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Abstract. We develop a stochastic Galerkin method for a coupled Navier-Stokes-cloud system that models

dynamics of warm clouds. Our goal is to explicitly describe the evolution of uncertainties that arise due to

unknown input data, such as model parameters and initial or boundary conditions. The developed stochastic
Galerkin method combines the space-time approximation obtained by a suitable finite volume method with

a spectral-type approximation based on the generalized polynomial chaos expansion in the stochastic space.

The resulting numerical scheme yields a second-order accurate approximation in both space and time and
exponential convergence in the stochastic space. Our numerical results demonstrate the reliability and

robustness of the stochastic Galerkin method. We also use the proposed method to study the behavior of

clouds in certain perturbed scenarios, for examples, the ones leading to changes in macroscopic cloud pattern
as a shift from hexagonal to rectangular structures.

1. Introduction

Clouds constitute one of the most important components in the Earth-atmosphere system. They influence
the hydrological cycle and by interacting with radiation they control the energy budget of the system.
However, clouds are one of the most uncertain components, which, unlike the atmospheric flows, cannot be
modeled using first principles of physics.

Clouds are composed by myriads of water particles in different phases (liquid and solid), and thus they need
to be described by a large ensemble in a statistical sense. A common way of obtaining such an ensemble is
by using a mass or size distribution, which would lead to a Boltzmann-type evolution equation. Although
there are some approaches available in literature to formulate cloud models in such a way [4, 18, 19], a
complete and consistent description is missing. Since measurements of size distributions of cloud particles
are difficult, we are often restricted to averaged quantities such as, for example, mass of water per dry air
(mass concentrations). Therefore, models are often formulated in terms of so-called bulk quantities, that
is, mass and number concentrations of the respective water species. Many cloud processes are necessary to
describe the time evolution of the cloud as a statistical ensemble, that is, particle formation or annihilation,
growth/evaporation of particles, collision processes, and sedimentation due to gravity. For each of the
processes, we have to formulate a representative mathematical term in the sense of a rate equation. Although
for some processes the physical mechanisms are quite understood, the formulation of the process rates usually
contain uncertain parameters, thus cloud models come with inherent uncertainty. On the other hand, the
initial conditions for atmospheric flows and the embedded clouds are also not perfectly constrained, leading
to uncertainties in the environmental conditions. It is well-known from former studies that uncertainties
in cloud processes and in environmental conditions can lead to drastic changes in simulations, thus these
uncertainties influence predictability of moist atmospheric flows, clouds and precipitation in a crucial way;
for instance, the distribution of latent heat is changed, which in turn can influence frontogenesis [16] or
convection [15,25].

For investigations of the impact of these uncertain cloud model parameters as well as the impact of variations
in environmental conditions on atmospheric flows, sensitivity studies are usually carried out. Since one or
more parameters are (randomly) varied, the Monte Carlo approach can be used. This, however, requires a
large ensemble of simulations to be conducted, which makes Monte Carlo methods computationally expensive
and requires a very fine sampling of the parameter space and possible environmental conditions. In most
practical studies, a much smaller set of ensembles (with about 10− 100 samples only) is used.

In order to improve both the efficiency and accuracy of a numerical method, we choose a different way of
representing random variations by using spectral expansions in the stochastic space. This approach enables
us to investigate the impact of variations in cloud model parameters and initial conditions on the evolution
of moist flows with embedded clouds.
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We consider a mathematical model of cloud physics that consists of the Navier-Stokes equations coupled with
the cloud evolution equations for the water vapor, cloud water and rain. In this model developed in [23,35]
and presented in Section 2, the Navier-Stokes equations describe weakly compressible flows with viscous and
heat conductivity effects, while microscale cloud physics is modeled by the system of advection-diffusion-
reaction equations.

Meteorological applications typically inherit several sources of uncertainties, such as model parameters, ini-
tial and boundary conditions. Consequently, purely deterministic models are insufficient in such situations
and more sophisticated methods need to be applied to analyze the influence of uncertainties on numer-
ical solutions. In this paper, we study a stochastic version of the coupled Navier-Stokes-cloud model in
order to account for uncertainties in input quantities. Our main goal is to design an efficient numerical
method for quantifying uncertainties in solutions of the studied system. In recent years, a wide variety
of uncertainty quantification methods has been proposed and investigated in the context of physical and
engineering applications. These methods include stochastic Galerkin methods based on generalized polyno-
mial chaos (gPC) [11, 34, 41, 42, 48], stochastic collocation methods [24, 46, 47], and multilevel Monte Carlo
methods [29,30,38]. Each of these groups of methods has its own pros and cons. While results obtained by
the Monte Carlo simulations are generally good, the approach is not very efficient due to a large number of
realizations required. Stochastic collocation methods are typically more efficient than the Monte Carlo ones,
since they only require solving the underlying deterministic system at the certain quadrature nodes in the
stochastic space. These data are then used to reconstruct the gPC expansion using an appropriate set of
orthogonal polynomials. The Monte Carlo as well as the stochastic collocation method fall into a class of the
non-intrusive methods. Stochastic Galerkin methods offer an alternative approach for computing the gPC
expansion. In general, they are more rigorous and efficient than the Monte Carlo and collocation ones; see,
e.g., [13]. The stochastic Galerkin method is an intrusive method since it requires changes in the underlying
code. In fact, one needs to solve a system of PDEs for the gPC expansion coefficients.

We develop a new stochastic Galerkin method for the coupled Navier-Stokes-cloud system. As it has already
been mentioned above, the largest source of uncertainties is cloud physics. Therefore, we restrict our con-
sideration to the case in which the uncertainties are only in the cloud physics representation; extension to
full stochastic Navier-Stokes-cloud model is left to future studies. Thus, we need to solve the deterministic
Navier-Stokes equations coupled with the PDE system for the gPC expansion coefficients for the cloud vari-
ables. Our numerical method is an extension of the approach proposed in [23] for the purely deterministic
version of the coupled Navier-Stokes-cloud system. This method is based on the operator splitting approach,
in which the system is split into the macroscopic Navier-Stokes equations and microscopic cloud model with
random inputs. The Navier-Stokes equations are then solved by an implicit-explicit (IMEX) finite-volume
method, while for the cloud equations we develop a stochastic Galerkin method based on the gPC. The
resulting gPC coefficient system is numerically solved by a finite-volume method combined with an explicit
Runge-Kutta method with an enlarged stability region [28].

The paper is organized as follows. We start in Section 2 with the description of the deterministic Navier-
Stokes-cloud model. The numerical method for the deterministic model is presented in Sections 3. In
Sections 4, we report on numerical experiments for well-known meteorological benchmarks—rising warm
bubble and Rayleigh-Bénard convection—for the deterministic model. We then continue in Section 5 with the
presentation of the stochastic model, which is followed by the description of the numerical method (Section
6) and presentation of the numerical experiments (Section 7) for the stochastic model. Our numerical results
clearly demonstrate that the proposed stochastic Galerkin method is capable of quantifying the uncertainties
of complex atmospheric flows.

2. Deterministic mathematical model

We study a mathematical model of cloud dynamics, which is based on the compressible nonhydrostatic
Navier-Stokes equations for moist atmosphere (that is, mixture of ideal gases dry air and water vapor),

ρt +∇ · (ρu) = 0,

(ρu)t +∇ ·
(
ρu⊗ u + p Id− µmρ

(
∇u + (∇u)>

))
= −ρge3, (2.1)
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(ρθ)t +∇ · (ρθu− µhρ∇θ) = Sθ,

and evolution equations for cloud variables,

(ρqv)t +∇ · (ρqvu− µqρ∇qv) = ρ(−C + E),

(ρqc)t +∇ · (ρqcu− µqρ∇qc) = ρ(C −A1 −A2), (2.2)

(ρqr)t +∇ · (−vqρqre3 + ρqru− µqρ∇qr) = ρ(A1 +A2 − E).

Here, ρ is the density, u = (u1, u2, u3)> is the velocity vector, θ is the moist potential temperature, p is the
pressure, g is the acceleration due to gravity, µm is the dynamic viscosity, µh is the thermal conductivity,
and µq is the cloud diffusivity. The cloud variables representing the mass concentration of water vapor, cloud
droplets and rain drops, qv, qc, qr, respectively, as well as the right-hand side (RHS) terms E, C, A1, A2

will be defined below. We denote by t the time variable and by x the space vector; x = (x1, x2, x3) in the
three-dimensional (3-D) and x = (x1, x3) in the two-dimensional (2-D) cases. Furthermore, e3 = (0, 0, 1)>

and e3 = (0, 1)> in the 3-D and 2-D cases, respectively. We set µm = 10−3 and µh = 10−2 = µq. Note that
the systems (2.1) and (2.2) are coupled through the source term Sθ, which represents the impact of phase
changes and will be defined below, see (2.6). The temperature T can be obtained from the moist adiabatic
ideal gas equation

T =
R

Rm
θ

(
p

p0

)Rm/cp
, (2.3)

where p0 = 105 Pa is the reference pressure at sea level. In addition to the usual definition of a potential
temperature, we use Rm = (1−qv−qc−qr)R+qvRv with the ideal gas constant of dry air R = 287.05 J/(kg·K),
the gas constant of water vapor Rv = 461.51 J/(kg·K) and the specific heat capacity of dry air for constant
pressure cp = 1005 J/(kg·K). In order to close the system, we determine the pressure from the equation of
state that includes moisture

p = p0

(
Rρθ

p0

)γm
with γm =

cp
cp −Rm

. (2.4)

We note that in the dry case Rm reduces to R, Sθ = 0 and the moist ideal gas equation as well as the moist
equation of state become their dry analogon.

In this paper, we restrict our investigations to clouds in the lower part of the troposphere, that is, to clouds
consisting of liquid droplets exclusively. All of the processes involving ice particles are left for future research.
For the representation of liquid clouds in our model we use the so-called single moment scheme, that is,
equations for the bulk quantities of mass concentrations of different water phases. For the representation of
the relevant cloud processes we adapt a recently developed cloud model [35]. Note that for bulk models, the
process rates cannot be derived completely from first principles. Consequently, some uncertain parameters
show up naturally. This underlies the need of a rigorous sensitivity study which is the goal of the present
paper.

