonlinear relationship

nc =
8 · 108qc

qc + 1.68 · 106
coth

( qc
2.1

)
.
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Growth and evaporation of small cloud particles are dominated by diffusion processes. If the water
vapor concentration qv is larger than the equilibrium water vapor concentration q∗ = q∗(p, T ), water
molecules diffuse to the water droplet and thus the cloud particle is growing. For qv < q∗, the water
droplet is evaporating. These effects are represented in the terms C and E. In particular,

C = C1 + Cact with C1 = 0.7796DG (qv − q∗)
(

8 · 108

qc + 1.68 · 106
coth

( qc
2.1

))2/3

ρqc (2.5)

and Cact = 1.2566 · 10−3DGρ (qv − q∗)+ ,

where

D = D(p, T ) = 2.11 · 10−5 (T/273.15)
1.94

(101325/p) ,

G = G(p, T ) =
[ (

2.53·106
/461.52T − 1

)
2.53·106psD/461.52KT 2 + 1

]−1
,

ps = ps(T ) = exp
{

54.842763− 6763.22/T − 4.21 lnT + 0.000367T + tanh(0.0415(T − 218.8))

· (53.878− 1331.22/T − 9.44523 lnT + 0.014025T )
}
,

K = K(T ) =
0.02646T 3/2

T + 245.4 · 10−12/T
, q∗ = q∗(p, T ) =

0.622ps
p

.

Note that since cloud droplets are activated for water vapor concentrations larger than the thermo-
dynamic equilibrium (qv > q∗) the term Cact is added as a source of liquid water in (2.5).

We introduce an additional closure for the number concentration of rain drops nr = crq
αr
r , which

is explicitly used in [40]. Under the assumption that the size of rain drops is distributed to an
exponential law; see, e.g., [30], we obtain the exponent αr = 1/4. Note that this relation will be
inserted in any formulation of cloud process rates, involving nr. Finally, the evaporation of rain
drops is changed by hydrodynamic effects of air motions around the drops. This is corrected by an
additional empirical relationship. The final formulation of the evaporation rate E is given by

E = −0.7796DG(q∗ − qv)+

(
644.5198

√
ρqr + 17.5904D−

1/3
√
αµ−

1/6
√
rρ

13/24q
91/120

r

)
,

where

r =

(
1.21 · 10−5

qr + e3ρ−
3/4q

1/4
r

)4/15

and µ =
1.458 · 10−6T 3/2

T + 110.4
.

• Autoconversion: Collision of cloud droplets, forming rain drops

The growth of cloud droplets to larger sizes is dominated by collision processes. The collision of two
cloud droplets leading to a larger rain drop is called autoconversion; see, e.g., [20]. This rate can be
modeled as

A1 = 10−3k1ρq
2
c .

Note that the coefficient k1 cannot be measured or derived from the first principles. It is a free
parameter, which must be fixed using parameter estimations. Thus, the impact of the uncertainty
of this parameter is of high interest. In our deterministic experiments, we choose k1 = 0.0041.

• Accretion: Collection of cloud droplets by rain drops

Falling rain drops can also collect smaller cloud droplets. This process is called accretion and can
be modelled as

A2 = 0.3846k2αrρ
1/4qcq

61/60

r .

Again, the parameters k2 and α cannot be derived from the first principles and the impact of their
uncertainty is of high interest as well. In our deterministic experiments, we chose k2 = 0.8 and
α = 190.3.
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• Sedimentation of rain drops

Large rain drops are accelerated by gravity force. Frictional forces balance gravity, thus we can
assume that a rain drop falls with a terminal velocity, which depends only on the mass of the drop
and the density of air. The terminal velocity is given by

vq =
√

1.225αrρ−
1/2q

4/15

r .

We have to introduce an additional hyperbolic term into the equation for the evolution of qr, that
is, the term ∇ · (−vqρqre3) is included.

Note that the condensation and evaporation processes are formulated explicitly, in contrast to the usual
approach of saturation adjustment (see, e.g., [25]), which is less accurate, but commonly used in operational
weather forecast models. This explicit formulation introduces stiffness caused by modeling cloud processes
on the RHS of the cloud equations with fractional exponents between −1 and 1. We handle this stiffness by
replacing terms like ζξ, ξ ∈ (−1, 1), with {

ζξ, if ζ > 10−16,

0, otherwise.

Due to the condensation and evaporation processes latent heat is released or absorbed. These processes are
modelled by the source term in (2.1):

Sθ = ρ
Lθ

cpT
(C − E) , (2.6)

where L = 2.53 · 106 [J/kg] is the specific latent heat of vaporization.

Solving the Navier-Stokes equations (2.1) in a weakly compressible regime is known to cause numerical
instabilities due to the multiscale effects. We follow the approach typically used in meteorological models,
where the dynamics of interest is described by a perturbation of a background state, which is the hydrostatic
equilibrium. The latter expresses a balance between the gravity and pressure forces. Denoting by p̄, ρ̄,
ū = 0, θ̄ and ρθ the respective background state, the hydrostatic equilibrium satisfies

∂p̄

∂x3
= −ρ̄g, Sθ = 0,

where p̄ is obtained from the equation of state (2.4)

p̄ = p(ρθ) = p0

(
Rρθ

p0

)γm
. (2.7)

Let p′, ρ′, u′, θ′ and (ρθ)′ stand for the corresponding perturbations of the equilibrium state, then

p = p̄+ p′, ρ = ρ̄+ ρ′, θ = θ̄ + θ′, u = u′, ρθ = ρ̄θ̄ + ρ̄θ′ + ρ′θ̄ + ρ′θ′ = ρθ + (ρθ)′.

The pressure perturbation p′ is derived from (2.4) and (2.7) using the following Taylor expansion

p(ρθ) ≈ p(ρθ) +
∂p

∂(ρθ)

(
ρθ − ρθ

)
= p̄+ γmp0

(
Rρθ

p0

)γm
(ρθ)′

ρθ
,

which results in

p′ ≈ γmp0

(
Rρθ

p0

)γm
(ρθ)′

ρθ
.

The perturbation formulation of the Navier-Stokes equations (2.1) then reads as

ρ′t +∇ · (ρu) = 0,

(ρu)t +∇ ·
(
ρu⊗ u + p′ Id− µmρ

(
∇u + (∇u)>

))
= −ρ′ge3, (2.8)

(ρθ)′t +∇ · (ρθu− µhρ∇θ) = Sθ.

