Error Analysis of stochastic Stokes and Navier-Stokes

Julian Frech

Institut für Mathematik, Johannes Gutenberg-Universität

Betreuer: Prof. Dr. Mária Lukácová-Medvidová

13.09.2018

- Stokes Equation
- Problem Setting
- Variational Formulation
- 4 Unique Solvability
- 5 Discretization
- 6 Error Analysis
- Outlook

Setting

$$-\mu \Delta \mathbf{u}(\mathbf{x}) + \nabla p(\mathbf{x}) = f(\mathbf{x}) \qquad \forall \mathbf{x} \in D$$
$$\operatorname{div} \mathbf{u}(\mathbf{x}) = 0 \qquad \forall \mathbf{x} \in D$$
$$\mathbf{u}(\mathbf{x}) = 0 \qquad \forall \mathbf{x} \in \partial D$$

Setting

$$-\mu \Delta \mathbf{u}(\mathbf{x}) + \nabla p(\mathbf{x}) = f(\mathbf{x}) \qquad \forall \mathbf{x} \in D$$
$$\operatorname{div} \mathbf{u}(\mathbf{x}) = 0 \qquad \forall \mathbf{x} \in D$$
$$\mathbf{u}(\mathbf{x}) = 0 \qquad \forall \mathbf{x} \in \partial D$$

Problem: Viscosity μ is only known to a certain degree of precision.

Setting

$$-\mu \Delta \mathbf{u}(\mathbf{x}) + \nabla p(\mathbf{x}) = f(\mathbf{x}) \qquad \forall \mathbf{x} \in D$$
$$\operatorname{div} \mathbf{u}(\mathbf{x}) = 0 \qquad \forall \mathbf{x} \in D$$
$$\mathbf{u}(\mathbf{x}) = 0 \qquad \forall \mathbf{x} \in \partial D$$

Problem: Viscosity μ is only known to a certain degree of precision.

Result: Velocity and pressure influenced by uncertainty.

Probability space $(\Omega, \mathcal{F}, \mathbb{P})$

Probability space $(\Omega, \mathcal{F}, \mathbb{P})$

• Ω set of outcomes, $\mathcal F$ the σ -algebra of events and $\mathbb P:\mathcal F\Rightarrow [0,1]$ probability measure.

Probability space $(\Omega, \mathcal{F}, \mathbb{P})$

- Ω set of outcomes, \mathcal{F} the σ -algebra of events and $\mathbb{P}: \mathcal{F} \Rightarrow [0,1]$ probability measure.
- $\mu(\mathbf{x},\omega), \omega \in \Omega$

Probability space $(\Omega, \mathcal{F}, \mathbb{P})$

- Ω set of outcomes, \mathcal{F} the σ -algebra of events and $\mathbb{P}: \mathcal{F} \Rightarrow [0,1]$ probability measure.
- $\mu(\mathbf{x},\omega), \omega \in \Omega$
- Velocity and pressure become random fields

Stokes Equation with Randomness

$$-\mu(\omega)\Delta \mathbf{u}(\mathbf{x},\omega) + \nabla p(\mathbf{x},\omega) = \mathbf{f}(\mathbf{x}) \qquad \forall \mathbf{x} \in D, \omega \in \Omega$$
$$\operatorname{div} \mathbf{u}(\mathbf{x},\omega) = 0 \qquad \forall \mathbf{x} \in D, \omega \in \Omega$$
$$\mathbf{u}(\mathbf{x},\omega) = 0 \qquad \forall \mathbf{x} \in \partial D, \omega \in \Omega$$

• $\mu(\mathbf{x}, \omega) : D \times \Omega \Rightarrow \mathbb{R}$ is a second-order random field.

