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Abstract. We analyze the solvability of a system of ordinary differential equations modeling
a warm cloud. A unique feature of this model is the automatic onset of nucleation when the moist
air parcel becomes supersaturated; this is made possible by a non-Lipschitz right-hand side of the
differential equation, which allows for nontrivial solutions. Here we prove under mild assumptions
on the external forcing that this system of equations has a unique physically consistent solution, i.e.,
a solution with a nonzero droplet population in the supersaturated regime.
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1. Introduction. Every software for numerical weather prediction comes with a
cloud physics module for the simulation of the microphysical processes within clouds.
In these systems the resolution of a typical cloud is extremely low, not much more
than a handful of finite volumes. Therefore the corresponding cloud models are rather
crude and can only capture limited details of the underlying physics.

In general such a model consists of a system of ordinary differential equations
for a dozen or so bulk variables per volume element for the most relevant water
phases (vapor, small droplets, rain, ice, snow, hail, graupel, etc.), cf., e.g., Seifert
and Beheng [10]. The precipitation of liquid and solid water particles couples vertical
layers of neighboring volume elements, the release of latent heat and the interaction
with radiation provides the important feedback to the atmospheric dynamical system
in the synoptic scale.

Recently (cf. [7]) we have developed a new cloud model, which distinguishes itself
from previous ones in the way the nucleation of small water droplets is being realized.
Roughly speaking, this model starts from the differential equation

9y “ kptqyα , yp0q “ y˝ , (1.1)

with some parameter 0 ă α ă 1, where, as usual, 9y refers to the derivative of y with
respect to time t. Problem (1.1) with y˝ “ 0 is a popular textbook example of an
initial value problem for a non-Lipschitz differential equation with multiple solutions,
cf., e.g., Walter [13]. In our context this differential equation may be viewed as a
simplistic model for the time evolution of the bulk mass y of liquid water in the form
of floating droplets, i.e., water, which has condensed on nucleation kernels (aerosols)
in the atmosphere. The function k reflects the thermodynamic state of the two-phase
system consisting of liquid water and vapor: For k ă 0 the air parcel is subsaturated
and liquid water is evaporating; if k ą 0 then the air parcel is supersaturated and
condensation takes place.

˚The research leading to these results has been done within the subproject B7 of the Transregional
Collaborative Research Center SFB/TRR 165 Waves to Weather (www.wavestoweather.de) funded
by the German Research Foundation (DFG).
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(hanke@math.uni-mainz.de).
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If y˝ “ 0, i.e., if no cloud droplets are present at time t “ 0, then y “ 0 is a
trivial solution of (1.1). However, the nonuniqueness of solutions of (1.1) allows to
switch (in a differentiable manner) from the trivial solution for t ă 0 to a positive
solution for t ą 0, if the system changes at time t “ 0 from the subsaturated into
the supersaturated regime: nucleation sets in. Such a situation is very common in
nature: Consider an air parcel near surface with an amount of water vapor below
saturation level, and neither cloud droplets nor rain drops are present. As the air
parcel is ascending and the environmental temperature is decreasing, the saturation
level decreases, and the system will become supersaturated eventually. At this point
water vapor starts to condensate and a cloud develops.

Another feature of the simplistic model (1.1) is that for y˝ ą 0 and k ă 0 the
solution y can vanish in finite time, i.e., liquid water can evaporate completely when
the system is in the subsaturated regime. Nonetheless, it goes without saying that
the justification for using an exponent α ă 1 in (1.1) requires a sophisticated physical
derivation, and this is provided in [7].

Of course, the full model introduced in [7] is more complicated. It is a system
of six ordinary differential equations (the model focusses on warm or liquid clouds,
where the ice phase can be neglected, and which commonly occur in a temperature
regime between 250 and 310 K), see (2.1) below. The particular equation (2.1b) which
describes the evolution of the droplet mass has additional terms that have been ne-
glected in (1.1) for the ease of presentation. Similar to (1.1) the full model admits a
trivial solution (no droplet mass) for certain initial data and a nontrivial “physically
consistent” one (a notion, which will be specified below) in the supersaturated regime;
however, whereas all solutions of (1.1) can be written down explicitly by using sepa-
ration of variables, existence and uniqueness of the physically consistent solution of
the full model is a nontrivial question. It is the purpose of this paper to settle this
problem.

The discussion of nonunique solutions, respectively the existence of unique posi-
tive solutions of initial value problems for non-Lipschitz ordinary differential equations
is a classical topic of applied mathematics. Extensions of the example (1.1) have been
investigated, e.g., in [2, 3, 4, 15]; an extensive survey of this field is provided by the
monograph by Agarwal and Lakshmikantham [1]. However, the known results do not
seem to be applicable in our case. Instead we employ a technique known as Fuchsian
reduction (Kichenassamy [5], see also Rendall and Schmidt [8]), but this comes for
the price that we need to assume that the external forcing of our system – the updraft
velocity of the air parcel – is sufficiently regular, e.g., analytic. We emphasize, though,
that the theory developed in [5] is based on an assumption which is not fulfilled in
our situation. To overcome this hurdle we resort to a sophisticated application of
Weissinger’s fixed point theorem [14, 12] by exploiting the particular structure of our
system.

The outline of this paper is as follows. In the following section we present the
cloud model from [7], explaining briefly the origin of its individual terms, but leaving
away all physical details which are irrelevant for the present purpose; for those we refer
to the original paper. At the end of this section we also fix the notion of physically
consistent solutions. Section 3 is devoted to the proof of existence and uniqueness of a
physically consistent solution of the full model. In Section 4 we show that the model is
self-consistent in the sense that the two different variables of the model which monitor
the amount of rain drops within the cloud provide consistent information about the
presence of these drops. Finally, some concluding remarks and acknowledgements are
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presented in Section 5.