Note that though the systems (2.8) and (2.1) are equivalent, the perturbation formulation (2.8) is preferable
for the development of a numerical scheme. For alternative representations of cloud dynamics and their
numerical investigations, we refer the reader to [3, 42] and references therein.
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3. Stochastic mathematical model

In the meteorological model described in Section 2, some data or parameters may contain uncertainty. In
this paper, we consider the case, where the uncertainty arises from the initial data or some coefficients in the
microphysical cloud parameterizations. In order to mathematically describe the uncertainty, we introduce a
random variable ω. We assume that either the initial data or some well-chosen model parameters depend on
ω, that is,

(ρq`)
∣∣
t=0

= (ρq`)(x, t = 0, ω) with ` ∈ {v, c, r}
or

k1 = k1(ω), k2 = k2(ω), α = α(ω).

Consequently, the solution at later time will also depend on ω, that is, (ρq`)(x, t, ω) for ` ∈ {v, c, r}, and the
system (2.2) for cloud variables will read as

((ρqv)(ω))t +∇ · ((ρqv)(ω)u− µqρ∇qv(ω)) = ρ(−C(ω) + E(ω)),

((ρqc)(ω))t +∇ · ((ρqc)(ω)u− µqρ∇qc(ω)) = ρ(C(ω)−A1(ω)−A2(ω)), (3.1)

((ρqr)(ω))t +∇ · ((ρqr)(ω)(−vq(ω)e3 + u)− µqρ∇qr(ω)) = ρ(A1(ω) +A2(ω)− E(ω)).

From now on we will stress the dependence on ω, but we will omit the dependence on x and t to simplify the
notation. We would like to point out that the solution of the Navier-Stokes equations (2.8) will also depend
on ω, because of the source term Sθ. In this paper, we will consider a simplified situation by replacing

Sθ(ω) = ρ
Lθ

cpT

{
C((ρqv)(ω), (ρqc)(ω))− E((ρqv)(ω), (ρqr)(ω))

}
in (2.8) by S̄θ which only depends on the expected values of the cloud variables

S̄θ := ρ
Lθ

cpT

{
C(E[ρqv],E[ρqc])− E(E[ρqv],E[ρqr])

}
.

This ensures that all of the fluid variables, ρ′, ρu and (ρθ)′, remain deterministic.

4. Numerical scheme for the deterministic model

The numerical approximation of the coupled model (2.8), (2.2) is based on the second-order Strang operator
splitting. Therefore, we split the whole system into the macroscopic Navier-Stokes flow equations and the
microscopic cloud equations. The Navier-Stokes equations (2.8) are approximated by an IMEX finite-volume
method and the cloud equations (2.2) are approximated by a finite-volume method in space and an explicit
Runge-Kutta method with an enlarged stability region in time.

4.1. Operator form. Let w := (ρ′, ρu, (ρθ)′)> and wq := (ρqv, ρqc, ρqr)
> denote the solution vectors of

(2.8) and (2.2), respectively. Then, the coupled system can be written as

wt = −∇ · F (w) + D(w) + R(w),

(wq)t = −∇ · Fq(wq) + Dq(wq) + Rq(wq),

where F and Fq are advection fluxes and D, R and Dq, Rq denote the diffusion and reaction operators of
the respective systems. They are given by

F (w) := (ρu, ρu⊗ u + p′ Id, ρθu)
>
,

D(w) :=
(
0,∇ · (µmρ(∇u + (∇u)>)),∇ · (µhρ∇θ)

)>
, (4.1)

R(w) := (0,−ρ′ge3, Sθ)
>
,

Fq(wq) := (ρqvu, ρqcu, ρqru− vqρqre3)
>
,

Dq(wq) := (∇ · (µqρ∇qv),∇ · (µqρ∇qc),∇ · (µqρ∇qr))> ,

Rq(wq) := (−C + E,C −A1 −A2, A1 +A2 − E)
>
.
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In order to derive an asymptotically stable, accurate and computational efficient scheme for the Navier-
Stokes equations, we first split the equations into linear and nonlinear parts; see [6, 27] and references
therein. Consequently, we introduce

• F (w) = FL(w) + FN (w) with FL(w) :=
(
ρu, p′ Id, θ̄ρu

)>
and FN (w) := (0, ρu⊗ u, θ′ρu)

>
;

• D(w) = DL(w) + DN (w) with

DL(w) := (0, µm(∆(ρu) +∇(∇ · (ρu))), µh∆(ρθ)′)
>

and

DN (w) :=
(
0,−µm((∆ρ)u + (D2ρ)u +∇u∇ρ+∇ρ∇ · u), µh(∆(ρθ)− θ∆ρ−∇ρ · ∇θ)

)>
;

• R(w) = RL(w) + RN (w) with RL(w) := (0,−ρ′ge3, 0)
>

and RN (w) := (0, 0, Sθ)
>

.

We would like to point out that the choice of the linear and nonlinear operators is crucial. We choose the
linear part to model linear acoustic and gravitational waves as well as linear viscous fluxes. The nonlinear part
describes nonlinear advective effects together with the remaining nonlinear viscous fluxes and the influence
of the latent heat. We will use the following notation:

L := −∇ · FL(w) + DL(w) + RL(w) and N := −∇ · FN (w) + DN (w) + RN (w).

4.2. Discretization in space. The spatial discretization is realized by a finite-volume method. We take
a cuboid computational domain Ω ⊂ Rd, which is divided into N uniform Cartesian cells. The cells are
labelled in a certain order using a single-index notation. For simplicity of notation, we assume that the cells
are cubes with the sides of size h so that |Ci| = hd. We also introduce the notation S(i) for the set of all
neighbouring cells of cell Ci, i = 1, . . . , N .

We assume that at a certain time t the approximate solution is realized in terms of its cell averages

wi(t) ≈
1

hd

∫
Ci

w(x, t) dx and (wq)i(t) ≈
1

hd

∫
Ci

wq(x, t) dx, i = 1, . . . , N.

In order to simplify the notation, we will now omit the time dependence of wi(t) and (wq)i(t). Next, we
introduce the notation wh := {wi}Ni=1 and (wq)h := {(wq)i}Ni=1 and consider the following approximation
of the advection, diffusion and reaction operators:

Ai(wh) = (AL)i(wh) + (AL)i(wh) ≈ 1

hd

∫
Ci

∇ · FL(w(x, t)) dx +
1

hd

∫
Ci

∇ · FN (w(x, t)) dx,

Di(wh) = (DL)i(wh) + (DN )i(wh) ≈ 1

hd

∫
Ci

DL(w(x, t)) dx +
1

hd

∫
Ci

DN (w(x, t)) dx,

Ri(wh) = (RL)i(wh) + (RN )i(wh) ≈ 1

hd

∫
Ci

RL(w(x, t)) dx +
1

hd

∫
Ci

RN (w(x, t)) dx.

