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1 Introduction

A celebrated deep result of Komlós [21] asserts that any sequence {Fn}∞n=1 of uniformly L1−bounded
real valued functions on a set Q ⊂ RK admits a subsequence {Fnk}∞k=1 such that the arithmetic av-

erages 1
N

∑N
k=1 Fnk converge a.a. to a function F ∈ L1(Q). Moreover, any subsequence of {Fnk}∞k=1
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enjoys the same property. The result has been adapted by Balder [2] who introduced the concept of
K(Komlós)-convergence for sequences of Young measures. The use of Young measures in analysis
of nonlinear PDEs is not new, see, e.g., DiPerna [12, 13] or Tartar [27, 28]. More recently, the
Young measures have been used as an efficient tool in the analysis of certain numerical schemes,
see [15], [16], [17] or, from a rather different point of view, Fjordholm et al. [18], [19]. Our goal in
the present paper is to extend the notion of K−convergence to families of numerical solutions to
problems arising in continuum fluid dynamics. As an iconic example, we have chosen the isentropic
Euler system describing the time evolution of a compressible inviscid fluid.

1.1 Young measures and numerical analysis of essentially ill–posed
problems

The equations describing the motion of inviscid fluids in continuum mechanics give rise to math-
ematically ill–posed problems. There is a large number of convincing examples that the Euler
system admits infinitely many physically admissible (weak) solutions, in particular in the natural
multidimensional setting, for a generic class of initial data, see Chiodaroli et al. [7, 8, 9, 10], among
others. In the light of these results, the question of convergence of the approximate schemes used
in the numerical analysis of the Euler system becomes of fundamental importance. It is our goal
in the present paper to address these issues in a new framework based on the theory of measure–
valued solutions. In particular, we adapt the concept of K−convergence, developed in the context
of Young measures by Balder [2], to show:

• pointwise convergence of arithmetic averages (Cesaro means) of numerical solutions to a
generalized (dissipative) solution of the limit system, even if the latter may admit oscillatory
(wild) solutions;

• criteria for unconditional convergence in the case the limit system is not uniquely solvable.

We develop a general framework based on the theory of Young measures to study problems of
convergence of numerical methods. To illustrate the implications of abstract results, we apply the
theory to a finite volume method for the isentropic Euler system. In particular, we show that the
arithmetic averages of numerical solutions converge pointwise to a generalized dissipative solution
of the Euler system introduced in [6]. We also show how the presence of oscillations in families of
numerical solutions may provide an evidence that the limit problem exhibits singularities.

Our approach bears some similarities with the recent works of Fjordholm et al. [18, 19], who
studied the convergence of entropy stable finite volume schemes to a measure–valued solution of
the Euler equations. The main difference lies in the way of averaging procedure. While Fjordholm
et al. average over different solutions of the initially perturbed problems and investigate only
the convergence of statistical modes, we introduce a new concept of K−convergence yielding the
averaging over numerical solutions for different mesh steps without any perturbation of initial data.
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1.2 General strategy

We start by recalling the necessary preliminary material from the theory of Young measures in
Section 2. In particular, we introduce the concept of narrow and K−convergence for Young mea-
sures.

In Section 3, we set up a general framework for studying convergence of numerical schemes.
We extend the concept of K−convergence to sequences of numerical solutions by identifying them
with sequences of Young measures. We distinguish between weak−K or strong−K convergence
reflecting presence or absence of oscillations, respectively. In particular, we recover a variant of
Komlós’ result applied to sequences of numerical solutions.

In Section 4, we collect the necessary theoretical results concerning the isentropic Euler system.
Following [6] we introduce the concept of dissipative solution that can be seen as a barycenter of
the Young measure associated to a suitable measure–valued solution of the limit system. We also
state the relevant weak–strong uniqueness principle.