Generally, we follow the standard approach in cloud physics modeling for separating hydrometeors of different
sizes, as firstly introduced in [17]. This relies on the observations that small droplets have a negligible falling
velocity. In addition, measurements indicate two different modes of droplets in the size distribution, which
can be associated to small cloud droplets and large rain drops [43]. Thus, we use the cloud variables qc and qr
indicating mass concentration of (spatially stationary) cloud droplets and (falling) rain drops, respectively,
and the water vapor concentration qv, that is,

q` =
mass of the respective phase

mass of dry air
for ` ∈ {v, c, r}.

The rest of this section is devoted to a description of the different terms on the RHS of (2.2), which represents
the following relevant cloud processes, see [35].

2.1. Single particle properties.

• General properties of a single water particle

As we exclusively investigate water clouds, we can assume a spherical shape of water particles. For
small cloud droplets this is a very good approximation, while for large rain drops drag effects change
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their shape [39, 40]. However, for our investigations of ensembles of rain drops, the spherical shape
approximation is appropriate. Thus, mass and radius of droplets are related by the usual equation

m =
4

3
πρ`r

3 ⇐⇒ r =

(
3

4πρ`

) 1
3

m
1
3

with the liquid water density ρ` = 103 kg m−3. We make a general assumption that small cloud
droplets are stationary, while large rain drops are accelerated by gravity. After balancing gravity by
frictional forces, spherical rain drops fall with a terminal velocity, depending only on the drop mass
and the density of air. According to [35], the terminal velocity for a droplet of mass m is given by

vτ (m) = αmβ

(
mτ

mτ +m

)β (
ρ∗
ρ

) 1
2

, α = 190.3 m s−1 kg−β , β =
4

15
, mτ = 1.21 · 10−5kg,

with the reference density ρ∗ = 1.255 kg m−3 at T∗ = 288 K and p∗ = 101 325 Pa. For masses

m � mτ , we can approximate the terminal velocity by vτ = αmβ
√

ρ∗
ρ ; this approximation will be

used in the description of the process accretion (collection of cloud droplets by rain drops).

• Diffusion processes: Growth and evaporation

Diffusion processes (transfer of water molecules to and from the liquid particle) can be described by
the following growth equation:

dm

dt
= −4πrDvGρ(q∗ − qv) fv = − 4πDvG

(
3

4πρl

) 1
3

︸ ︷︷ ︸
=:d

ρ(q∗ − qv)m
1
3 fv,

where Dv denotes the diffusion constant, G determines corrections due to the latent heat release for
phase changes, and fv is the ventilation correction for large particles taking into account the effect
of flows around the falling spheres. A thermodynamics equilibrium is determined by the saturation
mixing ratio q∗ = q∗(p, T ) = εps(T )/p with the saturation water vapor pressure over a liquid surface
ps(T ) given in [31]. By neglecting curvature effects, water particles grow for qv > q∗ and evaporate
for qv < q∗, respectively. The diffusion constant is given according to [36]:

Dv = Dv0

(
T

T0

)1.94
p0

p
, Dv0 = 2.11 · 10−5m2 s−1, T0 = 273.15 K, p0 = p∗ = 101 325 Pa

and the impact of latent heat release is described by

G =

[(
L

RvT
− 1

)
Lps(T )

RvT 2

Dv

KT
+ 1

]−1

,

where the latent heat of vaporisation L = 2.53 · 106J kg−1 and the heat conduction of dry air is
(see [12])

KT =
aKT

3
2

T + bK10
cK
T

, aK = 0.002646 W m−1 K−
5
2 , bK = 245.4 K, cK = −12 K.

Ventilation of large spherical particles of radius r can be taken into account using an empirical
ventilation coefficient

fv = av + bvN
1
3

ScN
1
2

Re, av = 0.78, bv = 0.308,

where the Schmidt and Reynolds numbers are defined as

NSc =
µ

ρDv
and NRe =

ρ

µ
vτ (2r), (2.5)

respectively. In (2.5), µ is the dynamic viscosity of air, which is expressed according to [12] by

µ =
µ0T

3
2

T + Tµ
, µ0 = 1.458 · 10−6s Pa K−

1
2 , Tµ = 110.4 K.
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For cloud droplets, we neglect the ventilation correction, thus the mass rate of diffusion for a cloud
droplet of mass mc can be expressed as

dmc

dt
= dρ(qv − q∗)m

1
3
c .

For rain drops, growth due to the diffusion is negligible, and thus we obtain the mass rate for rain
drops of mass mr as

dmr

dt
= −dρ(q∗ − qv)+

[
aEm

1
3
r + bEvτ (mr)

1
2m

1
2
r

]
, aE = av, bE = bv

(
µ

ρDv

) 1
3
√

2ρ

µ

(
3

4πρ`

) 1
6

.

Here, (·)+ := max(·, 0) denotes the positive part.

• Collision of rain drops with cloud droplets: Accretion

A spherical rain drop of mass mr (radius r) falls with terminal velocity vτ (mr) through a volume
V = πr2vτ (mr)∆t (during a time interval ∆t) and collects cloud droplets of total mass Mc = V ρqc.
Thus, the corresponding growth rate of the rain drop is given by

dmr

dt
= k′2ρπqcvτ (mr)

(
3

4πρ`

) 2
3

m
2
3
r

with an efficiency k′2 > 0.

2.2. Ensemble/collective properties. For the description of clouds as an ensemble of water particles,
we would have to introduce such averaged quantities as mass concentrations (as described above, that is,
qc and qr) as well as number concentrations of cloud droplets, nc, and rain drops, nr. Since we do not
extend the systems of equations for these two quantities, we introduce relations between mass and number
concentrations in order to keep the main effects in a simplified way.

• Formation of cloud droplets: Activation

Cloud droplets can be formed by the activation of so-called cloud condensation nuclei (CCN). Liquid
aerosol particles can grow by water vapor uptake to larger sizes; this effect can be described by the
Köhler theory; see, e.g., [20,33]. As described in detail in [35], we represent the cloud droplet number
concentration nc by a nonlinear relation

nc = qc
N∞

qc +N∞m0
coth

(
qc

N0m0

)
.

Here, N∞ denotes the maximum number of CCN (depending on environmental conditions, e.g.
clean or polluted air), m0 can be interpreted as the activation mass of cloud droplets, and N0 is
the approximated number of activated droplets at qv = q∗. In our investigations, we set these three
parameters to the following values:

N∞ = 8 · 108 kg−1, m0 = 5.236 · 10−16kg, N0 = 103 kg−1.

For the initialization of the cloud droplet production, we introduce an additional factor in case of
supersaturation

Cact = N0 dρ(qv − q∗)+m
1
3
0 .

• Relation between number and mass concentration for rain drops

In contrast to the formulation in [35], we do not include another equation for the number concentra-
tion of rain drops. In a similar way as for cloud activation, we use a relation between nr and qr, that
is, a closure of the form nr = f(qr, c). Since we implicitly assume that the rain drops are distributed
according to their size, this approach should be used for mimicking the shape of the distribution in
a proper way. We propose the (non)linear relation

nr = crq
γ
r , 0 < γ ≤ 1.

Assuming a constant mean mass of rain drops mr, we can determine the constants as cr = m−1
r

and γ = 1. This approach would be meaningful for the case of a symmetric size distribution of rain
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droplets, centered around the mean mass. However, it is well-known that size distributions of rain
are usually skew to larger sizes, thus a linear relation is not appropriate. For sizes of rain drops often
an exponential distribution is assumed, this leads to an exponent γ = 1

4 and a coefficient cr = cr0ρ
− 3

4

(cr0 = 23752.6753 kg−
1
4 m

3
4 , [cr] = kg−1) as derived in Appendix A.

• Rates for diffusion processes

For the mass mixing ratios qc and qr, the rates for the diffusion processes are given by multiplication
of the single particle rates by the number concentration of the respective particles, namely:

dqc
dt

= nc
dmc

dt
,

dqr
dt

= nr
dmr

dt
.

Applying the relations between the mass and number concentrations as stated above, we obtain

C1 =
dqc
dt

= ncdρ(qv − q∗)m
1
3
c

mc=
qc
nc= dρ(qv − q∗)

(
N∞

qc +N∞m0
coth

(
qc

N0m0

)) 2
3

qc

and

E = −dqr
dt

= nrdρ(q∗ − qv)+

[
aEm

1
3
r + bEvτ (mr)m

1
2
r

]
mr= qr

nr= dρ(q∗ − qv)+

[
aEc

2
3
r q

1
3 +γ 2

3
r + bEc

1
2
r vτ (qr)

1
2 q

1
2 +γ 1

2
r

]
using a reformulated terminal velocity

vτ (mr) = vτ (qr) = αqβr

(
mτ

qr +mτ crq
γ
r

)β (
ρ∗
ρ

) 1
2

.

Note, that the rates for activation and diffusion growth of cloud droplets are combined in the model
formulation, that is, C = C1 + Cact.

• Rate for accretion

For the rate of accretion of rain water, we obtain

A2 =
dqr
dt

= nr
dmr

dt
= k2ρπc

1
3
r

(
3

4πρ`

) 2
3

qcvτ (qr)q
2+γ

3
r .

Note that for compensating effects of the averaging the parameter k2 can be adjusted (such that
k2 = 0.8 kg 6= k′2) and the impact of the uncertainty of this parameter is of high interest, since it
cannot be measured or derived from the first principles.

• Collision of cloud droplets, forming a rain drop: Autoconversion

Beside the growth of an existing rain drop by collecting cloud droplets, a rain drop can be formed
by the collision of two cloud droplets. According to [35], we formulate the growth rate similarly to
population models, namely:

A1 =
dqc
dt

= k1
ρq2
c

ρ`
.

