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Setting

—uAu(x) + Vp(x) = f(x) Vx e D
div u(x) =0 Vx e D
u(x)=0 Vx € 0D

Problem: Viscosity p is only known to a certain degree of
precision.

Result: Velocity and pressure influenced by uncertainty.



Stokes Equation  Problem Setting  Variational Formulation ~ Unique Solvability ~ Discretization ~ Error Analysis ~ Outlook
000 00000000 0000 000000

Introduction of Randomness

Probability space (2, F,P)



Problem Setting

Introduction of Randomness

Probability space (2, F,P)
o (2 set of outcomes, F the o-algebra of events and
P: F = [0, 1] probability measure.



Problem Setting

Introduction of Randomness

Probability space (2, F,P)
o (2 set of outcomes, F the o-algebra of events and
P: F = [0, 1] probability measure.

o u(x,w), we



Problem Setting

Introduction of Randomness

Probability space (2, F,P)

o (2 set of outcomes, F the o-algebra of events and
P: F = [0, 1] probability measure.

o u(x,w), we

@ Velocity and pressure become random fields



Problem Setting
°

Stokes Equation with Randomness

—p(w)Au(x,w) + Vp(x,w) = f(x) Vxe D,weQ
div u(x,w) =0 Vxe D,weQ
u(x,w) =0 Vx e dD,we Q
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Problem Setting
°0

Assumptions |

° u(x, ) : D x Q = R is a second-order random field.
= = {(x,w)dP(w) € L2(D)
Q

= Clu)(x.x) = Cov(plx. ). u(x',)) € L3(D x D)
o u(x,w) e L®(D x Q) uniformly bounded away from zero.

< 0 < Guin < p(x,w) < Cpax < ©



Problem Setting
oe

Solution Spaces

o u(x,w) eV = L3(Q, H}(div, D))
° p(x,w) e W := L§(Q, L*(D))

o Ivlly = (EllIVlre )]

1

o llallw := (Efllall2o ])2

NI

o [IVI[Eaiv,py = IIVIIE2 (o) + [1div vz



Variational Formulation

Weak Formulation

Find u €V and p € W such that
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Truncation |
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©000

Truncation |

@ 1 depending on x € D and w € Q

= Karhunen-Loeve Expansion to separate out the dependence on
xeDand weQ

p(x,w) = E[u](x) + > v/Aje5(x)& (x)
j=1

o Integral operator C,, : L?(D) = L?(D) defined by
o (Cuw)(x) = §p Clul(x,x ) (x )’
o Ordered eigenpairs: {(Aj,¢;)}/21, A1 = A > ...
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Variational Formulation
0®00

Assumptions on the Randomness Il

o {¢;}2; family of uncorrelated random variables with
o E[(] =0, Var(§) =1

e 1C¢ > 0 such that ngHLﬂ?(ﬂ) < G forallj> 1.
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Truncation |l

@ 1 depending only on w

M
o u(w):=po+ Z 1€ (w)
j=1

@ 1 already has an exact finite-dimesional representation

= No Error



Variational Formulation
oooe

Truncated Weak Formulation

Find M € V and p(M) € W such that

l(v) Yvey
bu™ ) =0 Vge W.
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®000

Assumptions on the Randomness IlI

@ ¢ : Q2 = R independent random variables
o [ :=¢(R) is a bounded intervall in R for all j =1,2,.. .

@ Probability density functions p; : ['; = R™ of each ¢; are
given.
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Change of Variable

@ Doob-Dynkin Lemma
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o Define (y1,..,ym) € :=T1 x .. x Ty with yj 1= §(w).



Variational Formulation
0®00

Change of Variable

@ Doob-Dynkin Lemma
= U(M)(X,(/J) = U(Xagl(w)a '-75/\/7((")))
o Define (y1,..,ym) € I :=T1 x .. x [y with yj := §(w).
M
@ Independency of the &; results in p(y) = [] pj(y;) for all
j=1
y; € Fj.
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fele] ol

Truncated Weak Formulation with Change of Variable

Find u™ e V and pM) € W such that

a(™ v) + b(v,pM)) = ¢(v) YveV
bu™ q) =0 Vge W.