• $\mu(\mathbf{x}, \omega) : D \times \Omega \Rightarrow \mathbb{R}$ is a second-order random field.

$$\Rightarrow \mathbb{E}[\mu](\mathbf{x}) = \int_{\Omega} (\mathbf{x}, \omega) d\mathbb{P}(\omega) \in L^{2}(D)$$

• $\mu(\mathbf{x}, \omega) : D \times \Omega \Rightarrow \mathbb{R}$ is a second-order random field.

$$\Rightarrow \mathbb{E}[\mu](\mathbf{x}) = \int_{\Omega} (\mathbf{x}, \omega) d\mathbb{P}(\omega) \in L^2(D)$$

$$\Rightarrow C[\mu](\mathbf{x}, \mathbf{x}') := Cov(\mu(\mathbf{x}, \cdot), \mu(\mathbf{x}', \cdot)) \in L^2(D \times D)$$

- $\mu(\mathbf{x}, \omega) : D \times \Omega \Rightarrow \mathbb{R}$ is a second-order random field.
- $\Rightarrow \mathbb{E}[\mu](\mathbf{x}) = \int_{\Omega} (\mathbf{x}, \omega) d\mathbb{P}(\omega) \in L^2(D)$
- $\Rightarrow C[\mu](\mathbf{x}, \mathbf{x}') := Cov\Big(\mu(\mathbf{x}, \cdot), \mu(\mathbf{x}', \cdot)\Big) \in L^2(D \times D)$
 - $\mu(\mathbf{x},\omega) \in L^{\infty}(D \times \Omega)$ uniformly bounded away from zero.
- $\Leftrightarrow 0 < C_{\min} \leqslant \mu(\mathbf{x}, \omega) \leqslant C_{\max} < \infty$

Solution Spaces

•
$$\boldsymbol{u}(\boldsymbol{x},\omega) \in \boldsymbol{\mathcal{V}} := L^2_{\mathbb{P}}(\Omega,\boldsymbol{H}^1_0(\operatorname{div},D))$$

•
$$p(\mathbf{x}, \omega) \in \mathcal{W} := L^2_{\mathbb{P}}(\Omega, L^2(D))$$

$$ullet ||oldsymbol{v}||_{oldsymbol{\mathcal{V}}} := \left(\mathbb{E}[||oldsymbol{v}||_{oldsymbol{\mathcal{H}}^1(\mathrm{div},D)}]
ight)^{rac{1}{2}}$$

$$\bullet \ ||q||_{\mathcal{W}} := \left(\mathbb{E}[||q||_{L^2(D)}]\right)^{\frac{1}{2}}$$

$$\bullet \ || \textbf{\textit{v}} ||^2_{\textbf{\textit{H}}^1(\mathrm{div},D)} := || \textbf{\textit{v}} ||^2_{L^2(D)} + || \mathrm{div} \ \textbf{\textit{v}} ||^2_{L^2(D)}$$

Weak Formulation

Find $u \in V$ and $p \in W$ such that

$$a(\mathbf{u}, \mathbf{v}) + b(\mathbf{v}, p) = \ell(\mathbf{v})$$
 $\forall \mathbf{v} \in \mathcal{V}$
 $b(\mathbf{u}, q) = 0$ $\forall q \in \mathcal{W}.$

With bilineare forms,

$$a(\boldsymbol{u}, \boldsymbol{v}) := \mathbb{E}\Big[\int_{D} \mu(\cdot) \nabla \boldsymbol{u}(\boldsymbol{x}, \cdot) \nabla \boldsymbol{v}(\boldsymbol{x}, \cdot) \ d\boldsymbol{x}\Big]$$

$$b(\boldsymbol{v}, \boldsymbol{q}) := -\mathbb{E}\Big[\int_{D} \boldsymbol{q}(\boldsymbol{x}, \cdot) \ \text{div } \boldsymbol{v}(\boldsymbol{x}, \cdot) \ d\boldsymbol{x}\Big]$$

$$\ell(\boldsymbol{v}) := \mathbb{E}\Big[\int_{D} \boldsymbol{v}(\boldsymbol{x}, \cdot) \ \boldsymbol{f}(\boldsymbol{x}) \ d\boldsymbol{x}\Big].$$

 $\bullet \ \, \mu \ \, \text{depending on} \, \, {\pmb x} \in D \, \, \text{and} \, \, \omega \in \Omega$

- μ depending on $\mathbf{x} \in D$ and $\omega \in \Omega$
- \Rightarrow Karhunen-Loève Expansion to separate out the dependence on $\mathbf{x} \in D$ and $\omega \in \Omega$