2. The model equations. In the following we recall the system of ordinary
differential equations from [7] which constitutes a microphysical model of an adiabatic
warm cloud parcel in the atmosphere moving in vertical direction. Besides water
vapor this model distinguishes between cloud droplets and rain drops, the latter being
sufficiently heavy to allow for sedimentation due to gravity, whereas the former ones
are assumed to be floating within the air parcel. Accordingly, the model simulates
the time evolution of three variables qv, qc, and qr, respectively, for the cumulated
water mass of vapor, cloud droplets, and rain drops in the air parcel, together with
another variable nr for the total number of rain drops∗:

9qv “ ´d1pqv ´ qvsqq
1{3
c ´ pqv ´ qvsq´E , (2.1a)

9qc “ d1pqv ´ qvsqq
1{3
c ´ d2q

2
c ´ d3vqcq

2{3
r n1{3r , (2.1b)

9qr “ pqv ´ qvsq´E ` d2q
2
c ` d3vqcq

2{3
r n1{3r ´ vqr , (2.1c)

9nr “
nr
qr
pqv ´ qvsq´E ` d4qc ´ λvnr . (2.1d)

Here, qvs “ qvspp, T q denotes the vapor mass at saturation for given values of the
pressure p and temperature T , cf. (3.1) below, and

pqv ´ qvsq´ “ mintqv ´ qvs, 0u

is short hand notation for the negative part of qv ´ qvs, i.e., pqv ´ qvsq´ is negative
when the air parcel is subsaturated, and zero else. The term

E “ d5q
1{3
r n2{3r ` d6v

1{2q1{2r n1{2r (2.2)

is a simplified approximation of the evaporation rate of rain drops in a subsaturated
regime, and in (2.2) and (2.1),

v “ d7

´ mqr
qr `mnr

¯µ

(2.3)

is proportional to an estimate for the terminal fall velocity of spherical rain drops,
with m,µ ą 0 being suitable constants. For later use we note that

cv min
 

1, pqr{nrq
µ
(

ď v ď Cv min
 

1, pqr{nrq
µ
(

(2.4)

for some uniform constants cv, Cv ą 0.
Concerning the cloud droplet mass evolution (2.1b), the first term on the right-

hand side corresponds to the model (1.1) from the introduction and represents the
condensation/vaporization process, i.e., the phase transition between vapor and cloud
droplets. It therefore reappears as a sink in (2.1a). Likewise, the source of vapor
mass due to evaporating rain drops, as described by the second term on the right-
hand side of (2.1a), constitutes a sink of rain drop mass, respectively. The final
two terms in (2.1b) represent collision processes by which cloud droplets turn into
rain drops. Precipitation is accounted for by the last term in (2.1c). Finally, the

∗In cloud physics these quantities are commonly normalized per unit mass of dry air, and this
model adjusts to this standard. Nonetheless, we will simply refer to mass and number throughout
the text of this paper.
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differential equation (2.1d) for the rain drop number is a suitable adaptation of the
previous equation (2.1c) for their mass. A common assumption in cloud physics is to
distinguish between the precipitation fluxes of mass and number of rain drops, and this
is taken care of by introducing a (constant) parameter λ. The fraction nr{qr in front of
the evaporation term in (2.1d) is used to put the evaporated drop mass in perspective
to the average drop mass to provide an estimate for the number of evaporating rain
drops; if nr and qr both happen to be identically zero, then no evaporation can take
place, and the corresponding term in (2.1d) is taken to be zero.

The coefficients

di “ dipp, T, qcq , i “ 1, . . . , 7 , (2.5)

in (2.1)-(2.3) depend on p, T , and qc, and we assume this dependency to be Lipschitz
continuous; moreover, these coefficients are positive, bounded away from zero and
from above as long as the same is true for p and T (see the appendix for more
details).

The system (2.1) is closed by the following two differential equations for the time
evolution of pressure and temperature, namely

9p “ ´
g

Ra

p

T
w and 9T “ ´

g

cp
w ´

L

cp
9qv , (2.6)

where w is the driving updraft velocity of the air parcel, i.e., the external forcing
of our system, g is the gravitational acceleration†, L “ LpT q is the latent heat of
vaporization, and Ra and cp are the specific gas constant and specific heat capacity
of dry air, respectively; in the temperature regime of warm clouds the latter can be
assumed to be independent of T . (These ingredients of (2.6) are listed in more detail
because they become relevant in (3.5) later on.)

By an admissible solution of (2.1), (2.6) we understand nonnegative functions qv,
qc, qr, and nr, and strictly positive functions p and T . We therefore request that
the corresponding initial data q˝v, q

˝
c , q

˝
r , n

˝
r , p

˝, and T ˝ at time t “ 0 have the same
properties. Concerning the updraft velocity w we only assume for the moment that it
is continuous in time, and that it drives the air parcel through reasonable elevations

zptq “ z˝ `

ż t

0

wpτqdτ , t ą 0 , (2.7)

above surface; for the existence and uniqueness result in the following section we make
the stronger assumption that w be analytic (see also Remark 3.3 in Section 3).