Note that the coefficient k1 cannot be measured or derived from the first principles. It is a free
parameter, which must be fixed using parameter estimations. Thus, the impact of the uncertainty
of this parameter is of high interest. In our deterministic experiments, we choose k1 = 0.0041 kg s−1,
as indicated in [35].

• Sedimentation of rain mass mixing ratio

We have introduced an additional convection term into the equation for the evolution of qr in (2.2),
that is, the term ∇ · (−vqρqre3), where

vq = vq(qr) = αqβr

(
mτ

qr +mτ crq
γ
r

)β (
ρ∗
ρ

) 1
2

.
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The parameter α can be derived empirically, but the influence of uncertainty in α is of high interest.

Note that activation and diffusion processes are formulated explicitly, in contrast to the usual approach of
saturation adjustment (see, e.g., [22]), which is less accurate, but commonly used in operational weather
forecast models. This explicit formulation introduces stiffness caused by modeling cloud processes on the
RHS of the cloud equations with fractional exponents between −1 and 1. In order to avoid the root evaluation
for an argument that is close to zero, we introduce a cut-off function and replace ζξ, ξ ∈ (−1, 1), with{

ζξ, if ζ > 10−16,

0, otherwise.

Due to phase changes (activation and growth/evaporation of water particles) latent heat is released or
absorbed. These processes are modeled by the source term in (2.1):

Sθ = ρ
Lθ

cpT
(C − E) , (2.6)

whereas the terms C = C1 +Cact and E are explained in details in Section 2.2, Rates for diffusion processes.

Solving the Navier-Stokes equations (2.1) in a weakly compressible regime is known to cause numerical
instabilities due to the multiscale effects. We follow the approach typically used in meteorological models,
where the dynamics of interest is described by a perturbation of a background state, which is the hydrostatic
equilibrium. The latter expresses a balance between the gravity and pressure forces. Denoting by p̄, ρ̄,
ū = 0, θ̄ and ρθ the respective background state, the hydrostatic equilibrium satisfies

∂p̄

∂x3
= −ρ̄g, Sθ = 0,

where p̄ is obtained from the equation of state (2.4)

p̄ = p(ρθ) = p0

(
Rρθ

p0

)γm
. (2.7)

Let p′, ρ′, u′, θ′ and (ρθ)′ stand for the corresponding perturbations of the equilibrium state, then

p = p̄+ p′, ρ = ρ̄+ ρ′, θ = θ̄ + θ′, u = u′, ρθ = ρ̄θ̄ + ρ̄θ′ + ρ′θ̄ + ρ′θ′ = ρθ + (ρθ)′.

The pressure perturbation p′ is derived from (2.4) and (2.7) using the following Taylor expansion

p(ρθ) ≈ p(ρθ) +
∂p

∂(ρθ)

(
ρθ − ρθ

)
= p̄+ γmp0

(
Rρθ

p0

)γm
(ρθ)′

ρθ
,

which results in

p′ ≈ γmp0

(
Rρθ

p0

)γm
(ρθ)′

ρθ
.

Consequently, a physical motivation from the hydrostatic balance state leads to a numerically preferable
scaling and the perturbation formulation of the Navier-Stokes equations (2.1) then reads as

ρ′t +∇ · (ρu) = 0,

(ρu)t +∇ ·
(
ρu⊗ u + p′ Id− µmρ

(
∇u + (∇u)>

))
= −ρ′ge3, (2.8)

(ρθ)′t +∇ · (ρθu− µhρ∇θ) = Sθ.

For alternative representations of cloud dynamics and their numerical investigations, we refer the reader
to [3, 37] and references therein.
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3. Numerical scheme for the deterministic model

The numerical approximation of the coupled model (2.8), (2.2) is based on the second-order Strang operator
splitting. Therefore, we split the whole system into the macroscopic Navier-Stokes flow equations and the
microscopic cloud equations. The Navier-Stokes equations (2.8) are approximated by an IMEX finite-volume
method and the cloud equations (2.2) are approximated by a finite-volume method in space and an explicit
Runge-Kutta method with an enlarged stability region in time.

3.1. Operator form. Let w := (ρ′, ρu, (ρθ)′)> and wq := (ρqv, ρqc, ρqr)
> denote the solution vectors of

(2.8) and (2.2), respectively. Then, the coupled system can be written as

wt = −∇ · F (w) + D(w) + R(w),

(wq)t = −∇ · Fq(wq) + Dq(wq) + Rq(wq),

where F and Fq are advection fluxes and D, R and Dq, Rq denote the diffusion and reaction operators of
the respective systems. They are given by

F (w) := (ρu, ρu⊗ u + p′ Id, ρθu)
>
,

D(w) :=
(
0,∇ · (µmρ(∇u + (∇u)>)),∇ · (µhρ∇θ)

)>
, (3.1)

R(w) := (0,−ρ′ge3, Sθ)
>
,

Fq(wq) := (ρqvu, ρqcu, ρqru− vqρqre3)
>
,

Dq(wq) := (∇ · (µqρ∇qv),∇ · (µqρ∇qc),∇ · (µqρ∇qr))> ,

Rq(wq) := (−C + E,C −A1 −A2, A1 +A2 − E)
>
.

In order to derive an asymptotically stable, accurate and computationally efficient scheme for the Navier-
Stokes equations, we first split the equations into linear and nonlinear parts; see [6,23] and references therein.
Consequently, we introduce

• F (w) = FL(w) + FN (w) with FL(w) :=
(
ρu, p′ Id, θ̄ρu

)>
and FN (w) := (0, ρu⊗ u, θ′ρu)

>
;

• D(w) = DL(w) + DN (w) with

DL(w) := (0, µm(∆(ρu) +∇(∇ · (ρu))), µh∆(ρθ)′)
>

and

DN (w) :=
(
0,−µm((∆ρ)u + (D2ρ)u +∇u∇ρ+∇ρ∇ · u), µh(∆(ρθ)− θ∆ρ−∇ρ · ∇θ)

)>
;

• R(w) = RL(w) + RN (w) with RL(w) := (0,−ρ′ge3, 0)
>

and RN (w) := (0, 0, Sθ)
>

.

We would like to point out that the choice of the linear and nonlinear operators is crucial. We choose the
linear part to model linear acoustic and gravitational waves as well as linear viscous fluxes. The nonlinear part
describes nonlinear advective effects together with the remaining nonlinear viscous fluxes and the influence
of the latent heat. We will use the following notation:

L := −∇ · FL(w) + DL(w) + RL(w) and N := −∇ · FN (w) + DN (w) + RN (w).

3.2. Discretization in space. The spatial discretization is realized by a finite-volume method. We take
a cuboid computational domain Ω ⊂ Rd, which is divided into N uniform Cartesian cells. The cells are
labeled in a certain order using a single-index notation. For simplicity of notation, we assume that the cells
are cubes with the sides of size h so that |Ci| = hd. We also introduce the notation S(i) for the set of all
neighboring cells of cell Ci, i = 1, . . . , N .

We assume that at a certain time t the approximate solution is realized in terms of its cell averages

wi(t) ≈
1

hd

∫
Ci

w(x, t) dx and (wq)i(t) ≈
1

hd

∫
Ci

wq(x, t) dx, i = 1, . . . , N.
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In order to simplify the notation, we will now omit the time dependence of wi(t) and (wq)i(t). Next, we
introduce the notation wh := {wi}Ni=1 and (wq)h := {(wq)i}Ni=1 and consider the following approximation
of the advection, diffusion and reaction operators:

Ai(wh) = (AL)i(wh) + (AN )i(wh) ≈ 1

hd

∫
Ci

∇ · FL(w(x, t)) dx +
1

hd

∫
Ci

∇ · FN (w(x, t)) dx,

Di(wh) = (DL)i(wh) + (DN )i(wh) ≈ 1

hd

∫
Ci

DL(w(x, t)) dx +
1

hd

∫
Ci

DN (w(x, t)) dx,

Ri(wh) = (RL)i(wh) + (RN )i(wh) ≈ 1

hd

∫
Ci

RL(w(x, t)) dx +
1

hd

∫
Ci

RN (w(x, t)) dx.

Analogous notation will be used for the approximations (Aq)i(wh), (Dq)i(wh) and (Rq)i(wh) of the cloud
operators.

3.2.1. Advection. The advection terms are discretized using flux functions as follows:

(AL)i(wh) =
1

h

∑
j∈S(i)

HL
ij(wh)

d∑
k=1

n
(k)
ij ,

(AN )i(wh) =
1

h

∑
j∈S(i)

HN
ij (wh)

d∑
k=1

n
(k)
ij ,

(Aq)i((wq)h) =
1

h

∑
j∈S(i)

(Hq)ij((wq)h)

d∑
k=1

n
(k)
ij ,

where the numerical fluxes HL
ij , H

N
ij and (Hq)ij approximate the corresponding fluxes between the computa-

tional cells Ci and Cj , and n
(k)
ij denotes the k-th component of the outer normal unit vector of cell Ci in the

direction of cell Cj . We use the Rusanov numerical flux for HN
ij and (Hq)ij and the central flux for HL

ij . For
(AN )i(wh) and (Aq)i((wq)h) a discretization is obtained via a MUSCL-type approach using piecewise linear
reconstructions with the minmod limiter. It is well-known this approach yields an approximation, which is
almost second-order accurate as its accuracy deteriorates at sudden changes, i.e. jumps, discontinuities or
large curvatures. The numerical fluxes are given by

HL
ij(wh) =

1

2
(FL(wj) + FL(wi)) ,

HN
ij (wh) =

1

2

(
FN (w+

ij) + FN (w−ij)
)
− λij

2

(
w+
ij −w−ij

)
, (3.2)

(Hq)ij((wq)h) =
1

2

(
Fq((wq)

+
ij) + Fq((wq)

−
ij)
)
− (λq)ij

2

(
(wq)

+
ij − (wq)

−
ij

)
.