- μ depending on $\mathbf{x} \in D$ and $\omega \in \Omega$
- \Rightarrow Karhunen-Loève Expansion to separate out the dependence on $\mathbf{x} \in D$ and $\omega \in \Omega$

$$\mu(\mathbf{x},\omega) = \mathbb{E}[\mu](\mathbf{x}) + \sum_{j=1}^{\infty} \sqrt{\lambda_j} \phi_j(\mathbf{x}) \xi_j(\mathbf{x})$$

- μ depending on $\mathbf{x} \in D$ and $\omega \in \Omega$
- \Rightarrow Karhunen-Loève Expansion to separate out the dependence on $\mathbf{x} \in D$ and $\omega \in \Omega$

$$\mu(\mathbf{x},\omega) = \mathbb{E}[\mu](\mathbf{x}) + \sum_{j=1}^{\infty} \sqrt{\lambda_j} \phi_j(\mathbf{x}) \xi_j(\mathbf{x})$$

- Integral operator $C_{\mu}: L^2(D) \Rightarrow L^2(D)$ defined by
- $(C_{\mu}w)(\mathbf{x}) = \int_{D} C[\mu](\mathbf{x}, \mathbf{x}')w(x')dx'$

- μ depending on $\mathbf{x} \in D$ and $\omega \in \Omega$
- \Rightarrow Karhunen-Loève Expansion to separate out the dependence on $\mathbf{x} \in D$ and $\omega \in \Omega$

$$\mu(\mathbf{x},\omega) = \mathbb{E}[\mu](\mathbf{x}) + \sum_{j=1}^{\infty} \sqrt{\lambda_j} \phi_j(\mathbf{x}) \xi_j(\mathbf{x})$$

- Integral operator $C_{\mu}: L^2(D) \Rightarrow L^2(D)$ defined by
- $(C_{\mu}w)(\mathbf{x}) = \int_{D} C[\mu](\mathbf{x}, \mathbf{x}')w(\mathbf{x}')d\mathbf{x}'$
- Ordered eigenpairs: $\{(\lambda_j, \phi_j)\}_{j=1}^{\infty}, \ \lambda_1 \geqslant \lambda \geqslant \dots$

Assumptions on the Randomness II

ullet $\{\xi_j\}_{j=1}^\infty$ family of uncorrelated random variables with

Assumptions on the Randomness II

- $\{\xi_j\}_{j=1}^{\infty}$ family of uncorrelated random variables with
- $\mathbb{E}[\xi] = 0$, $Var(\xi) = 1$

Assumptions on the Randomness II

- $\bullet \ \{\xi_j\}_{j=1}^{\infty}$ family of uncorrelated random variables with
- $\mathbb{E}[\xi] = 0$, $Var(\xi) = 1$
- $\bullet \ \exists \, C_{\xi} > 0 \ \text{such that} \ ||\xi_{j}||_{L^{\infty}_{\mathbb{P}(\Omega)}} \leqslant C_{\xi} \ \text{for all} \ j \geqslant 1.$

 $\bullet~\mu$ depending only on ω

ullet μ depending only on ω

•
$$\mu(\omega) := \mu_0 + \sum_{j=1}^M \mu_j \xi_j(\omega)$$

 $\bullet~\mu$ depending only on ω

•
$$\mu(\omega) := \mu_0 + \sum_{j=1}^M \mu_j \xi_j(\omega)$$

ullet μ already has an exact finite-dimesional representation

 $\bullet~\mu$ depending only on ω

•
$$\mu(\omega) := \mu_0 + \sum_{j=1}^M \mu_j \xi_j(\omega)$$

- ullet μ already has an exact finite-dimesional representation
- ⇒ No Error

Truncated Weak Formulation

Find
$$\boldsymbol{u}^{(M)} \in \boldsymbol{\mathcal{V}}$$
 and $p^{(M)} \in \mathcal{W}$ such that
$$a(\boldsymbol{u}^{(M)}, \boldsymbol{v}) + b(\boldsymbol{v}, p^{(M)}) = \ell(\boldsymbol{v}) \qquad \forall \boldsymbol{v} \in \boldsymbol{\mathcal{V}}$$
$$b(\boldsymbol{u}^{(M)}, q) = 0 \qquad \forall q \in \mathcal{W}.$$

Assumptions on the Randomness III

• $\xi_j : \Omega \Rightarrow \mathbb{R}$ independent random variables

Assumptions on the Randomness III

- $\xi_i : \Omega \Rightarrow \mathbb{R}$ independent random variables
- $\Gamma_j := \xi_j(\Omega)$ is a bounded intervall in $\mathbb R$ for all j=1,2,...