For any admissible solution of (2.1) we observe by taking the sum of the three
differential equations (2.1a)-(2.1c) that the total mass of water is a nonincreasing
function of time; hence, for such a solution the three functions qv, qc, and qr are
uniformly bounded from above by the total water mass q˝v ` q˝c ` q˝r in the cloud
parcel at time t “ 0. From (2.6) and the mean-value theorem it further follows that

T ptq “ T ˝ ´
g

cp

`

zptq ´ z˝
˘

´
L̃

cp

`

qvptq ´ q
˝
v

˘

, (2.8)

where L̃ “ LpT̃ q is the latent heat for some intermediate value of the temperature.
Concerning the pressure we conclude from (2.6) that

pptq “ p˝ exp
´

´
g

Ra

ż t

0

wpτq

T pτq
dτ

¯

,

†Please note the corresponding misprint in [7].
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and hence, by the mean-value theorem,

pptq “ p˝
´ T ˝

T ptq

¯gw̃{Ra

(2.9)

for some intermediate updraft velocity w̃. Given our assumptions on w it therefore
follows from (2.8) and (2.9) that temperature and pressure of any admissible solution
of (2.1), (2.6) are uniformly bounded from above and away from zero in every compact
time interval, and hence, so are the coefficients d1, d2, . . . , d7. Finally, concerning nr
we readily conclude from (2.1d) that

9nr ď d4qc , (2.10)

showing that nr is also bounded from above in every finite time interval.
According to the Picard-Lindelöf Theorem (cf., e.g., Teschl [12]) a unique solution

of (2.1), (2.6) exists for every strictly positive tuple of initial data q˝v, q
˝
c , q

˝
r , n

˝
r , p

˝, and
T ˝, and such a solution is obviously admissible locally. However, if one (or some) of
the input data q˝c , q

˝
r , and n˝r happens to be zero, then the right-hand side of (2.1) is

no longer Lipschitz near the initial data, and the corresponding initial value problem
need not have a unique solution; we thus refer to critical initial data, if at least one
of these three numbers q˝c , q

˝
r , n

˝
r is zero. For example – like in the simple model

discussed in the introduction – if q˝c “ q˝r “ n˝r “ 0, then constant values for qv, qc, qr,
and nr provide a trivial solution of (2.1), which is physically consistent as long as the
air parcel is in the subsaturated regime, but this solution is nonphysical when the
vapor mass exceeds the saturation level. Rather, if qv ´ qvs turns positive, then we
expect to see the emergence of a positive cloud droplet mass, and we will refer to a
physically consistent solution of (2.1), (2.6), if

qcptq ą 0 , whenever qvptq ą qvs
`

pptq, T ptq
˘

. (2.11)

We further require the solution to be self-consistent in the sense that the two variables
qr and nr, which keep track of the amount of rain water, are either both zero, or both
nonzero.

In the following section we investigate initial value problems with critical ini-
tial data in more detail to settle existence and uniqueness of physically consistent
solutions. Subsequently, in Section 4, we turn to the self-consistency of this solution.

3. Critical initial value problems. For given values of p and T the vapor
mass qvs at saturation level is given by

qvspp, T q “ ε
pspT q

p
, (3.1)

where ε “ Ra{Rv is the ratio of the specific gas constants of dry air and water vapor,
respectively, and ps is the saturation vapor pressure. The latter satisfies the Clausius-
Clapeyron differential equation

p1spT q “ LpT q
pspT q

RvT 2
, pspT0q “ p0 , (3.2)

where L, again, denotes the latent heat of vaporization, and pp0, T0q is the triple point
of water; cf., e.g., Rogers and Yau [9].
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Fig. 3.1. The graphs of the two competing functions in (3.5), in units of m versus K.

Using (3.1) and (3.2) we can substitute y “ qv ´ qvs in (2.1), (2.6), to obtain the
system

9y “ ´d8yq
1{3
c ´ d9y´E ` cw , (3.3a)

9qc “ d1yq
1{3
c ´ d2q

2
c ´ d3vqcq

2{3
r n1{3r , (3.3b)

9qr “ y´E ` d2q
2
c ` d3vqcq

2{3
r n1{3r ´ vqr , (3.3c)

9nr “
nr
qr
y´E ` d4qc ´ λvnr , (3.3d)

9p “ ´d10w , (3.3e)

9T “ ´d11w ` d12
`

d1yq
1{3
c ` y´Eq , (3.3f)

where, again, y´ is short hand notation for minty, 0u,

d8 “ d1

´

1` ε
LpT qp1spT q

cpp

¯

, d9 “ 1` ε
LpT qp1spT q

cpp
, (3.4)

d10, d11, and d12 are abbreviations for the corresponding coefficients in (2.6), and

c “ cpp, T q “
ε

p

´ g

cp
p1spT q ´

g

Ra

pspT q

T

¯

“
g2

cpR2
v

pspT qLpT q

pT 3

´RaT

g
´
cpRvT

2

gLpT q

¯

. (3.5)

Take note that d8, . . . , d12 are also Lipschitz continuous functions of pressure, tem-
perature, and droplet mass qc, and due to (2.8) and (2.9) they are uniformly bounded
from above and away from zero, because p1s is always positive by virtue of (3.2).

Finally, c of (3.5) is also Lipschitz continuous, and in the relevant temperature
regime c can be considered to be strictly positive: Figure 3.1 provides the graphs of
RaT {g and cpRvT

2{pgLpT qq for a temperature range from 250 up to 310 K, based on
a common approximation of the latent heat of vaporization taken from [9]‡; this plot
clearly demonstrates that the term in parantheses in (3.5) is strictly positive, and
hence, so is c.

‡The approximation of the latent heat from [6] yields the same plot.
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Obviously, the two systems of differential equations are equivalent, i.e., any phys-
ically consistent solution of (2.1), (2.6) yields a physically consistent solution of (3.3)
with y˝ ě ´qvspp

˝, T ˝q, and vice versa. To see the latter, determine

qv “ y ` qvs

from the corresponding component y of the solution of (3.3) by using qvs of (3.1),
(3.2); it follows that qv satisfies (2.1a) with initial data qvp0q ě 0, and hence, qv will
be nonnegative throughout, because the right-hand side of (2.1a) is positive whenever
qv is below the positive value of qvs.