Analogous notation will be used for the approximations (Aq)i(wh), (Dq)i(wh) and (Rq)i(wh) of the cloud
operators.
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4.2.1. Advection. The advection terms are discretized using flux functions as follows:

(AL)i(wh) =
1

h

∑
j∈S(i)

HL
ij(wh)

d∑
k=1

n
(k)
ij ,

(AN )i(wh) =
1

h

∑
j∈S(i)

HN
ij (wh)

d∑
k=1

n
(k)
ij ,

(Aq)i((wq)h) =
1

h

∑
j∈S(i)

(Hq)ij((wq)h)

d∑
k=1

n
(k)
ij ,

where the numerical fluxes HL
ij , H

N
ij and (Hq)ij approximate the corresponding fluxes between the computa-

tional cells Ci and Cj , and n
(k)
ij denotes the k-th component of the outer normal unit vector of cell Ci in the

direction of cell Cj . We use the Rusanov numerical flux for HN
ij and (Hq)ij and the central flux for HL

ij . For
(AN )i(wh) and (Aq)i((wq)h) a second-order discretization is obtained via a MUSCL-type approach using
piecewise linear reconstructions with the minmod limiter. The numerical fluxes are then given by

HL
ij(wh) =

1

2
(FL(wj) + FL(wi)) ,

HN
ij (wh) =

1

2

(
FN (w+

ij) + FN (w−ij)
)
− λij

2

(
w+
ij −w−ij

)
, (4.2)

(Hq)ij((wq)h) =
1

2

(
Fq((wq)

+
ij) + Fq((wq)

−
ij)
)
− (λq)ij

2

(
(wq)

+
ij − (wq)

−
ij

)
.

Here, w−ij , w
+
ij and (wq)

−
ij , (wq)

+
ij denote the corresponding interface values, which are computed using a

piecewise linear reconstruction so that

w−ij = wi + sij
h

2

d∑
k=1

n
(k)
ij , w+

ij = wj − sji
h

2

d∑
k=1

n
(k)
ij ,

where the slopes sij are computed by the mindmod limiter,

sij =
1

h
minmod (wj −wi,wi −wj∗)

d∑
k=1

n
(k)
ij ,

applied in a component-wise manner. Here,

minmod(a, b) =


a, if |a| < |b| and ab > 0,

b, if |b| < |a| and ab > 0,

0, if ab ≤ 0,

and (wq)
−
ij and (wq)

+
ij are obtained similarly. Thereby Cj∗ is the other neighboring cell of Ci in the opposite

direction from Cj . Finally, the values λij and (λq)ij are given by

λij = max

{
σ

(
∂FN (w−ij)

∂w

)
, σ

(
∂FN (w+

ij)

∂w

)}
, (λq)ij = max

{
σ

(
∂Fq((wq)

−
ij)

∂wq

)
, σ

(
∂Fq((wq)

+
ij)

∂wq

)}
,

where σ denotes the spectral radius of the corresponding Jacobians.

Remark 4.1. Note that in the computation of HL
ij in (4.2), we use the cell averages rather than the point

values at the cell interfaces for the following two reasons. First, the flux is second-order accurate. Second,
in Section 4.3, we will treat the linear part of the flux implicitly and this is much easier to do when the
numerical flux is linear as well.

4.2.2. Diffusion. The components of the discrete diffusion operators are discretized in a straightforward
manner using second-order central differences.
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4.2.3. Reaction. The reaction terms are discretized by a direct evaluation of the reaction operators at the
cell centres:

Ri(wh) = RL(wi) + RN (wi), (Rq)i((wq)h) = Rq((wq)i).

After the spatial discretization, we obtain the following system of time-dependent ODEs:

d

dt
wi = −Ai(wh) +Di(wh) +Ri(wh), (4.3)

d

dt
(wq)i = −(Aq)i((wq)h) + (Dq)i((wq)h) + (Rq)i((wq)h). (4.4)

This system has to be solved using an appropriate ODE solver as discussed in Section 4.3.

4.3. Discretization in time. Let wn
h and (wq)

n
h denote the numerical approximation of the solutions wh(t)

and (wq)h(t) at the discrete time level tn. We evolve the solution to the next time level tn+1 = tn + ∆tn,
where ∆tn is the size of the Strang operator splitting time step. In the operator splitting approach, we first
numerically solve the ODE system (4.3) with ∆tnNS = ∆tn/2, we then numerically integrate the ODE system
(4.4) with ∆tn and finally we solve the system (4.3) again with ∆tnNS.

Notice that the system (4.3) may be very stiff as the Navier-Stokes equations are in the weakly compressible
regime. We therefore follow the approach in [6] (see also [5]), and employ the second-order ARS(2,2,2) IMEX
method from [2]:

w
n+ 1

4

h = wn
h + β∆tnNS

(
L
(
w
n+ 1

4

h

)
+N (wn

h)
)
,

w
n+ 1

2

h = wn
h + ∆tnNS

(
δN (wn

h) + (1− δ)N
(
w
n+ 1

4

h

))
+ ∆tnNS

(
βL
(
w
n+ 1

2

h

)
+ (1− β)L

(
w
n+ 1

4

h

))
,

(4.5)

where α = 1 − 1/
√

2, δ = 1 − 1/2β, tn+ 1
2 = tn + ∆tnNS, tn+ 1

4 = tn + ∆tnNS/2, and ∆tnNS satisfies the following
CFL condition:

max
s=1,2,3

max
i=1,...,N

(|(us)i|)
∆tnNS

h
< 0.5.

For solving the linear systems arising in (4.5), we use the generalized minimal residual (GMRES) method
combined with a preconditioner, the incomplete LU factorization (ILU). As it was shown in [6] (see also [5]),
the resulting method is both accurate and efficient in the weakly compressible regime.

The ODE system (4.4) is also stiff, but its stiffness only comes from the diffusion and power-law-type source
terms. We therefore efficiently solve it using the large stability domain third-order Runge-Kutta method
from [32]. We have utilized the ODE solver DUMKA3, which is a free software that can be found in [31].
We note that DUMKA3 selects time steps automatically, but in order to improve its efficiency, one needs to
provide the code with a time step stability restriction for the forward Euler method; see [31,32]. This bound
is obtained by min{∆tn, ∆tncloud}, where ∆tncloud satisfies the following CFL condition for the cloud system:

max
s=1,2,3

max
i=1,...,N

(|(us)i|, |vq|)
∆tncloud

h
< 0.5.