Here, w−ij , w
+
ij and (wq)

−
ij , (wq)

+
ij denote the corresponding interface values, which are computed using a

piecewise linear reconstruction so that

w−ij = wi + sij
h

2

d∑
k=1

n
(k)
ij , w+

ij = wj − sji
h

2

d∑
k=1

n
(k)
ij ,

where the slopes sij are computed by the minmod limiter,

sij =
1

h
minmod (wj −wi,wi −wj∗)

d∑
k=1

n
(k)
ij ,
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applied in a component-wise manner. Here,

minmod(a, b) =


a, if |a| < |b| and ab > 0,

b, if |b| < |a| and ab > 0,

0, if ab ≤ 0,

and (wq)
−
ij and (wq)

+
ij are obtained similarly. Thereby Cj∗ is the other neighboring cell of Ci in the opposite

direction from Cj . Finally, the values λij and (λq)ij are given by

λij = max

{
σ

(
∂FN (w−ij)

∂w

)
, σ

(
∂FN (w+

ij)

∂w

)}
, (λq)ij = max

{
σ

(
∂Fq((wq)

−
ij)

∂wq

)
, σ

(
∂Fq((wq)

+
ij)

∂wq

)}
,

where σ denotes the spectral radius of the corresponding Jacobians.

Remark 3.1. Note that in the computation of HL
ij in (3.2), we use the cell averages rather than the point

values at the cell interfaces for the following two reasons. First, the flux is second-order accurate. Second,
in Section 3.3, we will treat the linear part of the flux implicitly and this is much easier to do when the
numerical flux is linear as well.

3.2.2. Diffusion. The components of the discrete diffusion operators are discretized in a straightforward
manner using second-order central differences.

3.2.3. Reaction. The reaction terms are discretized by a direct evaluation of the reaction operators at the
cell centers:

Ri(wh) = RL(wi) + RN (wi), (Rq)i((wq)h) = Rq((wq)i).

After the spatial discretization, we obtain the following system of time-dependent ODEs:

d

dt
wi = −Ai(wh) +Di(wh) +Ri(wh), (3.3)

d

dt
(wq)i = −(Aq)i((wq)h) + (Dq)i((wq)h) + (Rq)i((wq)h). (3.4)

This system has to be solved using an appropriate ODE solver as discussed in Section 3.3.

3.3. Discretization in time. Let wn
h and (wq)

n
h denote the numerical approximation of the solutions wh(t)

and (wq)h(t) at the discrete time level tn. We evolve the solution to the next time level tn+1 = tn + ∆tn,
where ∆tn is the size of the Strang operator splitting time step. In the operator splitting approach, we first
numerically solve the ODE system (3.3) with ∆tnNS = ∆tn/2, we then numerically integrate the ODE system
(3.4) with ∆tn and finally we solve the system (3.3) again with ∆tnNS.

Notice that the system (3.3) may be very stiff as the Navier-Stokes equations are in the weakly compressible
regime. We therefore follow the approach in [6] (see also [5]), and employ the second-order ARS(2,2,2) IMEX
method from [2]:

w
n+ 1

4

h = wn
h + β∆tnNS

(
L
(
w
n+ 1

4

h

)
+N (wn

h)
)
,

w
n+ 1

2

h = wn
h + ∆tnNS

(
δN (wn

h) + (1− δ)N
(
w
n+ 1

4

h

))
+ ∆tnNS

(
βL
(
w
n+ 1

2

h

)
+ (1− β)L

(
w
n+ 1

4

h

))
,

(3.5)

where α = 1 − 1/
√

2, δ = 1 − 1/2β, tn+ 1
2 = tn + ∆tnNS, tn+ 1

4 = tn + ∆tnNS/2, and ∆tnNS satisfies the following
CFL condition:

max
s=1,2,3

max
i=1,...,N

(|(us)i|)
∆tnNS

h
< 0.5.

For solving the linear systems arising in (3.5), we use the generalized minimal residual (GMRES) method
combined with a preconditioner, the incomplete LU factorization (ILU). As it was shown in [6] (see also [5]),
the resulting method is both accurate and efficient in the weakly compressible regime.

The ODE system (3.4) is also stiff, but its stiffness only comes from the diffusion and power-law-type source
terms. We therefore efficiently solve it using the large stability domain third-order Runge-Kutta method
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from [28]. We have utilized the ODE solver DUMKA3, which is a free software that can be found in [27].
We note that DUMKA3 selects time steps automatically, but in order to improve its efficiency, one needs to
provide the code with a time step stability restriction for the forward Euler method; see [27,28]. This bound
is obtained by min{∆tn, ∆tncloud}, where ∆tncloud satisfies the following CFL condition for the cloud system:

max
s=1,2

max
i=1,...,N

(|(us)i|, |(u3)i + vq|)
∆tncloud

h
< 0.5.

4. Deterministic numerical experiments

In this section, we test the numerical method described in Section 3. The experimental order of convergence
is computed for the so-called free convection of a moist warm air bubble and the structure formation in cloud
dynamics is shown in the Rayleigh-Bénard convection. The latter will be simulated in both the 2-D and 3-D
cases.

4.1. Free convection of a moist warm air bubble in 2-D. We start with the well-known meteorological
benchmark describing the free convection of a smooth warm air bubble; see, e.g., [8, 10].

Example 1. In this experiment, the warm bubble rises and deforms axisymmetrically due to the shear friction
with the surrounding air at the warm/cold air interface, gradually forming a mushroom-like shape. The warm
air bubble is placed at (3500 m, 2000 m) with the initial perturbation:

ρ′(x, 0) = −ρ̄(x)
θ′(x, 0)

θ̄(x) + θ′(x, 0)
, ρ̄(x) =

p0

Rθ̄(x)
πe(x)

1
γ−1 , πe(x) = 1− gx3

cpθ̄
,

u(x, 0) = 0,

θ′(x, 0) =

{
2 cos2

(
πr
2

)
, r :=

√
(x1 − 3500)2 + (x3 − 2000)2 ≤ 2000,

0, otherwise,

where θ̄ = 300 K and p0 = p̄ = 105 Pa. The experiment was simulated in a domain Ω = [0, 7000]×[0, 5000] m2.
For the cloud variables we choose the following initial conditions:

qv(x, 0) = 0.08 θ′(x, 0), qc = 10−3 θ′(x, 0), qr = 10−5 θ′(x, 0).

Furthermore, we apply the no-flux boundary conditions u ·n = 0, ∇ρ′ ·n = 0, ∇(ρθ)′ ·n = 0, ∇(ρq`) ·n = 0,
` ∈ {v, c, r}.

In Figure 1, we show the potential temperature θ and cloud variables qv, qc and qr, computed on a 160×160
mesh at t = 150 and 200s. One can clearly observe condensation taking place on the interface between cold
and warm air and leading to cloud formation in this region. In consequence, rain is formed in the clouds
and falls towards the surface. Note that the order of magnitude of the different water mass concentrations
is very different, that is, qv � qc � qr, as expected. The experimental convergence study for the cloud and
flow variables is presented in Tables 1 and 2, respectively. The experimental order of convergence (EOC)
has been computed in the following way:

EOC = log2

( ‖vN,∆t − v2N,∆t/2‖L2(Ω)

‖v2N,∆t/2 − v4N,∆t/4‖L2(Ω)

)
,

where vN,∆t is the numerical solution computed on a grid with N ×N grid cells and using a fixed time step
∆t. As one can clearly see, the expected second order of accuracy has been achieved. For comparison, we
present in Figures 2 and 3 the errors measured in the L1-, L2- and L∞-norms. They all give similar results.

4.2. Rayleigh-Bénard convection. In this experiment, we study a natural convection that is used to
model structure formation. It occurs in a planar flow between two horizontal plates, where the lower one
is heated from below and the upper one is cooled from above. Due to the presence of buoyancy, and hence
gravity, the fluid develops a regular pattern of convection roles, known as the Bénard cells. In 3-D, these
convection roles form additionally hexagonal structures; see, e.g., [1, 14,32].
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Figure 1. Example 1: Potential temperature θ, water vapor concentration qv, cloud drops concentration qc and
rain concentration qr at times t = 150 (left column) and 200s (right column) simulated on a 160× 160 mesh.

N L2-error in ρqv EOC L2-error in ρqc EOC L2-error in ρqr EOC

10 6.870e+00 – 1.019e-01 – 1.159e-03 –

20 1.711e+00 2.01 2.544e-02 2.00 3.152e-04 1.88

40 4.271e-01 2.00 6.380e-03 2.00 1.240e-04 1.35

80 1.080e-01 1.98 1.611e-03 1.99 4.952e-05 1.32

160 2.703e-02 2.00 4.042e-04 1.99 1.571e-05 1.67

320 6.765e-03 2.00 1.016e-04 1.99 5.666e-06 1.47

Table 1. Example 1: L2-errors and EOC for the cloud variables computed at time t = 10s using ∆t = 20/N.

For our numerical simulations, we prescribe the following initial conditions:

ρ′(x, 0) = −ρ̄(x)
θ′(x, 0)

θ̄(x) + θ′(x, 0)
, ρ̄(x) =

p0

Rθ̄(x)
πe(x)

1
γ−1 , πe(x) = 1− gx3

cpθ̄
,
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N L2-error in ρ′ EOC L2-error in ρu1 EOC L2-error in ρu2 EOC L2-error in (ρθ)′ EOC

10 7.522e-01 – 1.134e+02 – 5.805e+01 – 1.213e+02 –

20 1.757e-01 2.10 2.607e+01 2.12 1.744e+01 1.74 3.494e+01 1.80

40 4.418e-02 2.00 5.604e+00 2.22 5.462e+00 1.67 9.641e+00 1.86

80 1.147e-02 1.95 1.436e+00 1.96 1.658e+00 1.72 2.584e+00 1.90

160 3.170e-03 1.85 3.972e-01 1.85 5.875e-01 1.50 7.577e-01 1.77

320 9.810e-04 1.70 1.159e-01 1.78 2.420e-01 1.28 2.556e-01 1.57

Table 2. Example 1: L2-errors and EOC for the flow variables computed at time t = 10s using ∆t = 20/N.

Figure 2. Example 1: Comparison of different error norms for the cloud variables qv, qc and qr computed at
time t = 10s using ∆t = 20/N.