Now we consider critical initial value problems in the subsaturated regime; by
y˝ “ q˝v ´ qvspp

˝, T ˝q we denote the initial data to be used for yp0q.
Theorem 3.1. Let the coefficient (3.5) satisfy cpp˝, T ˝q ą 0 for given positive

values p˝ and T ˝, and assume that y˝ is either negative with y˝ ě ´qvspp
˝, T ˝q, or

y˝ “ 0 and the external forcing w satisfies wptq ă 0 for t within some open time
interval p0, t0q. Then the system (3.3) with initial data

q˝c “ 0 , q˝r ě 0 , n˝r ě 0 ,

and p˝, T ˝, and y˝ as above admits a unique physically consistent solution in some
open time interval p0, t10q, provided that q˝r and n˝r are either both zero, or both nonzero.
The component qc of this solution is identically zero, and if q˝r “ n˝r “ 0 then qr and
nr are also identically zero in p0, t10q.

Proof. For any admissible solution of (3.3), yptq will be negative for positive time
t near t “ 0 due to (3.3a) and the premises of this theorem. On the other hand,
as long as y is nonpositive, the right-hand side of (3.3b) is nonpositive either. This
proves that qc must vanish identically in some interval p0, t10q, and in this interval the
other components of the solution must satisfy the reduced system

9y “ cw ´ d9y´E , (3.6a)

9qr “ y´E ´ vqr , (3.6b)

9nr “
nr
qr
y´E ´ λvnr , (3.6c)

9p “ ´d10w , (3.6d)

9T “ ´d11w ` d12y´E . (3.6e)

When q˝r and n˝r are both nonzero, we can thus use the Picard-Lindelöf Theorem
to obtain a unique solution of the corresponding initial value problem for (3.6), and
together with qc “ 0 we have found a physically consistent solution of (3.3), which
satisfies the given initial data.

Consider next the case that q˝r “ n˝r “ 0. Since the right-hand sides of (3.6b) and
(3.6c) are nonpositive, each, in p0, t10q, the components qr and nr of any admissible
solution of (3.3) must stay zero in p0, t10q in this case. In fact, this zero solution,
completed with qc “ 0 and the (unique) solution of the system

9y “ cw , 9p “ ´d10w , 9T “ ´d11w ,

for the corresponding initial data y˝, p˝, and T ˝, does indeed provide a physically
consistent solution of (3.3) in r0, t10q, and this is the only physically consistent one
for these initial data; recall that the first term on the right-hand side of (3.6c) is
considered to be zero for this solution.
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Next we turn to the more difficult supersaturated regime.
Theorem 3.2. Let the coefficient (3.5) satisfy cpp˝, T ˝q ą 0 for given values

p˝, T ˝ ą 0. If either y˝ ą 0, or y˝ “ 0 and the external forcing w is analytic near
t “ 0 with wptq ą 0 for t within some open time interval p0, t0q, then the system (3.3)
with initial data

q˝c “ 0 , q˝r ě 0 , n˝r ě 0 ,

and p˝, T ˝, and y˝ as above admits a unique physically consistent solution in some
open time interval p0, t10q, provided that q˝r and n˝r are either both zero, or both nonzero.
In either case t10 can be chosen so small that qcptq, qrptq, and nrptq are positive for
t P p0, t10q.

Proof. By assumption, if y˝ “ 0 then the external forcing w admits a Taylor
expansion

wptq “ aνt
ν `Optν`1q , tÑ 0 , (3.7)

for some ν P N0 and aν ą 0.
Next we observe that for any solution of (3.3) with qc ą 0 the function

xc “ q2{3c (3.8)

solves the differential equation

9xc “
2

3
d1y ´

2

3
d2x

5{2
c ´

2

3
d3vq

2{3
r n1{3r xc (3.9)

by virtue of (3.3b).
The main body of this proof is divided in two steps. In the first step we show

that (i) qc ą 0 near t “ 0 for any physically consistent solution of (3.3) with initial
data as stipulated in the statement of this theorem, and (ii) that y and xc of (3.8)
can be written as

yptq “ tnusptq , xcptq “ tn`1ucptq , (3.10a)

while

qrptq “ t3n`4uqptq , nrptq “ tp3n`5q{2unptq , (3.10b)

if q˝r “ n˝r “ 0. In (3.10) the time variable t varies in r0, t10q for some t10 ą 0, and
us, uc, uq, un belong to C1p0, t10q XCpr0, t

1
0qq with strictly positive initial data at time

t “ 0; finally, the parameter n P N0 is given by

n “

#

0 , if y˝ ą 0 ,

ν ` 1 , if y˝ “ 0 ,
(3.11)

where ν is the leading order exponent in (3.7). In the second step we prove that there
exists exactly one solution of (3.3) satisfying (3.10) with n as in (3.11).

Throughout this proof we will simply write diptq for dippptq, T ptq, qcptqq, i “
1, 2, . . . , 12, and d˝i for dip0q “ dipp

˝, T ˝, 0q. The same simplified notation is adapted
for c of (3.5) and v of (2.3).

To begin with the first part of the proof, let py, qc, qr, nr, p, T q be a physically
consistent solution of (3.3) in some time interval p0, t10q with the stipulated initial
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values at t “ 0. Note that the boundedness of the right-hand sides of (3.3b), (3.3e),
and (3.3f) implies that qc, p, and T are Lipschitz continuous near t “ 0, and hence,
the Lipschitz continuity of di and c with respect to p, T , and qc implies that

diptq “ d˝i `Optq , cptq “ c˝ `Optq , tÑ 0 .