5. Numerical scheme for the stochastic model

In this section, we describe a generalized polynomial chaos stochastic Galerkin (gPC-SG) method for the
system of cloud equations (3.1). Such method belongs to the class of intrusive methods and the use of
the Galerkin expansion leads to a system of deterministic equations for the expansion coefficients. In the
gPC-SG method, the solution is sought in the form of a polynomial expansion

ρq`(x, t, ω) =

M∑
k=0

(ρ̂q`)k(x, t)Φk(ω) with ` ∈ {v, c, r}, M ≥ 0, (5.1)
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where Φk(ω), k = 0, . . . ,M , are polynomials of k-th degree that are orthogonal with respect to the probability
density function µ(ω). More precisely, the polynomials satisfy∫

Γ

Φk(ω)Φk′(ω)µ(ω) dω = δkk′ for 0 ≤ k, k′ ≤M, (5.2)

where δkk′ is the Kronecker symbol and Γ is the sample space. The choice of the orthogonal polynomials
{Φk(ω)}Mk=0 depends on the distribution of ω. In our case, we use a uniformly distributed ω ∈ Γ = (−1, 1),
which defines the Legendre polynomials. We use the same expansion for the uncertain coefficients,

k1(ω) =

M∑
k=0

(k̂1)kΦk(ω), k2(ω) =

M∑
k=0

(k̂2)kΦk(ω), α(ω) =

M∑
k=0

α̂kΦk(ω), (5.3)

for the source terms on the RHS of (3.1),

ρ (−C(x, t, ω) + E(x, t, ω)) =: R1(x, t, ω) =

M∑
k=0

(r̂1)k(x, t)Φk(ω),

ρ (C(x, t, ω)−A1(x, t, ω)−A2(x, t, ω)) =: R2(x, t, ω) =

M∑
k=0

(r̂2)k(x, t)Φk(ω), (5.4)

ρ (A1(x, t, ω) +A2(x, t, ω)− E(x, t, ω)) =: R3(x, t, ω) =

M∑
k=0

(r̂3)k(x, t)Φk(ω),

as well as for the raindrop fall velocity,

vq(x, t, ω) =

M∑
k=0

(v̂q)k(x, t)Φk(ω). (5.5)

Since ρ(x, t) = ρ̂0(x, t), we also obtain

q`(x, t, ω) =

M∑
k=0

(q̂`)k(x, t)Φk(ω) with (q̂`)k(x, t) =
(ρ̂q`)k(x, t)

ρ(x, t)
for ` ∈ {v, c, r}, k = 1, . . . ,M. (5.6)

We note that if ρ(x, t) is very small, the computation of the coefficients (q̂`)k(x, t) should be desingularized;
see, e.g., [24], where several desingularization strategies were discussed.

Applying the Galerkin projection to (3.1) yields

〈(ρqv)t +∇ · (ρqvu− µqρ∇qv) ,Φk〉 = 〈ρ(−C + E),Φk〉 ,
〈(ρqc)t +∇ · (ρqcu− µqρ∇qc) ,Φk〉 = 〈ρ(C −A1 −A2),Φk〉 , (5.7)

〈(ρqr)t +∇ · (ρqr(−vqe3 + u)− µqρ∇qr) ,Φk〉 = 〈ρ(A1 +A2 − E),Φk〉 ,

for k = 0, . . . ,M , where 〈·, ·〉 is the scalar product in our probability space which is given through

〈u, v〉 =

1∫
−1

u(ω)v(ω)µ(ω) dω.
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We now substitute (5.1), (5.4)–(5.6) into (5.7) and use the orthogonality property (5.2) to obtain the following
3(M + 1)× 3(M + 1) deterministic system for the gPC coefficients:

∂

∂t
(ρ̂qv)k +

d∑
s=1

∂

∂xs
((ρ̂qv)kus)− µq

d∑
s=1

(
∂ρ

∂xs

∂

∂xs
(q̂v)k + ρ

∂2

∂x2
s

(q̂v)k

)
= (r̂1)k,

∂

∂t
(ρ̂qc)k +

d∑
s=1

∂

∂xs
((ρ̂qc)kus)− µq

d∑
s=1

(
∂ρ

∂xs

∂

∂xs
(q̂c)k + ρ

∂2

∂x2
s

(q̂c)k

)
= (r̂2)k, (5.8)

∂

∂t
(ρ̂qr)k −

∂

∂xd
α̂k +

d∑
s=1

∂

∂xs
((ρ̂qr)kus)− µq

d∑
s=1

(
∂ρ

∂xs

∂

∂xs
(q̂r)k + ρ

∂2

∂x2
s

(q̂r)k

)
= (r̂3)k,

for k = 0, . . . ,M . Here, the coefficients {α̂k}Mk=0 are obtained using the following expansion:

vq(x, t, ω)(ρqr)(x, t, ω) =

M∑
j=0

(v̂q)j(x, t)Φj(ω)

M∑
m=0

(ρ̂qr)m(x, t)Φm(ω) =:

M∑
k=0

α̂k(x, t)Φk(ω).

The coefficients {(r̂1)k, (r̂2)k, (r̂3)k}Mk=0, as well as {α̂k}Mk=0 are calculated via discrete Legendre transform
(DLT) and inverse discrete Legendre transform (IDLT), which can be briefly described as follows.

• DLT: First, the Galerkin projection applied to the expansion f(x, t, ω) =
∑M
k=0 f̂k(x, t)Φk(ω) yields

f̂k(x, t) =
2k + 1

2

1∫
−1

f(x, t, ω)Φk(ω) dω for 0 ≤ k ≤M. (5.9)

Then, approximating the integral in (5.9) using the Gauss-Legendre quadrature leads to

DLT
[
{f(x, t, ωl)}Ml=0

]
=
{
f̂k(x, t)

}M
k=0

=

{
2k + 1

2

M∑
l=0

βlf(x, t, ωl)Φk(ωl)

}M
k=0

,

where βl are the Gauss-Legendre quadrature weights and ωl is the l-th root of ΦM+1.

• IDLT: Given the coefficients {f̂k}Mk=0, we compute the function f trough the gPC expansion

IDLT

[{
f̂k(x, t)

}M
k=0

]
= {f(x, t, ωl)}Ml=0 =

{
M∑
k=0

f̂k(x, t)Φk(ωl)

}M
l=0

.

Consequently, we obtain

{(r̂1)k}Mk=0 = DLT
[
R1

(
IDLT

[
{(ρ̂qv)k}Mk=0

]
, IDLT

[
{(ρ̂qc)k}Mk=0

]
, IDLT

[
{(ρ̂qr)k}Mk=0

])]
,

and analogously for {(r̂2)k}Mk=0, {(r̂3)k}Mk=0 and {α̂k}Mk=0.

Remark 5.1. We stress that since the values Φk(ωl), 0 ≤ k, l ≤ M , are needed every time either DLT or
IDLT is applied, one can precomputethem for the code efficiency.