Figure 3. Example 1: Comparison of different error norms for the flow variables ρ′, ρu1, ρu2 and (ρθ)′ at time
t = 10s using ∆t = 20/N.

u(x, 0) = 0, θ′(x, 0) = η(x), θ̄(x) = 284− 1

1000
x3,

where p0 = p̄ = 105 Pa and η(x) is a random perturbation uniformly distributed in [−0.0021, 0.0021]. For
the cloud equations, the following initial data are used:

qv(x, 0) = 2 · 10−5θ̄(x), qc = 0, qr = 0.

We apply periodic boundary conditions in horizontal direction and the following conditions vertically: u·n =
0, ∇ρ′ · n = 0, ∇(ρq`) · n = 0, ` ∈ {v, c, r} with the Dirichlet boundary conditions for the potential
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temperature,

θ(x3 = 0) = 284 K and θ(x3 = 1000) = 283 K.

Example 2: 2-D case. In Figures 4–7, we present time snapshots of the numerical solution computed in
a domain Ω = [0, 5000] × [0, 1000] m2 that has been discretized using 320 × 320 mesh cells. The potential
temperature, water vapor mixing ratio, cloud mass and rain mass concentration are presented at two distinct
times (t = 800 and 1400s) in Figures 4–7, where we can clearly see the formation and evolution of a pattern.
At an earlier time t = 800 s, one can observe the formation of small convective cells, visible as narrow
finger-like structures reaching towards the top of the domain. Inside these cells, the potential temperature is
enhanced, partly due to the upward transport of higher values from below and partly due to phase changes
and thus latent heat release. Also the mass concentrations of water vapor and cloud water follow the small
scale structure and show enhanced values inside the fingers. Even at this early stage, rain can be formed
at the top of the domain, since there the cloud water concentration is high enough for autoconversion and
accretion. Nevertheless, the structure of rain water is very different since after the formation of rain, it
is vertically transported due to sedimentation leading to vertically smeared structures. By a later time
t = 1400 s, much larger structures, which are similar to classical structures for dry thermal convection, have
been formed. In the variables θ, qv and qc, the spatially extended convective cells can be clearly seen. In
contrast, rain water is not following the convective structure although some larger features can be seen. In
general, smearing due to sedimentation is again a major feature of the rain mass concentration.

Figure 4. Example 2: Time evolution of the potential temperature θ.

Example 3: 3-D case. In this example, we compute the numerical solution in a domain Ω = [0, 5000] ×
[0, 5000] × [0, 1000] m3 that has been discretized using 50 × 50 × 50 mesh cells. Without moisture, this
would be the classical setup for dry Rayleigh-Bénard convection. While for the dry case phase diagrams for
resulting patterns, as e.g. rolls and hexagons, are available, see, e.g., [7], only little is known about patterns
in moist Rayleigh-Bénard convection. Few studies with reduced order models indicate the possibility of
roll-like structures or the formation of hexagons, e.g. [44], but no results for compressible Navier-Stokes
equations coupled with full cloud microphysics are available, at least to our knowledge. Thus, we would
expect similar patterns as evolving in dry convection, although the latent heat release might change these
patterns partially. Figures 8–11 show θ, qv, qc and qr computed at times t = 1200, 1600, 1800 and 2000s. In
order to better visualize the computed structures, we have plotted the solution in a slightly smaller domain

14



Figure 5. Example 2: Time evolution of the water vapor concentration qv.

Figure 6. Example 2: Time evolution of the cloud drops concentration qc.

[0, 5000]× [0, 5000]× [0, 980] m3. As in the 2-D case, different structures are formed in the different variables.
At an earlier time t = 1200 s, small scale structures can be seen at the top layer of the domain, especially
in the potential temperature (Figure 8) and cloud water (Figure 10). As time progresses, these structures
aggregate and reorganize to quasi-hexagonal structures, which would be typical for classical dry thermal
convection—Rayleigh-Bénard convection. These structures in potential temperature seem to be quite robust
as the overall scales and pattern do not change from t = 1800 s to t = 2000 s. As one can see in Figure
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Figure 7. Example 2: Time evolution of the rain concentration qr.

10, the structures in the cloud water are very similar since the variables θ and qc are closely connected; the
structures are mainly visible in horizontal planes. For the rain distribution, the evolved structures are quite
different since rain is formed at regions with high cloud water (that is, at the top layers) and then transported
by sedimentation leading to more pronounced pattern in the vertical direction, since sedimentation is the
dominant process after the rain has formed.

Remark 4.1. Let us note that the Rayleigh-Bénard convection can be understood as a very simplified model
for atmospheric convection in the turbulent planetary boundary layer. In [32, 45], numerical simulations
for moist Rayleigh-Bénard convection have been realized using the Boussinesq approximation, a simplified
equation of state, and the rigid-lid boundary conditions at the top and bottom of the computational domain.
Our mathematical model is more general and takes weakly compressible effects into account. Numerical
experiments presented in Examples 2 and 3 are in good agreement with the results presented in the literature,
but the focus of those studies differs from ours.
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Figure 8. Example 3: Time evolution of the potential temperature θ.

Figure 9. Example 3: Time evolution of the water vapor concentration qv.
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Figure 10. Example 3: Time evolution of the cloud drops concentration qc.

Figure 11. Example 3: Time evolution of the rain concentration qr.
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5. Stochastic mathematical model

In meteorological applications, it is typical that initial or boundary data as well as parameters are uncertain.
In order to take this into account and analyze the influence of such uncertainties on the output of numerical
simulations, we apply the stochastic Galerkin method that will be described below. In this paper, we consider
the case where the uncertainty arises from the initial data or some coefficients in the microphysical cloud
parametrizations. In order to mathematically describe the uncertainty, we introduce a random variable ω.
We assume that either the initial data or some well-chosen model parameters depend on ω, that is,

(ρq`)
∣∣
t=0

= (ρq`)(x, t = 0, ω) with ` ∈ {v, c, r}

or

k1 = k1(ω), k2 = k2(ω), α = α(ω).

Consequently, the solution at later time will also depend on ω, that is, (ρq`)(x, t, ω) for ` ∈ {v, c, r}, and the
system (2.2) for cloud variables will read as

((ρqv)(ω))t +∇ · ((ρqv)(ω)u− µqρ∇qv(ω)) = ρ(−C(ω) + E(ω)),

((ρqc)(ω))t +∇ · ((ρqc)(ω)u− µqρ∇qc(ω)) = ρ(C(ω)−A1(ω)−A2(ω)), (5.1)

((ρqr)(ω))t +∇ · ((ρqr)(ω)(−vq(ω)e3 + u)− µqρ∇qr(ω)) = ρ(A1(ω) +A2(ω)− E(ω)).

From now on we will stress the dependence on ω, but we will omit the dependence on x and t to simplify the
notation. We would like to point out that the solution of the Navier-Stokes equations (2.8) will also depend
on ω, because of the source term Sθ. In this paper, we will consider a simplified situation by replacing

Sθ(ω) = ρ
Lθ

cpT

{
C((ρqv)(ω), (ρqc)(ω))− E((ρqv)(ω), (ρqr)(ω))

}
in (2.8) by S̄θ which only depends on the expected values of the cloud variables

S̄θ := ρ
Lθ

cpT

{
C(E[ρqv],E[ρqc])− E(E[ρqv],E[ρqr])

}
.

This ensures that all of the fluid variables, ρ′, ρu and (ρθ)′, remain deterministic.

6. Numerical scheme for the stochastic model

In this section, we describe a generalized polynomial chaos stochastic Galerkin (gPC-SG) method for the
system of cloud equations (5.1). Such method belongs to the class of intrusive methods and the use of
the Galerkin expansion leads to a system of deterministic equations for the expansion coefficients. In the
gPC-SG method, the solution is sought in the form of a polynomial expansion

ρq`(x, t, ω) =

M∑
k=0

(ρ̂q`)k(x, t)Φk(ω) with ` ∈ {v, c, r}, M ≥ 0, (6.1)

where Φk(ω), k = 0, . . . ,M , are polynomials of k-th degree that are orthogonal with respect to the probability
density function µ(ω). The choice of the orthogonal polynomials {Φk(ω)}Mk=0 depends on the distribution
of ω. In our case, we use a uniformly distributed ω ∈ Γ = (−1, 1), which defines the Legendre polynomials,
which satisfy ∫

Γ

Φk(ω)Φk′(ω)µ(ω) dω =
1

2k + 1
δkk′ for 0 ≤ k, k′ ≤M, (6.2)

where δkk′ is the Kronecker symbol and Γ is the sample space.

We use the same expansion for the uncertain coefficients,

k1(ω) =

M∑
k=0

(k̂1)kΦk(ω), k2(ω) =

M∑
k=0

(k̂2)kΦk(ω), α(ω) =

M∑
k=0

α̂kΦk(ω), (6.3)
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for the source terms on the RHS of (5.1),

ρ (−C(x, t, ω) + E(x, t, ω)) =: R1(x, t, ω) =

M∑
k=0

(r̂1)k(x, t)Φk(ω),

ρ (C(x, t, ω)−A1(x, t, ω)−A2(x, t, ω)) =: R2(x, t, ω) =

M∑
k=0

(r̂2)k(x, t)Φk(ω), (6.4)

ρ (A1(x, t, ω) +A2(x, t, ω)− E(x, t, ω)) =: R3(x, t, ω) =

M∑
k=0

(r̂3)k(x, t)Φk(ω),

as well as for the raindrop fall velocity,

vq(x, t, ω) =

M∑
k=0

(v̂q)k(x, t)Φk(ω). (6.5)

Since ρ(x, t) = ρ̂0(x, t), we also obtain

q`(x, t, ω) =

M∑
k=0

(q̂`)k(x, t)Φk(ω) with (q̂`)k(x, t) =
(ρ̂q`)k(x, t)

ρ(x, t)
for ` ∈ {v, c, r}, k = 1, . . . ,M. (6.6)

We note that if ρ(x, t) is very small, the computation of the coefficients (q̂`)k(x, t) should be desingularized;
see [21, formulae (5.16)–(5.18)].