Finally, in Section 5, we apply the abstract theory to a finite volume scheme for the isentropic
Euler system. We show that (up to a subsequence) numerical solutions K−converge to a dissipative
solution in the asymptotic limit of vanishing discretization step, see Theorem 5.2. We also identify
a large class of weak solutions to the Euler system for which the scheme converges unconditionally
and pointwise, see Theorem 5.4. Finally, we clarify how the presence of oscillations in the sequence
of numerical solutions may indicate singularities for the limit system, see Theorem 5.6.

2 Preliminaries from the theory of Young measures

We recall some basic facts from the theory of Young measures, in particular the concept of narrow
and K−convergence. The reader may consult the monographs by Balder [2] or Pedregal [24] for
details.

2.1 Physical space, phase space

We consider problems defined on the physical space Q ⊂ RK . In the case of evolutionary differential
equations, the physical space coincides with the space–time cylinder,

Q =
{

(t, x)
∣∣∣ t ∈ (0, T ), x ∈ Ω ⊂ Rd

}
, d = 1, 2, 3, K = d+ 1

where (0, T ) is the relevant time interval and Ω the spatial domain.
The phase space S ⊂ RM characterizes the state of the modeled system at any given time and

spatial position. For instance the density % and the velocity u in the models of compressible fluids
range in the phase space

S =
{

[%,u]
∣∣∣ % ∈ [0,∞), u ∈ Rd

}
⊂ Rd+1, d = 1, 2, 3, M = d+ 1.
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If not stated otherwise, the physical space Q will be a bounded domain in RK and its elements
denoted by the symbol y ∈ Q; the phase space S will be a Borel subset of RM , with elements
U ∈ S. Most of the applications presented below can be extended to a general (unbounded) open
set in Q ∈ RK .

2.2 Probability measures

Let P(S) denote the space of all regular Borel probability measures V on RM such that

V(S) = 1.

In view of the Riesz representation theorem, any V can be identified with a non–negative linear
functional on the space Cc(R

M), we denote

〈V ; g〉 ≡
〈
V ; g(Ũ)

〉
=

∫
S

g(U) dV(U) for any g ∈ Cc(RM).

If V has finite first moment, we denote〈
V ; Ũ

〉
∈ S – the barycenter of V on S.

Definition 2.1 (Narrow convergence). Let {Vn}∞n=1 be a sequence of probability measures in P(S).
We say that {Vn}∞n=1 narrowly converges to a measure V ,

Vn
N−→ V ∈ P(S),

if
〈Vn; g〉 → 〈V ; g〉 for any g ∈ Cc(RM).

Remark 2.2. Narrow convergence is weak-(*) convergence if we identify P(S) with a bounded
subset of the space of (bounded) Radon measures Mb(R

M),

Mb(R
M) = [C0(RM)]∗.

A necessary and sufficient condition for the limit to be a probability measure is uniform tightness
of the sequence {Vn}∞n=1: For any ε > 0, there exists a compact set K ⊂ RM and m = m(ε,K)
such that

Vn(K) > 1− ε for all n ≥ m(ε,K).

2.3 Young measures

A Young measure VQ = {Vy}y∈Q is a family of probability measures Vy ∈ P(S) parametrized by
y ∈ Q. More specifically,
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Definition 2.3 (Young measure). A Young measure VQ on the set Q is a mapping

VQ = {Vy}y∈Q, Vy : y ∈ Q 7→ Vy ∈ P(S)

that is weakly-(*) measurable,

VQ ∈ L∞weak−(∗)(Q;Mb(R
M)),

meaning the function
y ∈ Q 7→ 〈Vy; g〉

is measurable for any g ∈ Cc(RM).

Definition 2.4 (Narrow convergence of Young measures). Let {VnQ}∞n=1 be a sequence of Young
measures on Q. We say that {VnQ}∞n=1 narrowly convergences to a Young measure VQ,

VnQ
N (Y )−−−→ VQ as n→∞,

if ∫
Q

〈
Vny , g(y, ·)

〉
dy →

∫
Q

〈Vy, g(y, ·)〉 dy for any g ∈ L1(Q;C0(RM)).