For the spatial and temporal discretizations of the system (5.8), we apply the same finite-volume method as
described in Section 4.2 and the same large stability domain explicit time integration method mentioned in
Section 4.3. As in the deterministic case, we implement the ODE solver DUMKA3, which we provide with
the following time step stablity restriction for the forward Euler method:

max
s=1,2,3

max
i=1,...,N

(|(us)i|, |vq(ωl)|)
∆tncloud

h
< 0.5,

which should be satisfied for all of the Legendre roots ωl, l = 1, . . . ,M .
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6. Deterministic numerical experiments

In this section, we test the numerical method described in Section 4. The experimental order of convergence
is computed for the so-called free convection of a moist warm air bubble and the structure formation in cloud
dynamics is shown in the Rayleigh-Bénard convection. The latter will be simulated in both the 2-D and 3-D
cases.

6.1. Free convection of a moist warm air bubble in 2-D. We start with the well-known meteorological
benchmark describing the free convection of a smooth warm air bubble; see, e.g., [7, 10].

Example 1: In this experiment, the warm bubble rises and deforms axisymmetrically due to the shear friction
with the surrounding air at the warm/cold air interface, gradually forming a mushroom-like shape. The warm
air bubble is placed at (3500 [m], 2000 [m]) with the initial perturbation

ρ′(x, 0) = −ρ̄(x)
θ′(x, 0)

θ̄(x) + θ′(x, 0)
, ρ̄(x) =

p0

Rθ̄(x)
πe(x)

1
γ−1 , πe(x) = 1− gx3

cpθ̄
,

u(x, 0) = 0,

θ′(x, 0) =

{
2 cos2

(
πr
2

)
, r :=

√
(x1 − 3500)2 + (x3 − 2000)2 ≤ 2000,

0, otherwise,

where θ̄ = 300 [K] and p0 = p̄ = 105 [Pa]. The experiment was simulated in a domain Ω = [0, 7000] ×
[0, 5000] [m2]. As initial conditions for the cloud variables we choose

qv(x, 0) = 0.02 θ′(x, 0), qc = 0, qr = 0.

We apply the no-flux boundary conditions u ·n = 0, ∇ρ′ ·n = 0, ∇(ρθ)′ ·n = 0, ∇(ρq`) ·n = 0, ` ∈ {v, c, r}.

The experimental convergence study for the cloud and flow variables is presented in Tables 1 and 2, respec-
tively. The experimental order of convergence has been computed in the following way:

EOC = log2

( ‖vN,∆t − v2N,∆t/2‖L1(Ω)

‖v2N,∆t/2 − v4N,∆t/4‖L1(Ω)

)
,

where vN,∆t is the numerical solution computed on a grid with N ×N grid cells and using a fixed time step
∆t. As one can clearly see, the expected second order of accuracy has been achieved.

N L1-error in ρqv EOC L1-error in ρqc EOC L1-error in ρqr EOC

10 3.594e+03 – 2.032e+01 – 1.096e+03 –

20 9.062e+02 1.99 5.407e+00 1.91 1.590e-07 32.68

40 2.624e+02 1.79 1.708e+00 1.66 4.856e-08 1.71

80 7.363e+01 1.83 5.159e-01 1.73 1.357e-08 1.84

160 1.989e+01 1.89 1.529e-01 1.75 3.564e-09 1.93

Table 1. Example 1: L1-errors and the corresponding EOCs for the cloud variables computed at the final time
t = 100s using ∆t = 20/N.

6.2. Rayleigh-Bénard convection. In this experiment, we study a natural convection that is used to
model structure formation. It occurs in a planar flow between two horizontal plates, where the lower one
is heated from below and the upper one is cooled from above. Due to the presence of buoyancy, and hence
gravity, the fluid develops a regular pattern of convection roles, known as the Bénard cells. In 3-D, these
convection roles form additionally hexagonal structures; see, e.g., [1, 13,37].
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N L1-error in ρ′ EOC L1-error in ρu1 EOC L1-error in ρu2 EOC L1-error in (ρθ)′ EOC

10 1.050e+04 – 1.386e+06 – 1.671e+06 – 2.909e+06 –

20 1.207e+03 3.12 3.461e+05 2.00 3.005e+05 2.48 3.157e+05 3.20

40 2.900e+02 2.06 1.195e+05 1.53 9.923e+04 1.60 7.372e+04 2.10

80 9.282e+01 1.64 3.115e+04 1.94 2.894e+04 1.78 2.565e+04 1.52

160 2.528e+01 1.88 9.010e+03 1.79 8.406e+03 1.78 7.178e+03 1.84

Table 2. Example 1: L1-errors and the corresponding EOCs for the flow variables computed at the final time
t = 100s using ∆t = 20/N.

For our numerical simulations, we prescribe the following initial conditions:

ρ′(x, 0) = −ρ̄(x)
θ′(x, 0)

θ̄(x) + θ′(x, 0)
, ρ̄(x) =

p0

Rθ̄(x)
πe(x)

1
γ−1 , πe(x) = 1− gx3

cpθ̄
,

u(x, 0) = 0,

θ′(x, 0) = η(x), θ̄(x) = 284− 1

1000
x3,

where p0 = p̄ = 105 [Pa] and η(x) is a random perturbation uniformly distributed in [−0.0021, 0.0021]. For
the cloud equations, the following initial data are used:

qv(x, 0) = 2 · 10−5θ̄(x), qc = 0, qr = 0.

We apply periodic boundary conditions in horizontal direction and the following conditions vertically: u·n =
0, ∇ρ′ · n = 0, ∇(ρq`) · n = 0, ` ∈ {v, c, r} with the Dirichlet boundary conditions for the potential
temperature,

θ(x3 = 0) = 284 [K] and θ(x3 = 1000) = 283 [K].

Example 2: 2-D case. In Figures 1–4, we present time snapshots of the numerical solution computed in a
domain Ω = [0, 5000]× [0, 1000] [m2] that has been discretized using 320× 320 mesh cells. In the beginning
of the time evolution, usual finger-like structures are formed and rise to the top plate due to thermal
conductivity. For dry air typical circular convection cells will be developed at a later time. In the case of
moist air, the structures are less stable as one can see in Figure 1, where we plot the potential temperature θ
computed at times t = 1600, 2200 and 2800s. In Figure 2, the time evolution of water vapor qv is depicted.
Starting from many small structures, the circular-like roles are developed also for water vapor qv and cloud
drops qc, see Figure 2 and 3, respectively. In Figure 4, we plot the rain qr and can clearly recognize separate
rain regions appearing at later times.