Applying the Galerkin projection to (5.1) yields

〈(ρqv)t +∇ · (ρqvu− µqρ∇qv) ,Φk〉 = 〈ρ(−C + E),Φk〉 ,
〈(ρqc)t +∇ · (ρqcu− µqρ∇qc) ,Φk〉 = 〈ρ(C −A1 −A2),Φk〉 , (6.7)

〈(ρqr)t +∇ · (ρqr(−vqe3 + u)− µqρ∇qr) ,Φk〉 = 〈ρ(A1 +A2 − E),Φk〉 ,

for k = 0, . . . ,M , where 〈·, ·〉 is the scalar product in our probability space which is given through

〈u, v〉 =

1∫
−1

u(ω)v(ω)µ(ω) dω.

We now substitute (6.1), (6.4)–(6.6) into (6.7) and use the orthogonality property (6.2) to obtain the following
3(M + 1)× 3(M + 1) deterministic system for the gPC coefficients:

∂

∂t
(ρ̂qv)k +

d∑
s=1

∂

∂xs
((ρ̂qv)kus)− µq

d∑
s=1

(
∂ρ

∂xs

∂

∂xs
(q̂v)k + ρ

∂2

∂x2
s

(q̂v)k

)
= (r̂1)k,

∂

∂t
(ρ̂qc)k +

d∑
s=1

∂

∂xs
((ρ̂qc)kus)− µq

d∑
s=1

(
∂ρ

∂xs

∂

∂xs
(q̂c)k + ρ

∂2

∂x2
s

(q̂c)k

)
= (r̂2)k, (6.8)

∂

∂t
(ρ̂qr)k −

∂

∂xd
α̂k +

d∑
s=1

∂

∂xs
((ρ̂qr)kus)− µq

d∑
s=1

(
∂ρ

∂xs

∂

∂xs
(q̂r)k + ρ

∂2

∂x2
s

(q̂r)k

)
= (r̂3)k,

for k = 0, . . . ,M . Here, the coefficients {α̂k}Mk=0 are obtained using the following expansion:

vq(x, t, ω)(ρqr)(x, t, ω) =

M∑
j=0

(v̂q)j(x, t)Φj(ω)

M∑
m=0

(ρ̂qr)m(x, t)Φm(ω) =:

M∑
k=0

α̂k(x, t)Φk(ω).

The coefficients {(r̂1)k, (r̂2)k, (r̂3)k}Mk=0, as well as {α̂k}Mk=0 are calculated via discrete Legendre transform
(DLT) and inverse discrete Legendre transform (IDLT), which can be briefly described as follows.
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• DLT: First, the Galerkin projection applied to the expansion f(x, t, ω) =
∑M
k=0 f̂k(x, t)Φk(ω) yields

f̂k(x, t) =
2k + 1

2

1∫
−1

f(x, t, ω)Φk(ω) dω for 0 ≤ k ≤M. (6.9)

Then, approximating the integral in (6.9) using the Gauss-Legendre quadrature leads to

DLT
[
{f(x, t, ω`)}M`=0

]
=
{
f̂k(x, t)

}M
k=0

=

{
2k + 1

2

M∑
l=0

β`f(x, t, ω`)Φk(ω`)

}M
k=0

,

where β` are the Gauss-Legendre quadrature weights and ω` is the `-th root of ΦM+1.

• IDLT: Given the coefficients {f̂k}Mk=0, we compute the function f through the gPC expansion

IDLT

[{
f̂k(x, t)

}M
k=0

]
= {f(x, t, ω`)}Ml=0 =

{
M∑
k=0

f̂k(x, t)Φk(ω`)

}M
`=0

.

Consequently, we obtain

{(r̂1)k}Mk=0 = DLT
[
R1

(
IDLT

[
{(ρ̂qv)k}Mk=0

]
, IDLT

[
{(ρ̂qc)k}Mk=0

]
, IDLT

[
{(ρ̂qr)k}Mk=0

])]
,

and analogously for {(r̂2)k}Mk=0, {(r̂3)k}Mk=0 and {α̂k}Mk=0.

Remark 6.1. We stress that since the values Φk(ω`), 0 ≤ k, ` ≤ M , are needed every time either DLT or
IDLT is applied, one can pre-compute them for the code efficiency.

For the spatial and temporal discretizations of the system (6.8), we apply the same finite volume method as
described in Section 3.2 and the same large stability domain explicit time integration method mentioned in
Section 3.3. As in the deterministic case, we implement the ODE solver DUMKA3, which we provide with
the following time step stability restriction for the forward Euler method:

max
s=1,2

max
i=1,...,N

(|(us)i|, |(u3)i + vq(ωl)|)
∆tncloud

h
< 0.5,

which should be satisfied for all of the Legendre roots ω`, ` = 0, . . . ,M .

7. Stochastic numerical experiments

In this section, we conduct numerical experiments with the stochastic Galerkin method described in Section
6 for the free convection of a moist warm air bubble and the Rayleigh-Bénard convection. We demonstrate
the influence of uncertainty in initial data as well as in cloud parameters on the solution of the coupled
Navier-Stokes-cloud model (2.8), (5.1). In all of our numerical examples below, we take M = 3. Our
extensive tests, from which we present here only a selected part, showed that this was sufficient. Indeed, as
documented in Example 6, high-order stochastic coefficients typically have very small influence on a solution
(see Figure 15), and thus can be neglected. Similar behavior was observed in other experiments.

7.1. Free convection of a smooth warm air bubble. In this test, we modify Example 1 by randomly
perturbing either the initial data or selected model parameters.

Example 4: 2-D case with stochastic initial data. We begin by considering the following experiment with a
10% perturbation of the initial water vapor concentration:

(q̂v)0(x, 0) = 0.02θ′(x, 0), (q̂v)1(x, 0) = 0.1(q̂v)0(x, 0), (q̂v)k(x, 0) = 0 for 2 ≤ k ≤M,

(q̂c)k(x, 0) = (q̂r)k(x, 0) = 0 for 0 ≤ k ≤M.

We compute the solution using different meshes until the final time t = 10s.

The experimental convergence study for the cloud and flow variables is presented in Figure 12. Similarly
to the deterministic case, one can observe second-order convergence in space and time. In order to test
the convergence in the stochastic space, we obtain a reference solution computed by the stochastic Galerkin
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method with 20 stochastic modes. The convergence study is presented in Figure 13, where we plot the
difference between the approximate and reference solutions, both computed using a mesh with 160 × 160
cells and ∆t = 0.01 at time t = 10s. One can clearly see a spectral convergence with the rate e−0.3M .

Figure 12. Example 4: Convergence study for the flow variables (left) and the expected values of (ρq`)k, ` ∈
{v, c, r} (right) in space and time.

Figure 13. Example 4: Convergence study for the cloud variables (ρq`), ` ∈ {v, c, r} in the stochastic space.

Example 5: 2-D case with stochastic parameters. In this experiment, we perturb the three selected model
parameters (k1, k2 and α) by 50% each:

(k̂1)0 = 0.0041, (k̂1)1 = 0.5(k̂1)0, (k̂1)k = 0 for 2 ≤ k ≤M,

(k̂2)0 = 0.8, (k̂2)1 = 0.5(k̂2)0, (k̂2)k = 0 for 2 ≤ k ≤M,

α̂0 = 190.3, α̂1 = 0.5α̂0, α̂k = 0 for 2 ≤ k ≤M.

These parameters were proposed in [35] as the most sensitive model parameters. We study the convergence
in the stochastic space. To this end, we plot in Figure 14 the difference between the approximate and
reference (obtained with 20 stochastic modes) solutions, both computed using a mesh with 160 × 160 cells
and ∆t = 0.01 at time t = 10s. As in Example 4, one can observe a spectral convergence with the rate
e−0.3M .

Example 6: Comparison of the stochastic Galerkin and stochastic collocation methods in the 3-D case. In
this comparison test, we consider free convection of a moist smooth warm air bubble with perturbed initial
data as in Example 4. Numerical solutions are computed on 50× 50× 50 mesh at time t = 1s. We compare
the performance of the stochastic Galerkin and stochastic collocation methods. The collocation method (see,
e.g., [9]) is an interpolation method in the stochastic space, which uses a deterministic model with the values
of the stochastic variable taken at collocation points suitably chosen on the interval (−1, 1); here, we use the
Gauss-Legendre points.
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Figure 14. Example 5: Convergence study for the cloud variables (ρq`), ` ∈ {v, c, r} in the stochastic space.

In Figure 15, the L2-norms of the stochastic coefficients of the stochastic Galerkin (‖(ρ̂q`)m‖L2(Ω)) and
stochastic collocation (‖(ρ̃q`)m‖L2(Ω)) methods for ` ∈ {v, c, r} andm = 0, . . . , 19 are shown. One can observe
an exponential decay with respect to m and good agreement between both methods that demonstrates the
reliability of the stochastic Galerkin method. We note, however, that the norms of the solutions computed
by these two different methods are not equal since the stochastic Galerkin method uses the expected values
of the cloud variables in the Navier-Stokes equations.

Figure 15. Example 6: L2(Ω)-norms of the stochastic coefficients computed by the stochastic Galerkin ((ρ̂q`)m)
and stochastic collocation ((ρ̃q`)m) methods, ` ∈ {v, c, r}.

In Figure 16, we compare the CPU times consumed by the stochastic Galerkin and stochastic collocation
methods with the same number M of stochastic modes/collocation points. Since the stochastic Galerkin
method solves the Navier-Stokes equations just once instead of M times, as needed by the stochastic colloca-
tion method does, it is expected to outperform the stochastic collocation method. This has been confirmed
by our simulations.

7.2. Rayleigh-Bénard convection. In this section, we present results of uncertainty study for the Rayleigh-
Bénard convection in both 2-D and 3-D. We investigate uncertainty propagation, which is triggered either
by the initial data or cloud parameters.