Assumptions on the Randomness III

- $\xi_j : \Omega \Rightarrow \mathbb{R}$ independent random variables
- $\Gamma_j := \xi_j(\Omega)$ is a bounded intervall in $\mathbb R$ for all j=1,2,...
- Probability density functions $\rho_j : \Gamma_j \Rightarrow \mathbb{R}^+$ of each ξ_j are given.

Change of Variable

Doob-Dynkin Lemma

$$\Rightarrow \mathbf{u}^{(M)}(\mathbf{x},\omega) = \mathbf{u}(\mathbf{x},\xi_1(\omega),..,\xi_M(\omega))$$

Change of Variable

- Doob-Dynkin Lemma
- $\Rightarrow \mathbf{u}^{(M)}(\mathbf{x},\omega) = \mathbf{u}(\mathbf{x},\xi_1(\omega),..,\xi_M(\omega))$
 - Define $(y_1,..,y_M) \in \Gamma := \Gamma_1 \times ... \times \Gamma_M$ with $y_j := \xi_j(\omega)$.

Change of Variable

- Doob-Dynkin Lemma
- $\Rightarrow \mathbf{u}^{(M)}(\mathbf{x},\omega) = \mathbf{u}(\mathbf{x},\xi_1(\omega),..,\xi_M(\omega))$
 - Define $(y_1,..,y_M) \in \Gamma := \Gamma_1 \times ... \times \Gamma_M$ with $y_j := \xi_j(\omega)$.
 - Independency of the ξ_j results in $\rho(\mathbf{y}) = \prod_{j=1}^M \rho_j(y_j)$ for all $\mathbf{y}_j \in \Gamma_j$.

Truncated Weak Formulation with Change of Variable

Find $\boldsymbol{u}^{(M)} \in \boldsymbol{V}$ and $p^{(M)} \in W$ such that

$$a(\mathbf{u}^{(M)}, \mathbf{v}) + b(\mathbf{v}, p^{(M)}) = \ell(\mathbf{v}) \qquad \forall \mathbf{v} \in \mathbf{V}$$

 $b(\mathbf{u}^{(M)}, q) = 0 \qquad \forall q \in \mathbf{W}.$

Truncated Weak Formulation with Change of Variable

Find $\boldsymbol{u}^{(M)} \in \boldsymbol{V}$ and $p^{(M)} \in W$ such that

$$a(\mathbf{u}^{(M)}, \mathbf{v}) + b(\mathbf{v}, p^{(M)}) = \ell(\mathbf{v}) \qquad \forall \mathbf{v} \in \mathbf{V}$$

 $b(\mathbf{u}^{(M)}, q) = 0 \qquad \forall q \in \mathbf{W}.$

- $V := L^2_{\rho}(\Gamma; H^1_0(\text{div}, D))$
- $W := L^2_{\rho}(\Gamma; L^2(D))$
- $||\mathbf{v}||_{\mathbf{V}}^2 := \left(\int_{\Gamma} ||\mathbf{v}(\cdot, \mathbf{y})||_{\mathbf{H}^1(\mathrm{div}, D)}^2 \rho(\mathbf{y}) \ d\mathbf{y}\right)$
- $||q||_W^2 := \left(\int_{\Gamma} ||q(\cdot, \mathbf{y})||_{L^2(D)}^2 \rho(\mathbf{y}) \ d\mathbf{y}\right)$
- Viscosity: $\mu(\mathbf{y}) := \mu_o + \sum_{i=1}^M \mu_i y_i$.