This will be used later on.
Since the right-hand side of (3.3a) is Lipschitz continuous with respect to y, this

differential equation has a unique solution y with yp0q “ y˝ for the given components
qc, qr, nr, p, and T . It is easily checked that this solution is given near t “ 0 by

yptq “ fptq
´

y˝ `

ż t

0

cpτqwpτq

fpτq
dτ

¯

(3.12)

with

fptq “ exp
´

´

ż t

0

d8psqq
1{3
c psqds

¯

,

because, obviously, the right-hand side of (3.12) is positive for sufficiently small t ą 0
by virtue of our premises on y˝ and w. It follows that fptq “ 1`Optq, tÑ 0, and

yptq “ y˝ `Optq , tÑ 0 , if y˝ ą 0 ,

whereas if y˝ “ 0, then a Taylor expansion based on (3.7) yields

yptq “
`

1`Optq
˘

ż t

0

c˝an´1τ
n´1 `Opτnq

1`Opτq
dτ

“
c˝an´1

n
tn `Optn`1q , tÑ 0 .

We have thus established the first equation of (3.10a) for the exponent n P N0 given in
(3.11) and some function us, which is differentiable in p0, t10q because y is, and which
extends continuously to t “ 0 with corresponding value

usp0q “ u˝s “

#

y˝ , if y˝ ą 0 ,

c˝an´1{n , if y˝ “ 0 .
(3.13)

From this and (2.11) we conclude that qc ą 0 for t P p0, t10q, and hence, xc of (3.8)
is well-defined and solves the differential equation (3.9) in this time interval. Given
the representation (3.10a) of y we further conclude from (3.9) that

xcptq ď
2

3

ż t

0

d1pτqypτqdτ “
2u˝sd

˝
1

3pn` 1q
tn`1 `Optn`2q , tÑ 0 ,

and inserting this back into (3.9) we get the corresponding lower bound

xcptq ě
2

3

ż t

0

d1pτqypτqdτ ´

ż t

0

´

C2τ
5pn`1q{2 ` C3τ

n`1
¯

dτ

“
2u˝sd

˝
1

3pn` 1q
tn`1 ´Optn`2q , tÑ 0 ,
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where C2 and C3 are suitable positive constants due to (2.4) and the boundedness of all
other functions involved in (3.9). This establishes the corresponding equation (3.10a)
for xc with

ucp0q “ u˝c “
2u˝sd

˝
1

3pn` 1q
. (3.14)

Again, uc P C
1p0, t10q X Cpr0, t

1
0qq, for the same reason as above.

Finally, assume that q˝r “ n˝r “ 0. Since yptq ą 0 for 0 ă t ă t10, nr satisfies the
differential equation

9nr “ d4x
3{2
c ´ λvnr

by virtue of (3.3d) and (3.8), and hence,

nrptq “ gptq

ż t

0

d4pτqx
3{2
c pτq

gpτq
dτ with gptq “ exp

´

´

ż t

0

λvpsqds
¯

.

From (2.4), (3.10a), and (3.14) we therefore obtain the second equation in (3.10b) by
Taylor expansion, and there holds

unp0q “ u˝n “
2

3n` 5
d˝4 pu

˝
cq

3{2 . (3.15)

Concerning qr we combine equations (3.3b) and (3.3c) – and use the fact that
y ě 0 in p0, t10q – to conclude that

9qr ` 9qc “ d1yq
1{3
c ´ vqr ,

which implies that

qrptq “ ´qcptq `

ż t

0

`

d1pτqypτqq
1{3
c pτq ´ vpτqqrpτq

˘

dτ

ď

ż t

0

d1pτqypτqx
1{2
c pτqdτ ,

where we have used (3.8) and the nonnegativity of qc and qr for the final step. It
therefore follows from (3.10a) that

qrptq “ Optp3n`3q{2q , tÑ 0 . (3.16)

We further conclude from (3.3c) and (3.8) that

qrptq ď

ż t

0

`

d2pτqx
3
cpτq ` d3pτqvpτqx

3{2
c pτqq2{3r pτqn1{3r pτq

˘

dτ ,

and hence, the previously established asymptotics (3.10) and the preliminary esti-
mate (3.16) imply that

qrptq ď
d˝2pu

˝
cq

3

3n` 4
t3n`4 ` Opt3n`13{3q , tÑ 0 .

10



Inserting this back into (3.3c) and using that y´ “ 0 we also obtain the matching
lower bound

qrptq ě

ż t

0

`

d2pτqx
3
cpτq ´ vpτqqrpτq

˘

dτ ě
d˝2pu

˝
cq

3

3n` 4
t3n`4 ´ Opt3n`5q ,

from which the first representation in (3.10b) follows with

uqp0q “ u˝q “
d˝2pu

˝
cq

3

3n` 4
. (3.17)

We have thus succeeded in establishing all four equations of (3.10).
For the second part of the proof (existence and uniqueness) we restrict ourselves

to the case that y˝ “ 0, i.e., that n of (3.11) is positive, and assume that q˝r “ n˝r “ 0.
The other cases are left to the reader; they are easier and can be treated in the same
way. We will use the short-hand notation u “ pus, uc, uq, unq, and consider a time
interval r0, t10s for some t10 ą 0 sufficiently small, and a closed interval Ω Ă R6

` for the
values of pp, T,uq, assuming that Ω contains the initial data pp˝, T ˝, u˝s , u

˝
c , u

˝
q, u

˝
nq in

its interior; the latter four values are specified in (3.13), (3.14), (3.17), and (3.15).
Inserting (3.10) into (3.9), (3.3a), and (3.3c)–(3.3f) we obtain an equivalent system

of integral equations
»

—

—

—

—

—

—

–

p
T
us
uc
uq
un

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

–

φppp, T,uq
φT pp, T,uq
φspp, T,uq
φcpp, T,uq
φqpp, T,uq
φnpp, T,uq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ Φpp, T,uq (3.18)

for p, T , and u; the details of this derivation will be provided only for un, because this
equation constitutes a representative case.