Example 7: 2-D case with stochastic initial data. In this experiment, we choose the same initial data for the
flow variables as in Section 4.2 and perturb the initial data in qv by 5%, 10%, 20% and 50%:

(q̂v)0(x, 0) = 2 · 10−5θ̄, (q̂v)1(x, 0) = ν(q̂v)0(x, 0), (q̂v)k = 0 for 2 ≤ k ≤M,

(q̂c)k(x, 0) = (q̂r)k(x, 0) = 0 for 0 ≤ k ≤M,
(7.1)

where ν = 0.05, 0.1, 0.2 and 0.5, respectively. It should be observed that uniform perturbations in the
initial conditions for qv may lead to either reduced or enhanced water vapor concentrations as compared to
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Figure 16. Example 6: Relative CPU times consumed by the stochastic Galerkin and stochastic collocation
methods.

the deterministic simulations. Since the temperature gradient is quite small, a change in qv translates to
an (almost) linear change in saturation ratio, which directly controls cloud formation. Thus, in the case of
positive perturbations, a higher water vapor concentration leads to earlier cloud formation and, in addition,
a higher potential temperature change since more water is available in the system. On the other hand, lower
values of qv lead to a time delay in the formation of clouds, even if small convective cells are driven by the
dry unstable situation. In a feedback cycle, a reduced or even delayed formation of cloud water propagates
further to a weaker rain formation. Finally, the evaporation of rain water leads to a strong cooling effect
of the lower layers of the domain, which also crucially depends on the amount of sedimenting rain water.
These effects have to be taken into account for the evaluation of the different perturbation scenarios.

Numerical solutions for both the potential temperature θ (Figure 17) and the expected value of the cloud
drops concentration qc (Figure 18) are computed at time t = 1400s using 320×320 mesh cells and presented
for ν = 0, 0.05, 0.1, 0.2 and 0.5. For a better comparison, we have used the same range of values for different
perturbations in all of the plots.

From the results shown in Figure 17 for the potential temperature θ, one can observe two major features
that increase in strength with increasing strength of perturbations. First, larger perturbations lead to more
concise fine structures, that is, for the deterministic simulation (ν = 0), the variable is quite smooth, whereas
for large perturbations, large gradients on a very small scale appear. This feature can also be recognized for
the cloud water, that is, for the expected values E[qc] of cloud water concentrations in Figure 18. This is
probably due to the fact that even small variations in water vapor have a strong impact on cloud formation,
since the activation of cloud droplet is basically a threshold process. For values closer to saturation, even
small variations in vertical upward motions can trigger cloud formation. Thus, the small scale variations are
more prominent in the massively perturbed scenarios. The second feature is even more striking. Increasing
the perturbation in the initial water vapor distribution leads to a stronger vertical gradient in potential
temperature, that is, at low levels the temperature is much smaller than in the deterministic case. This
feature is due to cooling of sedimenting rain water. For simulations with a high water vapor loading, more
cloud and thus more rain is formed, which is subsequently falling down into lower levels and cools the
environment by evaporation. Since this process is very effective, the temperature can be reduced drastically.
Note that this feature is well-known for the real atmosphere: Falling rain can cool lower levels efficiently,
so that a transition from melting rain droplets to snow can be possible for winter seasons. The efficient
formation of rain also leads to a strong reduction in cloud water, since accretion can eat up cloud droplets in
the lower level; see Figure 18. For reduced values of initial water vapor, processes of cloud and precipitation
formation is strongly reduced. However, on average the positive perturbations dominate the statistical
picture.
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In Figure 19, we plot the standard deviation of the cloud drops concentration. Here, we compute the standard

deviation for a function f(x, t, ω) =
∑M
k=0 f̂k(x, t)Φk(ω) as

σ(f(x, t, ω)) =

√√√√ M∑
k=1

1

2k + 1
f̂k(x, t)2, (7.2)

which follows from the orthogonal property (6.2).

In order to investigate the influence of perturbations, the time evolution of the mean expected value per m2

as well as the mean standard deviation per m2 for the cloud variables are presented in Figure 20. In d-space
dimensions these quantities can be computed in the following way:

E

[
hd

|Ω|

N∑
i=1

(q`)i

]
=
hd

|Ω|

N∑
i=1

E [(q`)i] =
hd

|Ω|

N∑
i=1

̂((q`)i)0,

σ

(
hd

|Ω|

N∑
i=1

(q`)i

)
=
hd

|Ω|

√√√√ M∑
k=1

(
N∑
i=1

̂((q`)i)k

)2

1

2k + 1
,

where N is the number of mesh cells and ` ∈ {v, c, r}.

These averaged quantities show the qualitative difference in the different perturbation scenarios, as already
described above. For low perturbations, the difference of the expectation value is quite small and also the
standard deviation remains small. For increasing perturbations, the spread is increased. As noted before,
the averaged quantities are dominated by the positive perturbations, leading to (i) earlier cloud formation,
(ii) thicker clouds due to more available water vapor, and (iii) to enhanced rain formation. These three
features can be seen very nicely in the strongest perturbations (ν = 0.5), with a large drop in water vapor
concentration accompanied by a strong increase in cloud water and earlier onset of precipitation. We would
also like to note that the spread is only given by the standard deviation, whereas the actual minima (for
instance, almost no cloud formation) cannot be seen directly, although these scenarios are possible.

Example 8: 2-D case with stochastic parameters. In the following experiment we study uncertainty propa-
gation due to incomplete information about the model parameters which is a very typical problem arising in
atmospheric science. We chose the same initial data for the flow and cloud variables as in Section 4.2. More
precisely, we take the following initial cloud variables:

(q̂v)0(x, 0) = 0.02θ′(x, 0), (q̂v)k(x, 0) = (q̂c)k(x, 0) = (q̂r)k(x, 0) = 0 for 1 ≤ k ≤M.

Consequently, in order to investigate uncertainty propagation in the numerical solution we choose 10%, 20%
and 50% perturbation of these coefficients, namely, we take

(k̂1)0 = 0.0041, (k̂1)1 = ν(k̂1)0, (k̂1)k = 0 for 2 ≤ k ≤M,

(k̂2)0 = 0.8, (k̂2)1 = ν(k̂2)0, (k̂2)k = 0 for 2 ≤ k ≤M,

α̂0 = 190.3, α̂1 = να̂0, α̂k = 0 for 2 ≤ k ≤M,

where ν = 0.1, 0.2 and 0.5, respectively. The numerical solution is computed at time t = 1400s on a 320×320
mesh. Figures 21 and 22 present the potential temperature θ and the expected values of the cloud drops
concentration qc, respectively, for ν = 0, 0.1, 0.2 and 0.5.

In these scenarios with perturbed cloud model parameters, the overall structures are more stable and changes
are less pronounced than in Example 7. Nevertheless, the main features of the variations are obviously driven
by precipitation processes since the only perturbed parameters are those determining rain processes. Again,
one key feature of the perturbed scenarios is the signature of evaporating rain in lower levels of the 2-D
domain. For positive perturbations, that is, larger parameters k1, k2 and α, rain formation is enhanced
(more rain is formed from cloud water, due to larger k1 and k2) and sedimentation is enhanced (more rain
is falling downwards due to larger α). Thus, more rain water is transported downwards into subsaturated
regions, which is then evaporated inducing cooling due to latent heat consumption. These positive variations
again dominate the potential temperature field; see Figure 21. For the cloud water field (Figure 22), one can
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observe higher expected values for stronger perturbations. This is probably due to the fact that more rain
is evaporated in lower levels, thus more water vapor is then available for cloud formation in upward motions
of the convective cells. This redistribution of water vapor as well as the reduction of rain for negative
perturbation lead to larger variations of cloud water in the 2-D domain, as can be seen in the standard
deviation for the cloud drops concentration qc, as depicted in Figure 23.

The expected values as well as the standard deviation for the cloud variables vary considerably with respect
to the perturbation of model parameters; see Figure 24. Our numerical experiments indicate that the
standard deviation increases in time and also depends on the size of the parameter perturbation. Indeed,
the larger the parameter perturbation, the higher is the standard deviation of the cloud variables. The
size of the corresponding standard deviations is depicted in the right column of Figure 24. As expected,
rain formation sets on earlier for large perturbations, leading also to a strong decrease in the overall water
vapor in comparison to less perturbed scenarios. However, the variations in all water variables increase a
lot from the onset of precipitation to later times, and even the spread in cloud water increases in contrast
to the time evolution in Example 7. Generally, the spread in the mean values is smaller than in Example 7;
changes in initial data produce a larger variation, that means the model physics is quite stable with respect
to perturbations in rain process formulations.