Remark 2.5. Narrow convergence is weak-(*) convergence if we identify the space L∞(Q;Mb(R
M))

with the dual to [L1(Q;C0(RM))]∗. The limit is again a Young measure if the averages

1

|Q|

∫
Q

Vny dy ∈ P(S)

are uniformly tight in P(S). If |Q| = ∞ we require the above relation to hold for any compact
Q̃ ⊂ Q, |Q̃| <∞.

2.3.1 K−convergence

Following Balder [2], we introduce the K−convergence of Young measures.

Definition 2.6 (K−convergence of Young measures). Let {VnQ}∞n=1 be a sequence of Young mea-
sures on Q. We say that {VnQ}∞n=1 K−convergences to a Young measure VQ,

VnQ
K(Y )−−−→ VQ as n→∞,

if for any subsequence
{
VnkQ
}∞
k=1

,

1

N

N∑
k=1

Vnky
N−→ Vy as N →∞ for a.a. y ∈ Q.
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We report the following result, see Balder [2].

Proposition 2.7. Let {VnQ}∞n=1 be a sequence of Young measures on Q such that

VnQ
K(Y )−−−→ VQ.

Then

VnQ
N (Y )−−−→ VQ.

A fundamental result is a version of Prokhorov compactness theorem for Young measures, see
Prokhorov [26] and Balder [3]:

Proposition 2.8. Let {VnQ}∞n=1 be a sequence of Young measures such that the family of probability
measures

1

|Q|

∫
Q

Vny dy ∈ P(S) (2.1)

is tight uniformly in n = 1, 2, . . . .
Then there is a subsequence nk →∞ and a Young measure VQ such that

VnkQ
K(Y )−−−→ VQ as k →∞.

Note that Proposition 2.8 is considerably stronger than the so–called Fundamental Theorem of
the theory of Young measures (see Ball [4] or Pedregal [24]) that asserts only N (Y ) convergence
under the same assumptions. The present result can be seen as a variant of the celebrated theorem
by Komlós [21] (K−convergence) on a sequence of uniformly bounded real functions.

Remark 2.9. The result can be extended on locally compact physical spaces Q = ∪∞k=1Qk, Qk

compact, by requiring (2.1) on any Qk.

3 K−convergence for sequences of functions

Our goal is to set up a general framework to extend the concept of K−convergence to sequences
of numerical solutions. To this end we will introduce the concept of K−convergence for sequences
of functions.

For U ∈ S we denote δU ∈ P(S) the Dirac mass supported by U. Similarly, we can associate
to any measurable function U : Q→ S a Young measure δU,

(δU)y = δU(y) for a.a. y ∈ Q.

Conversely, if a Young measure VQ has finite first moments a.a. in Q, we can associate to it a
measurable function U : Q→ S defined through barycenters (expectations),

U(y) =
〈
Vy; Ũ

〉
∈ S, for a.a. y ∈ Q. (3.1)
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3.1 Convergence in averages

Definition 3.1 (weak−K property). We say that a sequence of functions {Un}∞n=1, Un ∈ L1(Q;S),
has a weak−K property if there exists a subsequence nk → ∞ such that the associated Young
measures

δUnk

K(Y )−−−→ VQ (in the sense of Definition 2.6),

where VQ is a Young measure on Q.

As an immediate consequence of Proposition 2.8 we get:

Corollary 3.2. Any sequence {Un}∞n=1 satisfying

‖Un‖L1(Q;S) ≤ U uniformly for n = 1, . . .

has the weak−K property.

Here and hereafter U denotes a positive constant.

Definition 3.3 (weak−K convergence). We say that a sequence of functions {Un}∞n=1, Un ∈
L1(Q;S), weak−K converges to U ∈ L1(Q;S) if the following holds:

δUnk

K(Y )−−−→ VQ for a subsequence nk →∞ =⇒ U(y) = 〈Vy, Ũ〉 for a.a. y ∈ Q.

We can rephrase Proposition 2.8 as follows.