From (3.10) and (3.8) it follows by integrating (3.3d) that

tp3n`5q{2unptq “

ż t

0

´

d4pτqτ
p3n`3q{2u3{2c pτq ´ λvpτqτ p3n`5q{2unpτq

¯

dτ

“

ż 1

0

´

pstqp3n`3q{2d4pstqu
3{2
c pstq ´ pstqp3n`5q{2λvpstqunpstq

¯

tds

for t P r0, t10s, where we have used that nrp0q “ 0 and yptq ě 0 by virtue of (3.10). We
have thus arrived at the bottom identity of (3.18) with

`

φnpp, T,uq
˘

ptq “

ż 1

0

sp3n`3q{2d4pstqu
3{2
c pstqds

´ t

ż 1

0

sp3n`5q{2λvpstqunpstqds .

(3.19)

Vice versa, if continuous functions p, T , and u solve (3.18) in r0, t10s, then nr of (3.10)
belongs to Cpr0, t10sq X C

1pp0, t10qq and solves the differential equation (3.3d).
Recall that d4 is a bounded Lipschitz continuous function of p, T , and uc, and v

of (2.3) can be rewritten as

v “ d7

´ muq
mun ` tp3n`3q{2uq

¯µ

tµp3n`3q{2

11



by virtue of (3.10); accordingly, v is a bounded Lipschitz continuous function of p, T ,
uc, uq, and un for t P r0, t10s and pp, T,uq P Ω. It thus follows from (3.19) that there
exists a constant L ą 0, such that

›

›φnprp, rT , ruq ´ φnpp, T,uq
›

› ď L
´

}rp´ p} ` } rT ´ T } ` }ruc ´ uc}
¯

` Lt10

´

}ruq ´ uq} ` }run ´ un}
¯ (3.20)

for every pp, T,uq, prp, rT ruq P Ω, where } ¨ } refers to the supremum norm over r0, t10s.
Note that the power of t10 in (3.20) is not optimal, but this suffices for our purposes.
Further, if p, T , and u attain the stipulated initial data, then

`

φnpp, T,uq
˘

p0q “

ż 1

0

sp3n`3q{2d˝4pu
˝
cq

3{2 ds “
2

3n` 5
d˝4pu

˝
cq

3{2 “ u˝n ,

compare (3.15), and hence we have

›

›φnpp, T,uq ´ u
˝
n

›

› ď

ż 1

0

sp3n`3q{2
›

›

›
d4u

3{2
c ´ d˝4pu

˝
cq

3{2
›

›

›
ds ` t10

ż 1

0

sp3n`5q{2λ
›

›vun
›

› ds

ď L
´

}p´ p˝} ` }T ´ T ˝} ` }uc ´ u
˝
c}

¯

` Lt10

after adjusting the constant L, when necessary. Accordingly, by choosing the Ω-
components of the p, T , and uc variables sufficiently narrow and t10 sufficiently small,
the values of φnpp, T,uq belong to the un-component of Ω.

Proceeding in a similar fashion for the other variables one can show that the
nonlinear integral operator Φ of (3.18) maps

X ˝ “
!

pp, T,uq P C
`

r0, t10s, Ω
˘

: pp0q “ p˝, T p0q “ T ˝, up0q “ pu˝s , u
˝
c , u

˝
q, u

˝
nq

)

to itself, provided that t10 is sufficiently small and Ω is sufficiently narrow. Moreover,
there holds
»

—

—

—

—

—

—

—

—

–

}φpprp, rT , ruq ´ φppp, T,uq}

}φT prp, rT , ruq ´ φT pp, T,uq}

}φsprp, rT , ruq ´ φspp, T,uq}

}φcprp, rT , ruq ´ φcpp, T,uq}

}φqprp, rT , ruq ´ φqpp, T,uq}

}φnprp, rT , ruq ´ φnpp, T,uq}

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ď

»

—

—

—

—

—

—

—

—

–

Lt10 Lt10 0 Lt10 0 0

Lt10 Lt10 Lt10 Lt10 0 0

L L Lt10 Lt10 0 0

L L L Lt10 Lt10 Lt10

L L 0 L Lt10 Lt10

L L 0 L Lt10 Lt10

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

–

}rp´ p}

} rT ´ T }

}rus ´ us}

}ruc ´ uc}

}ruq ´ uq}

}run ´ un}

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (3.21)

where the inequality sign is meant componentwise. Again, no attempt has been made
to come up with optimal powers of t10 in the matrix At1

0
on the right-hand side of

(3.21).
In order to complete the proof we need to show that (3.18) has a unique fixed

point pp, T,uq in the complete metric space X ˝, equipped with its natural metric
given by the norm } ¨ }X of X “ Cpr0, t10s,R6q. It is obvious from (3.21) that Φ is
Lipschitz continuous with respect to this topology, but it is also readily seen from
(3.20) that Φ fails to be a contraction in general. On the other hand, when turning
to Φ4 “ Φ ˝ Φ ˝ Φ ˝ Φ we conclude from (3.21) that

›

›Φ4prp, rT , ruq ´ Φ4pp, T,uq
›

›

X ď }A4
t1
0
}8

›

›prp, rT , ruq ´ pp, T,uq
›

›

X ,
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where }A4
t1
0
}8 denotes the row sum norm of A4

t1
0
, and this norm can be made smaller

than one by choosing t10 sufficiently small: This is easily seen by observing that for
t10 “ 0 there holds

A0 “ L

»

—

—

—

—

—

—

–

0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 0 1 0 0
1 1 0 1 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and A2
0 “ L2

»

—

—

—

—

—

—

–

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

and hence,

lim
t1
0Ñ0

}A4
t1
0
}8 “ }pA2

0q
2}8 “ 0 .

We thus have shown that Φ is a Lipschitz map from X ˝ to itself and that Φ4 is a con-
traction, provided that t10 is sufficiently small and Ω is sufficiently narrow. Therefore,
one can make use of Weissinger’s fixed point theorem [14, 12] to verify that (3.18) has
a unique fixed point in X ˝. In other words, the initial value problem (3.3a), (3.9),
(3.3c)–(3.3f) has a unique solution of the form (3.10).