Example 3: 3-D case. In this example, we compute the numerical solution in a domain Ω = [0, 5000] ×
[0, 5000] × [0, 1000] [m3] that has been discretized using 50 × 50 × 50 mesh cells. In Figures 5–8, we show
the computed solution at times t = 1600, 2200, 2800 and 3600s. As one can clearly see, the expected
hexagonal structures are formed. In order to visualize these structures, which can in particular been seen
in the potential temperature (see Figure 5), we have plotted the solution in a slightly smaller domain
[0, 5000]× [0, 5000]× [0, 970] [m3].
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Figure 1. Example 2: Time evolution of the potential temperature θ.
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Figure 2. Example 2: Time evolution of the water vapor concentration qv.
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Figure 3. Example 2: Time evolution of the cloud drops concentration qc.
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Figure 4. Example 2: Time evolution of the rain concentration qr.
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Figure 5. Example 3: Time evolution of the potential temperature θ.

Figure 6. Example 3: Time evolution of the water vapor concentration qv.
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Figure 7. Example 3: Time evolution of the cloud drops concentration qc.

Figure 8. Example 3: Time evolution of the rain concentration qr.
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7. Stochastic numerical experiments

In this section, we conduct numerical experiments with the stochastic Galerkin method described in Section
5 for the free convection of a moist warm air bubble and the Rayleigh-Bénard convection. We demonstrate
the influence of uncertainty in initial data as well as in cloud parameters on the solution of the coupled
Navier-Stokes-cloud model (2.8), (3.1). In all our numerical examples below we take M = 3.

7.1. Free convection of a smooth warm air bubble in 2-D. In this accuracy test, we modify Example
1 by perturbing the initial data.

Example 4: Stochastic initial data. We begin by considering the following stochastically perturbed initial
data for the cloud variables:

(q̂v)0(x, 0) = 0.02θ′(x, 0), (q̂v)1(x, 0) = 0.1(q̂v)0(x, 0), (q̂v)k(x, 0) = 0 for 2 ≤ k ≤M,

(q̂c)k(x, 0) = (q̂r)k(x, 0) = 0 for 0 ≤ k ≤M.

We compute the solution using different meshes until the final time t = 100s.

The experimental convergence study for the cloud and flow variables is presented in Tables 3 and 4, respec-
tively. Similarly to the deterministic case, one can observe second-order convergence in space and time. In
order to test the convergence in the stochastic space, we obtain a reference solution computed by the stochas-
tic collocation method (see, e.g., [8]) with 20 Gauss-Legendre points. In Tables 5 and 6, the L2-norms of the
coefficients of both stochastic Galerkin (‖(ρ̂q`)k‖L2(Ω)) and stochastic collocation (‖(ρ̃q`)k‖L2(Ω)) methods
for ` ∈ {v, c, r} and k = 0, . . . , 3 are shown at times t = 50 and t = 100, respectively. One can observe
good agreement between both methods that demonstrates a good approximability property of the stochas-
tic Galerkin method. Figure 9 shows the convergence of the stochastic approximation by comparing two
subsequent solutions obtained by the stochastic Galerkin method using a mesh with 160 × 160 cells and
∆t = 0.01 at time t = 20s. We can clearly see the spectral convergence with the rate e−0.5M . Similarly, the
spectral convergence obtained by the stochastic Galerkin method is demonstrated in Figure 10, where the
errors between the approximated solution and the reference solution computed with 16 stochastic modes is
plotted. The convergence rate is now e−0.3M . Figure 11 illustrates the decreasing behavior of the L2-norm
for the stochastic coefficients ‖(ρ̃q`)k‖L2(Ω) and ‖(ρ̂q`)k‖L2(Ω) with respect to the stochastic modes m for
both the stochastic collocation and stochastic Galerkin method. Our numerical simulations indicate that
the stochastic Galerkin approximation is more accurate than the collocation method, in particular for the
rain concentration. Analogously as in Figure 9 and Figure 10 the exponential decay with respect to m has
been obtained.

N L1-error in ρqv EOC L1-error in ρqc EOC L1-error in ρqr EOC

10 3.604e+03 – 2.029e+01 – 1.143e+03 –

20 9.062e+02 1.99 5.375e+00 1.92 1.618e-07 32.72

40 2.624e+02 1.79 1.698e+00 1.66 4.940e-08 1.71

80 7.364e+01 1.83 5.033e-01 1.75 1.379e-08 1.84

160 1.989e+01 1.89 1.396e-01 1.85 3.477e-09 1.99

Table 3. Example 4: L1-errors and the corresponding EOCs for the cloud variables computed at the final time
t = 100s using ∆t = 20/N and M = 3.

7.2. Rayleigh-Bénard convection. In this section, we present results of uncertainty study for the Rayleigh-
Bénard convection in both 2-D and 3-D. We investigate uncertainty propagation, which is triggered either
by the initial data or cloud parameters.
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N L1-error in ρ′ EOC L1-error in ρu1 EOC L1-error in ρu2 EOC L1-error in (ρθ)′ EOC

10 1.113e+04 – 1.384e+06 – 1.745e+06 – 3.055e+06 –

20 1.207e+03 3.20 3.461e+05 2.00 3.007e+05 2.54 3.157e+05 3.27

40 2.903e+02 2.06 1.195e+05 1.53 9.919e+04 1.60 7.371e+04 2.10

80 9.289e+01 1.64 3.116e+04 1.94 2.892e+04 1.78 2.566e+04 1.52

160 2.527e+01 1.88 8.995e+03 1.79 8.417e+03 1.78 7.174e+03 1.84

Table 4. Example 4: L1-errors and the corresponding EOCs for the flow variables computed at the final time
t = 100s using ∆t = 20/N and M = 3.

m ‖ρ̂qv‖L2 ‖ρ̃qv‖L2 ‖ρ̂qv − ρ̃qv‖L2 ‖ρ̂qc‖L2 ‖ρ̃qc‖L2 ‖ρ̂qc − ρ̃qc‖L2 ‖ρ̂qr‖L2 ‖ρ̃qr‖L2 ‖ρ̂qr − ρ̃qr‖L2

0 5.74e+01 5.74e+01 3.60e-04 1.07e-01 1.07e-01 2.78e-06 4.03e-10 4.03e-10 2.24e-14

1 5.73e+00 5.73e+00 8.62e-03 2.14e-02 2.13e-02 5.75e-05 1.54e-10 1.53e-10 3.35e-13

2 5.01e-04 1.08e-03 7.74e-04 5.01e-04 4.97e-04 6.67e-06 1.31e-11 1.30e-11 8.25e-14

3 2.51e-05 2.77e-05 1.42e-05 2.67e-05 2.44e-05 4.64e-06 3.26e-13 3.29e-13 5.74e-15

Table 5. Example 4: Comparison of the L2-norms of stochastic coefficients (ρ̂q`)k and (ρ̃q`)k, ` ∈ {v, c, r} and
k = 0, . . . , 3, obtained by both the stochastic Galerkin and stochastic collocation methods. Solutions are computed
at time t = 50s using ∆t = 0.01 and N = 160.