Bilinear Forms

•
$$a(\mathbf{u}, \mathbf{v}) := \int_{\Gamma} \rho(\mathbf{y}) \mu(\mathbf{y}) \int_{D} \nabla \mathbf{u}^{(M)}(\mathbf{x}, \mathbf{y}) \nabla \mathbf{v}(\mathbf{x}, \mathbf{y}) \ d\mathbf{x} \ d\mathbf{y}$$

•
$$b(\mathbf{v}, q) := \int_{\Gamma} \rho(\mathbf{y}) \int_{D} q(\mathbf{x}, \mathbf{y}) \operatorname{div} \mathbf{v}(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y}$$

•
$$\ell(\mathbf{v}) := \int_{\Gamma} \rho(\mathbf{y}) \int_{D} \mathbf{v}(\mathbf{x}, \mathbf{y}) \ \mathbf{f}(\mathbf{x}) \ d\mathbf{x} \ d\mathbf{y}$$

for
$$\mathbf{v} \in \mathbf{V}$$
 and $q \in W$

Unique Solvability

$$a(\boldsymbol{u}, \boldsymbol{v}) + b(\boldsymbol{v}, p) = \ell(\boldsymbol{v})$$

Unique Solvability

$$a(\boldsymbol{u}, \boldsymbol{v}) + b(\boldsymbol{v}, p) = \ell(\boldsymbol{v})$$

Lemma

Assumptions:

- Bounded bilinear forms $a(\cdot, \cdot) : \mathbf{V} \times \mathbf{V} \Rightarrow \mathbb{R}$ and $b(\cdot, \cdot) : \mathbf{V} \times \mathbf{W} \Rightarrow \mathbb{R}$
- Norms $||\cdot||_{\boldsymbol{V}}$ and $||\cdot||_{W}$
- Bounded Right-hand side
- $a(\cdot,\cdot)$ is coercive on $\mathbf{V}^0 := \{ \mathbf{v} \in \mathbf{V}; \ b(\mathbf{v},q) = 0 \ \forall q \in W \}$
- \Leftrightarrow There exists a constant c such that $a(\mathbf{v}, \mathbf{v}) \geqslant c||\mathbf{v}||_{\mathbf{V}}^2 \ \forall \mathbf{v} \in \mathbf{V}^0$.
 - The inf-sup condition holds.

Then the saddle point problem admits unique solutions and the solutions are bounded.

 $\bullet \ \ \text{Inf-sup condition:} \ \inf_{q \in W_{hp,k}} \ \sup_{\pmb{v} \in \pmb{V}_{hp,k}} \frac{|b(\pmb{v},q)|}{||\pmb{v}||_{\pmb{V}}||q||_W} \geqslant \beta$

- $\begin{array}{l} \bullet \ \ \text{Inf-sup condition:} \ \inf_{\boldsymbol{q} \in W_{hp,k}} \ \sup_{\boldsymbol{v} \in \boldsymbol{V}_{hp,k}} \frac{|\boldsymbol{b}(\boldsymbol{v},\boldsymbol{q})|}{||\boldsymbol{v}||\boldsymbol{v}||\boldsymbol{q}||_{W}} \geqslant \beta \\ \bullet \ \ \text{Coercivity:} \ a(\boldsymbol{u},\boldsymbol{u}) \geqslant \mu_{\min}||\boldsymbol{u}||_{\boldsymbol{V}}^{2}; \quad \forall \boldsymbol{v} \in \boldsymbol{V}_{hp,k}^{0} \\ \end{array}$

- Inf-sup condition: $\inf_{q \in W_{hp,k}} \sup_{\mathbf{v} \in \mathbf{V}_{hp,k}} \frac{|b(\mathbf{v},q)|}{||\mathbf{v}||_{\mathbf{v}}||q||_{W}} \geqslant \beta$
- ullet Coercivity: $a(m{u},m{u})\geqslant \mu_{\min}||m{u}||_{m{V}}^2; \quad orall v\in m{V}_{hp,k}^0$
- $\bullet \ \boldsymbol{V}^0_{ph,k} := \left\{ \boldsymbol{u} \in \boldsymbol{V}_{hp,k}; \ b(\boldsymbol{u},q) = 0, \quad \forall q \in W_{hp,k} \right\}$

- Inf-sup condition: $\inf_{q \in \mathcal{W}_{hp,k}} \sup_{\mathbf{v} \in \mathbf{V}_{hp,k}} \frac{|b(\mathbf{v},q)|}{||\mathbf{v}||_{\mathbf{v}}||q||_{W}} \geqslant \beta$
- Coercivity: $a(\pmb{u},\pmb{u})\geqslant \mu_{\min}||\pmb{u}||_{\pmb{V}}^2; \quad \forall v\in \pmb{V}_{hp,k}^0$
- $\bullet \ \boldsymbol{V}^0_{ph,k} := \left\{ \boldsymbol{u} \in \boldsymbol{V}_{hp,k}; \ b(\boldsymbol{u},q) = 0, \quad \forall q \in W_{hp,k} \right\}$
- ullet Continuity: $\left| a(oldsymbol{u},oldsymbol{v})
 ight| \leqslant \mu_{\max} ||oldsymbol{u}||oldsymbol{v}||oldsymbol{v}|||oldsymbol{v}||$