With qc “ x
3{2
c , compare (3.8), we thus obtain the unique physically consistent

solution of (3.3) for the given initial data. Moreover, according to (3.10), qc, qr, and
nr are positive in p0, t10q.

Remark 3.3. The assumption in Theorem 3.2 that w be analytic can be relaxed
to merely requiring that w be continuous with

wptq “ aνt
ν ` optνq , tÑ 0 ,

for some ν ě 0 and aν ą 0, compare (3.7).
So far we did not consider critical initial data with q˝c ‰ 0, because this case is of

little relevance in practice, as we will see in Section 4. For the ease of completeness
we nevertheless state the corresponding result.

Theorem 3.4. The system (3.3) with initial data

q˝c ą 0 , q˝r “ n˝r “ 0 , p˝ ą 0 , T ˝ ą 0 ,

and y˝ ě ´qvspp
˝, T ˝q admits a unique local solution, and the correponding compo-

nents qr and nr are positive in some open time interval p0, t10q.
By definition this solution is physically consistent. We omit the proof of Theo-

rem 3.4, which can follow the lines of the preceeding one. No assumption on w besides
continuity is required for this result.

The unique physically consistent solution for given initial data can be extended as
in the classical Lipschitz continuous case (at least) up to the point when its trajectory
reaches the boundary of the particular domain, in which the right-hand side of (3.3) is
well-defined and Lipschitz. Since we already know that any admissible solution of (3.3)
is bounded, this continuation ends (if at all) at a point where one of its components
qv, qc, qr, or nr turns zero. As we have mentioned before, qv cannot become zero,
because qvs is always positive, cf. (3.1), and hence, 9qv ą 0 whenever 0 ă qv ă qvs by
virtue of (2.1a). At zeros of qc, on the other hand, we can use Theorems 3.1 and 3.2
to extend the solution (uniquely) in a physically consistent way. It thus remains to
consider the case that nr or qr become zero.
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4. Zeros of qr and nr: Self-consistency of the model. In reality rain drops
are either present or they are not; in a realistic numerical model the associated quan-
tities qr and nr should therefore either be both zero or both nonzero. We have already
seen in the previous section that qr and nr always switch simultaneously from zero
to nonzero depending on the level of saturation. Here we show that if qr or nr be-
comes zero in the course of the time evolution, then both quantities do indeed vanish
simultaneously.

Proposition 4.1. Consider an admissible solution of (3.3) in some time interval
I “ pt10, t0q Ă R`. If its component qr satisfies qrptq ą 0 for t P I and qrptq Ñ 0 for
t Ñ t0, or if nrptq ą 0 for t P I and nrptq Ñ 0 for t Ñ t0, then the solution extends
continuously to t “ t0 with

qrpt0q “ nrpt0q “ qcpt0q “ 0 and ypt0q ď 0 . (4.1)

Moreover, qcptq ą 0 for t near t0, t ă t0.
Proof. As observed in Section 2 all components of an admissible solution are

bounded from above for t10 ă t ă t0, and so is the right-hand side of (3.3), with the
possible exception of (3.3d). It follows that y, qc, qr, p, and T are Lipschitz continuous
function of t P pt10, t0q, and hence they extend continuously to t “ t0.

Consider first the case that I “ pt10, t0q is such that nrptq ą 0 for t P I and
nrptq Ñ 0 for t Ñ t0. Let us assume that qrpt0q ‰ 0. Then there exists δ ą 0 and
some time interval rt20, t0q Ă I such that qrptq ě δ for all t P rt20, t0q. Using (3.3d) we
have

y´E ď
9nr
nr
qr ` λvqr ,

and inserting this into (3.3c) we conclude that

9qr
qr
ď

9nr
nr
` pλ´ 1qv ` d2

q2c
qr
` d3vqc

`nr
qr

˘1{3

in rt20, t0q. This implies that

log
nrptq

nrpt20q
ě log

qrptq

qrpt20q
´

ż t

t2
0

´

pλ´ 1qv ` d2
q2c
qr
` d3vqc

`nr
qr

˘1{3
¯

dτ

for all t P pt20, t0q. Since qr is assumed to be bounded from below by δ, the right-hand
side stays bounded as t Ñ t0, whereas the left-hand side of this inquality tends to
´8. This contradiction shows that qrptq Ñ 0 as tÑ t0.

Consider next the other case that qrptq ą 0 in I with qrptq Ñ 0 as tÑ t0, and let
us assume that nrptq ě δ for some δ ą 0 and all t P rt20, t0q, where t10 ď t20 ă t0. We
can use (3.3c) to estimate

y´E ď 9qr ` vqr ,

and it thus follows from (3.3d) that

9nr
nr
ď

9qr
qr
` p1´ λqv ` d4

qc
nr

in rt20, t0q. Integrating the latter inequality from t20 to t P pt20, t0q we conclude that

log
qrptq

qrpt20q
ě log

nrptq

nrpt20q
´

ż t

t2
0

´

p1´ λqv ` d4
qc
nr

¯

dτ .
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By assumption, the right-hand side of this inequality stays bounded whereas the left-
hand side tends to ´8 as tÑ t0, so that we have arrived at a contradiction.

This means that there is some sequence ptkqkPN Ă pt10, t0q with tk Ñ t0 and
nrptkq Ñ 0, and it thus follows from (2.10) that

nrptq ď nrptkq `

ż t

tk

d4qc dτ , tk ď t ă t0 .