m ‖ρ̂qv‖L2 ‖ρ̃qv‖L2 ‖ρ̂qv − ρ̃qv‖L2 ‖ρ̂qc‖L2 ‖ρ̃qc‖L2 ‖ρ̂qc − ρ̃qc‖L2 ‖ρ̂qr‖L2 ‖ρ̃qr‖L2 ‖ρ̂qr − ρ̃qr‖L2

0 5.70e+01 5.70e+01 3.09e-03 3.00e-01 3.00e-01 4.86e-05 6.64e-09 6.64e-09 3.45e-12

1 5.67e+00 5.66e+00 7.54e-02 5.99e-02 5.95e-02 8.53e-04 2.57e-09 2.56e-09 2.94e-11

2 1.39e-03 7.13e-03 6.67e-03 1.40e-03 1.36e-03 1.04e-04 2.28e-10 2.24e-10 7.30e-12

3 5.20e-05 9.84e-05 9.10e-05 5.62e-05 5.22e-05 7.77e-06 6.40e-12 6.24e-12 5.69e-13

Table 6. Example 4: Same as Table ?? but for the solutions computed at time t = 100s.

Figure 9. Example 4: Convergence study of the expected values of (ρq`)k, ` ∈ {v, c, r}, in the stochastic space at
t = 20s on a 160× 160 mesh using ∆t = 0.01.

Example 5: 2-D case with stochastic initial data. We begin by considering the following stochastically per-
turbed initial data for the cloud variables:

(q̂v)0(x, 0) = 2 · 10−5θ̄, (q̂v)1(x, 0) = 0.1(q̂v)0(x, 0), (q̂v)k = 0 for 2 ≤ k ≤M,

(q̂c)k(x, 0) = (q̂r)k(x, 0) = 0 for 0 ≤ k ≤M.
(7.1)
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Figure 10. Example 4: Convergence study of the functions (ρqi), i = v, c, r, in the stochastic space at t = 20s
on a 160× 160 mesh using ∆t = 0.01.

Figure 11. Example 4: Behavior of the L2(Ω)-norms of stochastic coefficients (ρ̂q`)k and (ρ̃q`)k, ` ∈ {v, c, r}
computed by the stochastic Galerkin and stochastic collocation methods, respectively, at time t = 20s on a 160×160
mesh using ∆t = 0.01.

The numerical solution computed using 320×320 mesh cells is presented at two times t = 1600s and t = 2200s
in Figures 12–15, for the potential temperature θ, water vapor qv, cloud drops qc and rain qr, respectively.
Figures 13–15 show both the expected value E[ρqi] and the standard deviation σ(ρq`) of the cloud variables,
` ∈ {v, c, r}. The evolution of uncertainties in structures can be clearly observed, in particular, in the
evolution of the standard deviation. It is well-known that the structure formation is quite sensitive to the
size of perturbation. In order to illustrate this phenomenon, we have also perturbed the initial water vapor
concentration by 5% and 20%, that is, by setting

(q̂v)1(x, 0) = 0.05(q̂v)0(x, 0) and (q̂v)1(x, 0) = 0.2(q̂v)0(x, 0),

respectively. Figures 16–18 show the numerical solution for the potential temperature θ and expected values
of the cloud drops (E[ρqc]) and rain (E[ρqr]) computed using 320 × 320 mesh cells until the final time
t = 2200s. We can clearly recognize different structures and larger smearing for 20% perturbation of the
initial water vapor concentration.

Example 6: 2-D case with stochastic parameters. In the following experiment, we study uncertainty propa-
gation due to incomplete information about the model parameters which is a very typical problem arising in
atmospheric science. We chose the same initial data for the flow and cloud variables as in Section 6.2. More
precisely, we take the following initial cloud variables:

(q̂v)0(x, 0) = 0.02θ′(x, 0), (q̂v)k(x, 0) = (q̂c)k(x, 0) = (q̂r)k(x, 0) = 0 for 1 ≤ k ≤M.

As pointed out in [40], suitable parameters for the sensitivity study are k1, k2 and α, see Section 2. Conse-
quently, in order to investigate uncertainty propagation in the numerical solution we choose 10%, 20% and
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Figure 12. Example 5: Potential temperature θ at times t = 1600s and 2200s using 10% perturbation of the
initial data in qv.

50% perturbation of these coefficients, that is, we take

(k̂1)0 = 0.0041, (k̂1)1 = p(k̂1)0, (k̂1)k = 0 for 2 ≤ k ≤M,

(k̂2)0 = 0.8, (k̂2)1 = p(k̂2)0, (k̂2)k = 0 for 2 ≤ k ≤M,

α̂0 = 190.3, α̂1 = pα̂0, α̂k = 0 for 2 ≤ k ≤M,

where p = 0.1, 0.2 and 0.5, respectively. The numerical solution is computed using a mesh with 320×320 cells
until the final time t = 2200s. Figures 19–22 present the potential temperature θ, the expected values of the
water vapor concentration qv, the cloud drops concentration qc and the rain concentration qr, respectively.
The standard deviation for the cloud variables is shown in Figures 23–25. As one can see in Figures 20–22,
the structures in expected values vary quite considerably, though quantitative changes are quite small for
different parameter perturbations. One can also notice that the standard deviation for the cloud variables
varies considerably both qualitatively and quantitatively. Thus, our numerical study indicates that the cloud
model (2.2) is quite sensitive to the chosen set of model parameters.

Example 7: 3-D case with stochastic initial data. Similarly to Example 5, we now investigate the uncertainty
quantification in the 3-D Raleigh-Bénard convection for stochastically perturbed initial data of the cloud
variables given by (7.1). The numerical solution is computed in a domain Ω = [0, 5000] × [0, 5000] ×
[0, 1000] [m3], which is discretized using 50×50×50 mesh cells. In Figure 26, we show the time evolution for
the potential temperature θ at times t = 1600, 2200, 2800 and 3600s. As expected, hexagonal structures are
formed. In order to visualize these structures, we once again plot the solution in a slightly smaller domain
[0, 5000]× [0, 5000]× [0, 970] [m3]. In Figures 27–29, we present the time evolution of the expected values of
the concentrations of water vapor qv, cloud drops qc and rain qr, respectively. As expected, the structures
in the numerical solution with stochastically perturbed initial data are more smeared in comparison to the
deterministic solution shown in Figures 5–8.
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Figure 13. Example 5: Expected value and standard deviation for the water vapor concentration qv at times
t = 1600s and 2200s using 10% perturbation of the initial data in qv.
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Figure 14. Example 5: Expected value and standard deviation for the cloud drops concentration qc at times
t = 1600s and 2200s using 10% perturbation of the initial data in qv.
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Figure 15. Example 5: Expected value and standard deviation for the rain concentration qr at times t = 1600s
and 2200s using 10% perturbation of the initial data in qv.
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Figure 16. Example 5: Potential temperature θ computed at time t = 2200s using 5% and 20% perturbation of
the initial data in qv.