- Inf-sup condition: $\inf_{q \in \mathcal{W}_{hp,k}} \sup_{\mathbf{v} \in \mathbf{V}_{hp,k}} \frac{|b(\mathbf{v},q)|}{||\mathbf{v}||_{\mathbf{v}}||q||_{W}} \geqslant \beta$
- ullet Coercivity: $a(m{u},m{u})\geqslant \mu_{\min}||m{u}||_{m{V}}^2; \quad orall v\in m{V}_{hp,k}^0$
- $\bullet \ \boldsymbol{V}^0_{ph,k} := \left\{ \boldsymbol{u} \in \boldsymbol{V}_{hp,k}; \ b(\boldsymbol{u},q) = 0, \quad \forall q \in W_{hp,k} \right\}$
- Continuity: $|a(\mathbf{u}, \mathbf{v})| \leq \mu_{\max} ||\mathbf{u}||_{\mathbf{V}} ||\mathbf{v}||_{\mathbf{V}}$
- → Unique Solvability

Discretization Idea

• Finite Element Method in space

Discretization Idea

- Finite Element Method in space
- Generalized Polynomial Chaos in random variable

Discretization Idea

- Finite Element Method in space
- Generalized Polynomial Chaos in random variable
- Askey Chaos: Mapping of probability distribution and orthonormal polynomials

$$\bullet \ \, \boldsymbol{X}_{hp}^{\mathrm{div}} := \left\{ \boldsymbol{v} \in \boldsymbol{H}_0^1(\mathrm{div}, D); \ \, \boldsymbol{v} \middle|_{\boldsymbol{K}} \in \mathcal{P}_p(\boldsymbol{K}) \quad \forall \boldsymbol{K} \in \Delta_h \right\}$$

$$\bullet \ \, \boldsymbol{X}_{hp}^{\mathrm{div}} := \left\{ \boldsymbol{v} \in \boldsymbol{H}_0^1(\mathrm{div}, D); \ \, \boldsymbol{v} \middle|_{\boldsymbol{K}} \in \mathcal{P}_p(\boldsymbol{K}) \quad \forall \boldsymbol{K} \in \Delta_h \right\}$$

•
$$X_{hp}^0 := \left\{ q \in L^2(D); \ q \Big|_{K} \in \mathcal{P}_{p-1}(K) \quad \forall K \in \Delta_h \right\}$$

$$\bullet \ \, \boldsymbol{X}_{hp}^{\mathrm{div}} := \left\{ \boldsymbol{v} \in \boldsymbol{H}_0^1(\mathrm{div}, D); \ \, \boldsymbol{v} \middle|_{\boldsymbol{K}} \in \mathcal{P}_p(\boldsymbol{K}) \quad \forall \boldsymbol{K} \in \Delta_h \right\}$$

$$\bullet \ X_{hp}^0 := \left. \left\{ q \in L^2(D); \ q \right|_K \in \mathcal{P}_{p-1}(K) \quad \forall K \in \Delta_h \right\}$$

• Multi-index ${\pmb k}=(k_1,..,k_M)\in \mathbb{N}_0^{(M)}$ of polynomial degrees k_j

$$\bullet \ \, \boldsymbol{X}_{hp}^{\mathrm{div}} := \left\{ \boldsymbol{v} \in \boldsymbol{H}_0^1(\mathrm{div}, D); \ \, \boldsymbol{v} \middle|_{\boldsymbol{K}} \in \mathcal{P}_p(\boldsymbol{K}) \quad \forall \boldsymbol{K} \in \Delta_h \right\}$$

$$\bullet \ X_{hp}^0 := \left\{ q \in L^2(D); \ q \Big|_K \in \mathcal{P}_{p-1}(K) \quad \forall K \in \Delta_h \right\}$$