Since the integrand on the right-hand side of this inequality is bounded, we conclude
that

lim sup
tÑt0

nrptq ď 0 ,

and since nr is nonnegative, this proves that nrptq Ñ 0 for tÑ t0.
So, in either of the two cases the solution extends continuously to t “ t0 and the

first two equations of (4.1) hold true.
Consider qc next, and assume first that its limit qcpt0q is positive. Then 9qr ą 0

near t “ t0 according to (3.3c) and (2.2), and hence, qr is strictly increasing near t “ t0,
in contradiction to what we have already shown. Therefore qcpt0q “ 0. Assume next
that qcptq “ 0 for all t P rt20, t0s with some t20 P pt

1
0, t0q. In this case the differential

equations for qr and nr simplify,

9qr “ y´E ´ vqr and 9nr “
nr
qr
y´E ´ λvnr (4.2)

in rt20, t0q, cf. (3.6). Further note that we can choose t20 so close to t0 that neither nr
nor qr have a zero in rt20, t0q, by what we have already shown. We thus conclude from
(4.2) that

9nr
nr
“

9qr
qr
` p1´ λqv ,

and upon integration,

log
nrptq

nrpt20q
“ log

qrptq

qrpt20q
`

ż t

t2
0

p1´ λqv dτ , t20 ă t ă t0 .

As the integrand on the right-hand side is bounded, it follows that there exists some
constant C ą 0, such that

nrptq ď Cqrptq , t20 ď t ă t0 .

According to (2.2) this implies that E ď C 1qr for some other constant C 1 ą 0, and
hence, (3.6b) yields

9qr ě ´
`

C 1|y´| ` v
˘

qr

in rt20, t0q. From this we readily obtain the inequality

log
qrptq

qrpt20q
ě ´

ż t

t2
0

`

C 1|y´| ` v
˘

dτ ,

which gives the desired contradiction as tÑ t0, because the integral on the right-hand
side is bounded. This proves that qcptq is positive for t near t0, t ă t0.
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Since, on the other hand, qcptq Ñ 0 for tÑ t0, we necessarily have ypt0q ď 0, for

otherwise the dominating term on the right-hand side of (3.3b) is given by d1yq
1{3
c ą 0

for t close to t0, and this would imply that qc is strictly increasing near t “ t0.
We thus have proved that the cloud model is self-contained in the sense that it

cannot happen that one of the two rain drop quantities of an admissible solution of
(3.3) is turning zero while the other one is not. We further have seen that the droplet
mass will also vanish at this point – but not earlier. Note that if the cloud parcel is
subsaturated and all cloud droplets have vaporized while rain drops are still present,
then the proof of Proposition 4.1 shows that from this point onwards the rain drop
population decreases exponentially, but does not exhale completely.

We have further seen that an extinction of cloud droplets is only possible in the
subsaturated regime or exactly at saturation. Thereafter cloud droplets and rain
drops reappear when the system returns into a supersaturated state, cf. Theorem 3.2.

5. Concluding remarks. This paper deals with a mathematical model for
warm cloud parcels suggested in [7]. We have shown that the corresponding sys-
tem of ordinary differential equations admits a unique physically consistent solution
provided that the external forcing velocity of the air package is an analytic function
of time. We have further demonstrated that the model is self-consistent in that the
two rain drop quantities of the model are either simultaneously zero or nonzero.

Our result relies on the positivity of the physical parameter c “ cpp, T q of (3.5)
for realistic values of pressure and temperature. As pointed out by Spichtinger [11]
this assumption can be supported by physical arguments when interpreting the two
competing terms in (3.5) as the scale heights of the pressure p and the saturation
vapor pressure pspT q, respectively. The fact that the former is much larger than the
latter in the relevant temperature regime is due to the relatively large latent heat
of vaporization, which in turn is a consequence of the anomaly of water due to the
strong hydrogen bonds.

We finally mention that the paper [7] not only contains the details for the deriva-
tion of this cloud model but also develops a sophisticated numerical integration
scheme, which respects the nonnegativity of the masses of the different water species
and the rain drop number; at the same time this numerical scheme conserves the total
mass of water (up to precipitation, of course) and dry air.

Appendix. To facilitate the comparison with [7] we provide the explicit specifica-
tions of the parameters di of (2.5) in terms of the constants and coefficients tabulated
in [7, Appendix A]:

d1 “ dρn2{3c ,

d2 “ k1ρ{ρl ,

d3 “ k2π
`

3{p4πρlq
˘2{3

ph{cqqρ ,

d4 “ k1ρnc{p2ρlq ,

d5 “ daEρ ,

d6 “ dbEph{cqq
1{2ρ ,

d7 “ αpcq{hqpρ˚{ρq
1{2 ,

d10 “ gρ ,

d11 “ γ ,

d12 “ L{cp ,
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where ρ is the density of dry air, which can be eliminated by using the ideal gas law

ρ “
p

RaT
,

and nc is the total number of cloud droplets (see below). Finally, the recommended
value of λ to be used in (2.1d) is given by

λ “ cn{cq

according to [7].
A constitutive algebraic constraint has been utilized in [7] to couple the droplet

number nc with their mass qc; this constraint is given in terms of an explicit strictly
positive and bounded Lipschitz continuous function nc “ ncpqcq. We like to use the
occasion to advocate a slight modification of this function, namely

ncpqcq “
1` κqc

1` κqc ` κ2q2c

qc
m0

coth
qc

N0m0
, κ “

1

N8m0
,

where m0, N0, and N8 " N0 are suitable positive parameters (the same as in [7]),
and they depend on the particular meteorological scenario to be simulated; see [7]
for corresponding examples. The graph of the modified function suggested above
is almost identical to the plot shown in [7, Fig. 3], but the present one is more
appropriate from the modeling point of view because the resulting droplet number
is strictly increasing with droplet mass. We emphasize that the precise definition of
this function is irrelevant for the results in our present paper; all we need is that this
function is strictly positive, bounded, and Lipschitz continuous.

Finally we note that only d1, d4, and d8 do depend on qc, because nc does, and
that d11 and d12 are constants.
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