Variational Formulation
fele] ol

Truncated Weak Formulation with Change of Variable

Find u™ e V and pM) € W such that

a(™ v) + b(v,pM)) = ¢(v) YveV
bu™ q) =0 Vge W.

o V := [3(T'; Hy(div, D))
°o W = LI%(F; L2(D))
o [v[f = (§\|v<~,y>uf,1(div,mp<y> dy)

o lallly = (§19CPIi0)00) dy)

M
o Viscosity: pu(y) := po + D5 1jyj-
j=1



Variational Formulation
oooe

Bilinear Forms

o a(u,v) := §p p(y)n(y) §p, VuM (x,y)Vv(x,y) dx dy
o b(v,q) = py)§palx,y) div v(x,y) dx dy
o ((v):= Sr p(y) SD v(x,y) f(x) dx dy

forveVand ge W



Stokes Equation  Problem Setting  Variational Formulation ~ Unique Solvability =~ Discretization ~ Error Analysis ~ Outlook
000 00000000 0000 000000

Unique Solvability

a(u,v) + b(v,p) ={(v)



Unique Solvability

Unique Solvability

a(u,v) + b(v, p) = £(v)
Assumptions:

e Bounded bilinear forms a(-,-) : V x V = R and
b(,):VxW=R
o Norms || - ||y and || - [[w
@ Bounded Right-hand side
e a(-,-) is coercive on VO :={ve V; b(v,q) =0 Vqe W}
< There exists a constant c such that a(v,v) > c||v|[}, Vv e VO,

@ The inf-sup condition holds.

Then the saddle point problem admits unique solutions and the
solutions are bounded.
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Properties

.. . b
@ Inf-sup condition: inf sup w > f
q€Whp k veVip viaiiw
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Unique Solvability

Properties

. . b
Inf-sup condition: inf sup w =0
qEWhpyk VEVhp’k v w

Coercivity: a(u, u) > pminllully;  Vve V)

Vgh,k = {u € Vipi; b(u,q) =0, Vge Whp,k}

Continuity: ’a(u, V)‘ < pmax||U||v||v]|v

= Unique Solvability
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Discretization
©000

Discretization Idea

@ Finite Element Method in space
@ Generalized Polynomial Chaos in random variable

@ Askey Chaos: Mapping of probability distribution and
orthonormal polynomials
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Discretization
0®00

Solution Spaces

X%;V = {v € H}(div, D); V‘K € Po(K) VKe Ah}

X0 = {qu(D); q’KePp_l(K) VKeAh}

Multi-index k = (k, .., knr) € N of polynomial degrees ;
SM = SM(F) = Skl(rl) ® .. ®5kM(FM) C L'%(F)
S, (M) = span{y’;0 < o < kj} < L), j=1,..,M.

Vhp,k = X%;)V®SM and Whp,k = XEP®SM



Discretization
feleY 1)

Example in one Dimension

° X%IPV = 5P3”{¢1> "7¢J} - H&(D)
° SM = {wla >¢Q}

° X%i)"@SM =span{pjpj: i=1,.,J,j=1,..,Q}



Discretization
oooe

Fully discrete Problem

Find upp i € Vip i © V and ppp k € Wip ko © W satisfying

3(“%,3« v) + b(v, Pf(,gi) = {(v) Vv e Vipk
b(u%l, q) =0 Vg e Whp k.



Error Analysis
°

Error Sources

I. Error due to Finite Element Method in Space
[I. Error due to Generalized Polynomial Chaos Decomposition



Error Analysis
°

Error Splitting

M
™ — M1+ [1p™M — o) [ w
<cl nf ™ vl + 6™ — gl|w
veXiv@L2(r) ,‘,’p L%(F)

M
+Zl( inf ||U(M)—Vj||V+ inf ||P _qj||W>]

vieH (div,D)®S;(T;) q;€L2(D)®5; (T



Error Analysis
°

Error due to FEM

Lemma

e Dc R?
o uM e 12(T; H*(div, D)), pM) € L2(T; H*(div, D))
Then, there holds

inf ||U(M)—V||vvL in 1P™ — gl|w
veXdiveL2(r) ®L2(T)

< Chmin{s’p}P_s(HU(M)HLg(r;HS(div,D)) +lp M)HLg(r;HS(div,D)))-

v




Error Analysis
®00

Error due to GPC for the velocity

@ ForO<r<1

. M
_inf 1™ = vil|v
vieH}(div,D)®S;(T))

< C(Mmax,BEHfHLQ(D)\/% <1 n 1 O(k—%))gkj+1
TH
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Error Analysis
oeo

GPC Error Derivation

@ Velocity and pressure are analytic with respect toy e I.
@ Power series representation for a single y; € ;.
@ Boundary of the coefficients and radius of convergence.

@ Exploit unique solvability to show equality.



Error Analysis
ooe

Error Result

e Dc R?
o (uM pM)e L2(; H*(div, D)) x L2(T; H*(D))

M M
° (u§1p,.)k7pl(1p,2<) € vhp,k X Whp,k

M M
[1u™ — w3y + [1p™ — phillw
; 1Y ki+1
< C<hm1n{s,p}pfs + = Z ij )
j=1

The constant C > 0 is only indepent of the discretization
parameters h,g and k. Further, ; = (Zj + 4/1 — EJ? )y"te(0,1)

with Zj = 1 + 2(1“;‘)’1 forj=1,.,M and 7 € (0,1).
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Outlook

@ Navier-Stokes and Oseen equation with random viscosity

@ Why Navier-Stokes is not that easily treated

@ Error analysis for time-dependent Oseen equation
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