- Multi-index ${m k}=(k_1,..,k_M)\in \mathbb{N}_0^{(M)}$ of polynomial degrees k_j
- $S^M = S^M(\Gamma) := S_{k_1}(\Gamma_1) \otimes ... \otimes S_{k_M}(\Gamma_M) \subset L^2_{\rho}(\Gamma)$

$$\bullet \ \, \boldsymbol{X}_{hp}^{\mathrm{div}} := \left\{ \boldsymbol{v} \in \boldsymbol{H}_0^1(\mathrm{div}, D); \ \, \boldsymbol{v} \middle|_{\boldsymbol{K}} \in \mathcal{P}_p(\boldsymbol{K}) \quad \forall \boldsymbol{K} \in \Delta_h \right\}$$

$$\bullet \ X_{hp}^0 := \left. \left\{ q \in L^2(D); \ q \right|_K \in \mathcal{P}_{p-1}(K) \quad \forall K \in \Delta_h \right\}$$

- Multi-index ${m k}=(k_1,..,k_M)\in \mathbb{N}_0^{(M)}$ of polynomial degrees k_j
- $S^M = S^M(\Gamma) := S_{k_1}(\Gamma_1) \otimes ... \otimes S_{k_M}(\Gamma_M) \subset L^2_{\rho}(\Gamma)$
- $S_{k_j}(\Gamma_j) = \operatorname{span}\{y_j^{\alpha_j}; 0 \leqslant \alpha_j \leqslant k_j\} \subset L^2_{\rho_j}(\Gamma_j), j = 1, ..., M.$
- $m{v}_{hp,k}:=m{X}_{hp}^{ ext{div}}\otimes S^M$ and $W_{hp,k}:=X_{hp}^0\otimes S^M$

Example in one Dimension

$$\bullet \ \textit{\textbf{X}}_\textit{hp}^{\text{div}} = \textit{span}\{\phi_1,..,\phi_J\} \subset \textit{\textbf{H}}_0^1(\textit{\textbf{D}})$$

•
$$S^M = \{\psi_1, ..., \psi_Q\}$$

•
$$X_{hp}^{\text{div}} \otimes S^{M} := span\{\phi_{i}\psi_{j}: i = 1,..,J, j = 1,..,Q\}$$

Fully discrete Problem

Find
$$\boldsymbol{u}_{hp,k} \in \boldsymbol{V}_{hp,k} \subset \boldsymbol{V}$$
 and $p_{hp,k} \in W_{hp,k} \subset W$ satisfying
$$a(\boldsymbol{u}_{hp,k}^{(M)}, \boldsymbol{v}) + b(\boldsymbol{v}, p_{hp,k}^{(M)}) = \ell(\boldsymbol{v}) \qquad \forall \boldsymbol{v} \in \boldsymbol{V}_{hp,k}$$

$$b(\boldsymbol{u}_{hp,k}^{(M)}, q) = 0 \qquad \forall q \in W_{hp,k}.$$

Error Sources

- I. Error due to Finite Element Method in Space
- II. Error due to Generalized Polynomial Chaos Decomposition

Error Splitting

$$||\mathbf{u}^{(M)} - \mathbf{u}_{hp,k}^{(M)}||_{\mathbf{V}} + ||_{p^{(M)}} - p_{hp,k}^{(M)}||_{W}$$

$$\leq C \Big[\inf_{\mathbf{v} \in X_{hp}^{\text{div}} \otimes L_{\rho}^{2}(\Gamma)} ||\mathbf{u}^{(M)} - \mathbf{v}||_{\mathbf{V}} + \inf_{q \in X_{hp}^{0} \otimes L_{\rho}^{2}(\Gamma)} ||_{p^{(M)}} - q||_{W}$$

$$+ \sum_{j=1}^{M} \Big(\inf_{v_{j} \in H^{1}(div, D) \otimes S_{j}(\Gamma_{j})} ||\mathbf{u}^{(M)} - v_{j}||_{\mathbf{V}} + \inf_{q_{j} \in L^{2}(D) \otimes S_{j}(\Gamma_{j})} ||_{p^{(M)}} - q_{j}||_{W} \Big) \Big]$$