Example 9: 3-D case with stochastic initial data. Similarly to Example 7, we now investigate the uncertainty
quantification in the 3-D Rayleigh-Bénard convection for stochastically perturbed initial data of the cloud
variables given by (7.1). The numerical solution is computed in a domain Ω = [0, 5000] × [0, 5000] ×
[0, 1000] m3, which is discretized using 50 × 50 × 50 mesh cells. In Figure 25, we show the influence of
0%, 10%, 20% and 50% perturbation on the potential temperature θ as well as the expected value of the
cloud drop concentration qc. For the perturbation scenarios in the case of the 3-D moist Rayleigh-Bénard
convection, one can see overall a qualitatively similar picture as for the corresponding 2-D simulations.
However, due to an additional spatial direction, the 3-D structures can further change their patterns. For
positive perturbations, clouds can be formed even at low vertical upward motions. The latent heat release
increases the vertical motions in the convective cells, which leads to additional feedback, such as stronger
cloud formation, which in turn leads to formation of larger amount of rain water. As in the 2-D case, the
potential temperature distribution changes considerably at lower levels of the 3-D domain since evaporative
cooling of precipitation is a dominant process. Similarly, the mean cloud water distribution is crucially
changed. For positive perturbations, which are dominant on average in the beginning, more cloud water
is formed and is later removed. Thus, less cloud water is available in the domain at later times. This
can also be seen in the time evolution of spatially averaged variables, as shown in Figure 26, where the
time evolution of the mean expected value per m3 and the mean standard deviation per m3 of the cloud
variables are plotted. The time evolution of these variables is very similar to the 2-D case, but the 3-D
scenarios show a very interesting feature, which is not available in 2-D. For larger perturbations, the pattern
of the convective cells is changed. While convective cells have a quasi hexagonal shape for the deterministic
simulation, they are ordered in a different way for larger perturbations. At upper levels, a more roll-like
structure or even rectangular shape is formed. Thus, there is a transition of structures due to perturbations
in the initial conditions. This feature has not been documented until now. A more detailed analysis of these
structures is left for future studies. The change in structures in these experiments is very likely a result from
different initial conditions. Of course, our results are preliminary and the observed parameter dependences
and possible grid alignment effects of the solution structures deserve further attention in future work.
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Figure 17. Example 7: Potential temperature θ for ν = 0, 0.05, 0.1, 0.2 and 0.5 (from top to down).
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Figure 18. Example 7: Cloud drops concentration qc for ν = 0, 0.05, 0.1, 0.2 and 0.5 (from top to down).
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Figure 19. Example 7: Standard deviation of the cloud drops concentration qc for ν = 0.05, 0.1, 0.2 and 0.5
(from top to down).
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Figure 20. Example 7: Time evolution of the expected values with their standard deviations for the cloud variables
per m2 (shaded region, left column) and standard deviation (right column) for ν = 0.05, 0.1, 0.2 and 0.5 (from
top to down).
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Figure 21. Example 8: Potential temperature θ for ν = 0, 0.1, 0.2 and 0.5 (from top to down).
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Figure 22. Example 8: Cloud drops concentration qc for ν = 0, 0.1, 0.2 and 0.5 (from top to down).
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Figure 23. Example 8: Standard deviation of the cloud drops concentration qc for ν = 0.1, 0.2 and 0.5 (from top
to down).
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Figure 24. Example 8: Time evolution of the expected values with their standard deviations for the cloud variables
per m2 (shaded region, left column) and standard deviation (right column) for ν = 0.1, 0.2 and 0.5 (from top to
down).

34



Figure 25. Example 9: Potential temperature θ (left column) and cloud drops concentration qc (right column)
using 0%, 10%, 20% and 50% (from top to down) perturbation of the initial data in qv.
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Figure 26. Example 9: Time evolution of the expected values with their standard deviations for the cloud variables
per m3 (shaded region, left column) and standard deviation (right column) using 0%, 10%, 20% and 50% (from
top to down) perturbation of the initial data in qv.
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8. Conclusion

In the present paper, we have studied uncertainty propagation in an atmospheric model that combines the
Navier-Stokes equations for weakly compressible fluids (2.1) with the cloud equations (2.2). The latter has
been recently proposed in [35] and is based on the so-called single moment approach considering the evolution
equations for the mass concentrations of the water vapor, cloud drops and rain. Our numerical strategy is
based on the stochastic Galerkin method that combines a finite-volume method for space-time discretization
with a spectral approximation in the stochastic space. We point out that atmospheric flows are weakly
compressible which leads to the low Mach number problem. One therefore needs to use a finite-volume
method, which is accurate and efficient in the low Mach number regime; see [5, 6]. To this end, we have
chosen a suitable linear-nonlinear splitting between the fast and slow flow variables and the second-order
IMEX discretization in time (the ARS (2,2,2) scheme) as described in Section 3. Coupling between the cloud
model (2.2) and the Navier-Stokes system (2.8) is realized numerically by the second-order Strang splitting.
The cloud equations are approximated in space by the finite-volume method and in time using the explicit
third-order Runge-Kutta method with an enlarged stability region as explained in Section 3. Note that
microscopic cloud dynamics requires a smaller time step than the flow dynamics and thus several microscopic
cloud subiterations are realized within one macroscopic splitting time step, whose size is dictated by the flow
dynamics. To the best of our knowledge, this is the first contribution that combines an accurate and efficient
method for the weakly compressible Navier-Stokes equations with the stochastic Galerkin method for the
uncertainty quantification of time evolution of the mass densities of water vapor, cloud drops and rain.

We have conducted extensive numerical benchmarking for both the deterministic and stochastic models
and present the obtained numerical results in Sections 4 and 7. In the latter, we took into account the
uncertainties in both initial data and cloud model parameters. Our numerical study clearly demonstrates
applicability of the stochastic Galerkin method for the uncertainty quantification in complex atmospheric
models. We have obtained interesting results illustrating the behavior of clouds in different perturbed sce-
narios and demonstrated that perturbations in the initial conditions can crucially change the time evolution
of the moist Rayleigh-Bénard convection. In particular, it has been shown that for larger perturbation, on
average the positive perturbations dominate the expectation values, although the standard deviation can
be quite large. The main feature is a strong evaporative cooling in lower levels of the (2-D/3-D) domain
due to enhance rain formation and sedimentation into low humidity levels. In the 3-D case, a change in
the formed pattern can be seen, changing from hexagons to rolls/rectangles, which is quite surprising. For
perturbations in parameters for rain processes, the results are also dominated by the positive part of the
perturbations. Since rain processes are affected, the spread in the time evolution is increasing since the
changes depend crucially on the interaction of formed rain drops with other variables. Overall, it seems that
for cloud physics, the expectation values are dominated by the positive perturbations leading to a change in
the distributions. This is an interesting topic for detailed studies in future. Our further goal is to extend the
developed numerical method to the fully random Navier-Stokes-cloud system by considering random weakly
compressible Navier-Stokes equations. We are also interested in considering different random effects, such
as initial data, boundary data and model parameters simultaneously, which would require a multivariate
stochastic Galerkin method. This will allow one to quantify more precisely the propagation of small scale
stochastic errors initiated at cloud scales to macroscopic scales of flow dynamics.
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9. Appendix A: Closure for single moment schemes

The number concentration of rain drops can be approximated by a function of the respective mass con-
centration nr = f(qr, cr). Since we implicitly assume that rain drops are distributed according to a size
distribution, this approach should be used for mimicking the shape of the distribution in a proper way. If we
use a constant mean mass of rain drops, the function will be a simple linear relation nr = 1

mr
qr. We extend

this approach and propose the following nonlinear relation:

nr = cr · qγr , 0 < γ ≤ 1.

Using this approach, one can replace the quantity nr in the processes related to rain drop number concen-
tration. For the simple case of a constant mean mass mr, we can determine the constants as cr = m−1

r and
γ = 1. This approach would be meaningful for the case of a symmetric size distribution of rain droplets
centered around the mean mass. However, it is well-known that size distributions of rain are usually skew
to larger sizes and thus a linear relation is inappropriate. For sizes of rain drops, an exponential distribution
is often assumed (see [26]), namely:

f(r) = Bre
−λr

with a constant parameter Br = 2 · 107 m−4 and the drop radius r. Using the general moments of the
distribution,

µk[r] =
Γ(k + 1)

λk+1
Br

with the gamma function Γ(x) :=
∫∞

0
tx−1 exp(−t) dt, we obtain

ρnr = µ0[r] =
Br
λ

and ρqr =
4

3
πρ`

Γ(4)

λ4
Br.

Using these relations, one can derive the following function for the number concentration nr:

nr = B
3
4
r ρ
− 3

4 (8πρ`)
− 1

4︸ ︷︷ ︸
=cr

q
1
4
r = crq

γ
r , γ =

1

4
.

We stress that cr is, in fact, a function of the air density ρ, that is, cr = cr0 · ρ−
3
4 .

10. Appendix B: Explicit formulation of the cloud equations

We present the equations of microphysical processes in an explicit way as they are used in our numerical
experiments. In Tables 3 and 4, we present physical constants and model parameters with their values used
in our numerical simulations.

nc = qc
8 · 108

qc + 4.1888 · 10−7
coth

( qc
5.236 · 10−13

)
, Cact = 6.2832 · 10−3DvGρ (qv − q∗)+ ,

C1 = 0.7796DvG (qv − q∗)
(

8 · 108

qc + 4.1888 · 10−7
coth

( qc
5.236 · 10−13

)) 2
3

ρqc,

ps(T ) = exp
{

54.842763− 6763.22/T − 4.21 lnT + 0.000367T + tanh(0.0415(T − 218.8))

· (53.878− 1331.22/T − 9.44523 lnT + 0.014025T )
}
,

nr = 23752.6753ρ−
3
4 q

1
4
r , r =

(
1.21 · 10−5

qr + 0.2874ρ−
3
4 q

1
4
r

) 4
15

,

E = −0.7796DvG (q∗ − qv)+
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√
ρqr + 17.5904µ−

1
6D
− 1

3
v

√
αrρ
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r

)
,
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2
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Constant Description

p∗ = 101 325 Pa reference pressure

T∗ = 288 K reference temperature

T0 = 273.15 K melting temperature

ρ∗ = 1.225 kg m−3 reference air density

ρl = 1000 kg m−3 density of liquid water

Rv = 461.52 J kg−1 K−1 specific gas constant, water vapor

cp = 1005 J kg−1 K−1 specific heat capacity, dry air

g = 9.81 m s−2 acceleration due to gravity

L = 2.53× 106 J kg−1 latent heat of vaporization

ε =
Mmol,v

Mmol,a
= 0.622 ratio of molar masses of water and dry air

D0 = 2.11× 10−5 m2 s−1 diffusivity constant

Table 3. Physical constants and reference quantities, [35].

Parameter Description

α = 190.3± 0.5 · 190.3 m s−1 kg−β parameter for terminal velocity

k1 = 0.0041± 0.5 · 0.0041 kg s−1 parameter for autoconversion

k2 = 0.8± 0.5 · 0.8 kg parameter for accretion

β = 4
15 parameter for terminal velocity

mt = 1.21× 10−5 kg parameter for terminal velocity

N0 = 1000 m−3 parameter for activation

N∞ = 8× 108 kg−1 parameter for activation

m0 = 5.236× 10−16 kg parameter for activation

aE = 0.78 parameter for evaporation

av = 0.78 parameter for ventilation

bv = 0.308 parameter for ventilation

Table 4. Model parameters, [35].
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