Figure 17. Example 5: Expected values for the cloud drops concentration qc computed at time t = 2200s using
5% and 20% perturbation of the initial data in qv.
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Figure 18. Example 5: Expected values for the rain concentration qr computed at time t = 2200s using 5% and
20% perturbation of the initial data in qv.
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Figure 19. Example 6: Potential temperature θ computed at time t = 2200s using 10%, 20% and 50% perturbation
of the cloud parameters.
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Figure 20. Example 6: Expected value for the water vapor concentration qv computed at time t = 2200s using
10%, 20% and 50% perturbation of the cloud parameters.
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Figure 21. Example 6: Expected value for the cloud drop concentration qc computed at time t = 2200s using
10%, 20% and 50% perturbation of the cloud parameters.
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Figure 22. Example 6: Expected value for the rain concentration qr computed at time t = 2200s using 10%, 20%
and 50% perturbation of the cloud parameters.
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Figure 23. Example 6: Standard deviation for the water vapor concentration qv computed at time t = 2200s
using 10%, 20% and 50% perturbation of the cloud parameters.
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Figure 24. Example 6: Standard deviation for the cloud drop concentration qc computed at time t = 2200s using
10%, 20% and 50% perturbation of the cloud parameters.
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Figure 25. Example 6: Standard deviation for the rain concentration qr computed at time t = 2200s using 10%,
20% and 50% perturbation of the cloud parameters.
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Figure 26. Example 7: Time evolution of the potential temperature θ.

Figure 27. Example 7: Time evolution of the expected value of the water vapor concentration qv.
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Figure 28. Example 7: Time evolution of the expected value of the cloud drops concentration qc.

Figure 29. Example 7: Time evolution of the expected value of the rain concentration qr.
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8. Conclusion

In the present paper, we have studied uncertainty propagation in an atmospheric model that combines the
Navier-Stokes equations for weakly compressible fluids (2.1) with the cloud equations (2.2). The latter has
been recently proposed in [40] and is based on the so-called single moment approach considering the evolution
equations for the mass concentrations of the water vapor, cloud drops and rain. Our numerical strategy is
based on the stochastic Galerkin method that combines a finite-volume method for space-time discretization
with a spectral approximation in the stochastic space. We point out that atmospheric flows are weakly
compressible which leads to the low Mach number problem. One therefore needs to use a finite-volume
method, which is accurate and efficient in the low Mach number regime; see [5, 6]. To this end, we have
chosen a suitable linear-nonlinear splitting between the fast and slow flow variables and the second-order
IMEX discretization in time (the ARS (2,2,2) scheme) as described in Section 4. Coupling between the cloud
model (2.2) and the Navier-Stokes system (2.8) is realized numerically by the second-order Strang splitting.
The cloud equations are approximated in space by the finite-volume method and in time using the explicit
third-order Runge-Kutta method with an enlarged stability region as explained in Section 4. Note that
microscopic cloud dynamics requires a smaller time step than the flow dynamics and thus several microscopic
cloud subiterations are realized within one macroscopic splitting time step, whose size is dictated by the flow
dynamics. To the best of our knowledge, this is the first contribution that combines an accurate and efficient
method for the weakly compressible Navier-Stokes equations with the stochastic Galerkin method for the
uncertainty quantification of time evolution of the mass densities of water vapor, cloud drops and rain.

We have conducted extensive numerical benchmarking for both the deterministic and stochastic models
and present the obtained numerical results in Sections 6 and 7. In the latter, we took into account the
uncertainties in both initial data and cloud model parameters. Our numerical study clearly demonstrates
applicability of the stochastic Galerkin method for the uncertainty quantification in complex atmospheric
models. Our future goal is to extend the developed numerical method to the fully random Navier-Stokes-cloud
system by considering random weakly compressible Navier-Stokes equations. This will allow one to quantify
more precisely the propagation of small scale stochastic errors initiated at cloud scales to macroscopic scales
of flow dynamics.
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[11] B. Després, G. Poëtte, and D. Lucor. Robust uncertainty propagation in systems of conservation laws with the entropy

closure method. In Uncertainty Quantification in Computational Fluid Dynamics, pages 105–149. Springer, 2013.
[12] H. C. Elman, C. W. Miller, E. T. Phipps, and R. S. Tuminaro. Assessment of collocation and Galerkin approaches to linear

diffusion equations with random data. Int. J. Uncertain. Quantif., 1(1):19–33, 2011.
[13] A. V. Getling. Rayleigh-Bénard convection, Structure and Dynamics. World Sci. Publ., Singpore, 2001.

[14] D. Gottlieb and D. Xiu. Galerkin method for wave equations with uncertain coefficients. Commun. Comput. Phys.,

3(2):505–518, 2008.
[15] W. W. Grabowski. Untangling microphysical impacts on deep convection applying a novel modeling methodology. J. Atmos.

Sci., 72(6):2446–2464, 2015.

[16] J. Hu, S. Jin, and D. Xiu. A stochastic Galerkin method for Hamilton-Jacobi equations with uncertainty. SIAM J. Sci.
Comput., 37(5):A2246–A2269, 2015.

[17] A. L. Igel and S. C. van den Heever. The role of latent heating in warm frontogenesis. Quart. J. Roy. Met. Soc., 140(678,

A):139–150, 2014.
[18] S. Jin, D. Xiu, and X. Zhu. Asymptotic-preserving methods for hyperbolic and transport equations with random inputs

and diffusive scalings. J. Comput. Phys., 289:35–52, 2015.

[19] E. Kessler. On the distribution and continuity of water substance in atmospheric circulations., volume 32 of Meteorol.
Monographs. American Meteorological Society, Boston, 1969.

[20] A. P. Khain, K. D. Beheng, A. Heymsfield, A. Korolev, S. O. Krichak, Z. Levin, M. Pinsky, V. Phillips, T. Prabhakaran,
A. Teller, S. C. van den Heever, and J.-I. Yano. Representation of microphysical processes in cloud-resolving models:

Spectral (bin) microphysics versus bulk parameterization. Rev. Geophys., 53(2):247–322, 2015.

[21] A. P. Khain, M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak. Notes on the state-of-the-art numerical modeling
of cloud microphysics. Atmos. Res., 55(3-4):159 – 224, 2000.

[22] V. I. Khvorostyanov. Mesoscale processes of cloud formation, cloud-radiation interaction, and their modeling with explicit

cloud microphysics. Atmos. Res., 39(1-3):1–67, 1995.
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