Error due to FEM

Lemma

- $D \subset \mathbb{R}^2$
- $\bullet \ \pmb{u}^{(M)} \in L^2_\rho(\Gamma; H^s(\mathrm{div}, D)), \ p^{(M)} \in L^2_\rho(\Gamma; H^s(\mathrm{div}, D))$

Then, there holds

$$\begin{split} &\inf_{\boldsymbol{v} \in X_{hp}^{\mathrm{div}} \otimes L_{\rho}^{2}(\Gamma)} ||\boldsymbol{u}^{(M)} - \boldsymbol{v}||_{V} + \inf_{\boldsymbol{q} \in X_{hp}^{0} \otimes L_{\rho}^{2}(\Gamma)} ||\boldsymbol{p}^{(M)} - \boldsymbol{q}||_{W} \\ &\leqslant C h^{\min\{s,p\}} \boldsymbol{p}^{-s} \Big(||\boldsymbol{u}^{(M)}||_{L_{\rho}^{2}(\Gamma;H^{s}(\operatorname{div},D))} + ||\boldsymbol{p}^{(M)}||_{L_{\rho}^{2}(\Gamma;H^{s}(\operatorname{div},D))} \Big). \end{split}$$

Error due to GPC for the velocity

• For $0 < \tau < 1$

$$\inf_{\boldsymbol{\nu}_j \in \boldsymbol{H}_0^1(\operatorname{div},D) \otimes S_j(\Gamma_j)} ||\boldsymbol{u}^{(M)} - \boldsymbol{\nu}_j||_{\boldsymbol{V}}$$

$$\leqslant \frac{c(\mu_{\max},\beta)||\boldsymbol{f}||_{L^2(D)}}{\tau \tilde{\mu}} \sqrt{2\pi} \ \Big(1 + \frac{1}{\sqrt{1-\zeta_j^2}} \ \mathcal{O}(k_j^{-\frac{1}{3}})\Big) \zeta_j^{k_j+1}$$

• Velocity and pressure are analytic with respect to $\mathbf{y} \in \Gamma$.

- Velocity and pressure are analytic with respect to $\mathbf{y} \in \Gamma$.
- Power series representation for a single $y_j \in \Gamma_j$.

- Velocity and pressure are analytic with respect to $\mathbf{y} \in \Gamma$.
- Power series representation for a single $y_j \in \Gamma_j$.
- Boundary of the coefficients and radius of convergence.

- Velocity and pressure are analytic with respect to $\mathbf{y} \in \Gamma$.
- Power series representation for a single $y_j \in \Gamma_j$.
- Boundary of the coefficients and radius of convergence.
- Exploit unique solvability to show equality.

Error Result

Theorem

- $D \subset \mathbb{R}^2$
- $\bullet \ (\textbf{\textit{u}}^{(M)}, \rho^{(M)}) \in L^2_\rho(\Gamma; \textbf{\textit{H}}^s(\mathrm{div}, D)) \times L^2_\rho(\Gamma; \textbf{\textit{H}}^s(D))$
- $\bullet \ (\boldsymbol{u}_{hp,k}^{(M)}, p_{hp,k}^{(M)}) \in \boldsymbol{V}_{hp,k} \times W_{hp,k}$

$$||\boldsymbol{u}^{(M)} - \boldsymbol{u}_{hp,k}^{(M)}||_{\boldsymbol{V}} + ||p^{(M)} - p_{hp,k}^{(M)}||_{W}$$

$$\leq C \left(h^{\min\{s,p\}}p^{-s} + \frac{1}{\tau} \sum_{i=1}^{M} \zeta_{j}^{k_{j}+1}\right)$$

The constant C>0 is only indepent of the discretization parameters h,g and \pmb{k} . Further, $\zeta_j=(\Xi_j+\sqrt{1-\Xi_j^2}\)^{-1}\in(0,1)$ with $\Xi_j=1+\frac{2(1-\tau)\tilde{\mu}}{|\mu_i|}$ for j=1,..,M and $\tau\in(0,1)$.

Outlook

• Navier-Stokes and Oseen equation with random viscosity

Outlook

- Navier-Stokes and Oseen equation with random viscosity
- Why Navier-Stokes is not that easily treated

Outlook

- Navier-Stokes and Oseen equation with random viscosity
- Why Navier-Stokes is not that easily treated
- Error analysis for time-dependent Oseen equation