Proposition 3.4. Any sequence {Un}∞n=1 satisfying

‖Un‖L1(Q;S) ≤ U uniformly for n = 1, . . .

admits a subsequence for nk →∞ such that

Unk

weak−K−−−−−→ U, U ∈ L1(Q;S).

In addition,

1

N

N∑
k=1

Unk → U a.e. in Q.

Proposition 3.5. For any sequence {Un}∞n=1,

Un ⇀ U weakly in L1(Q;S) =⇒ Un
weak−K−−−−−→ U.
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Proof. Suppose that

Un ⇀ U weakly in L1(Q;S) (3.2)

and

δUnk

K(Y )−−−→ VQ for a subsequence nk →∞.

We have to show that 〈Vy, Ũ〉 = U(y) for a.a. y ∈ Q. By virtue of Proposition 2.7 we have

δUnk

N (Y )−−−→ VQ.

Specifically, ∫
Q

h(y)g(Unk(y)) dy −→
∫
Q

h(y)〈Vy, g(Ũ)〉 dy, (3.3)

for any h ∈ L∞(Q) and any g ∈ Cc(RM). Moreover, in accordance with the De la Vallé–Poussin
criterion, see Pedregal [25, Lemma 6.4], and (3.2) we have∫

Q

φ(|Un|) dy ≤ U

for a superlinear function φ. Consequently, we are allowed to take g(U) = U i, i = 1, 2, . . . ,M, in

(3.3) which yields 〈Vy, Ũ〉 = U(y) for a.a. y ∈ Q.

Definition 3.6 (strong−K convergence). We say that a sequence of functions {Un}∞n=1, Un ∈
L1(Q;S), strong−K converges to U ∈ L1(Q;S) if the following holds:

δUnk

K(Y )−−−→ VQ for a subsequence nk →∞ =⇒ Vy = δU(y) for a.a. y ∈ Q.

Proposition 3.7. For any sequence {Un}∞n=1,

Un → U strongly in L1(Q;S) =⇒ Un
strong−K−−−−−→ U.

Proof. Suppose that

Un → U strongly in L1(Q;S) (3.4)

and

δUnk

K(Y )−−−→ VQ for a subsequence nk →∞

which means that

1

N

N∑
k=1

g(Unk(y))→ 〈Vy, g〉 a.a. y ∈ Q.
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We have to show Vy = δU(y), meaning g(U(y)) = 〈Vy, g〉 for all g ∈ Cc(RM) and a.a. y ∈ Q. To
this end it is enough to observe that for any g ∈ Cc(RM) ∩ C1(RM),

1

N

N∑
k=1

g(Unk)→ g(U) in L1(Q).

Indeed, in accordance with (3.4),∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
k=1

g(Unk)− g(U)

∣∣∣∣∣
∣∣∣∣∣
L1(Q)

≤ 1

N

N∑
k=1

‖g(Unk)− g(U)‖L1(Q)

≤ cg
1

N

N∑
k=1

‖Unk −U‖L1(Q) → 0 as N →∞.

Lemma 3.8. Let {Un}∞n=1 be a sequence of functions in L1(Q;S) such that∫
Q

|Un| dy ≤ U for any n = 1, . . . . (3.5)

Then the following is equivalent:

1.
Un → U in measure in Q;

2.

δUn

N (Y )−−−→ δU.

In both cases, there is a subsequence nk →∞ such that

•
Unk(y)→ U(y) as k →∞

for a.a. y ∈ Q;

•
1

N

N∑
k=1

g(Unk(y))→ g(U(y)) as N →∞

for any g ∈ Cc(RM) and a.a. y ∈ Q.
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Proof. Step 1:
Suppose that Un → U in measure. To show

δUn

N (Y )−−−→ δU

it is enough to observe that∫
Q

h(y)g(Un(y)) dy →
∫
Q

h(y)g(U(y)) dy for any h ∈ L∞(Q) and any g ∈ Cc(RM) ∩ C1(RM).

To see this, for given ε > 0 and k > 0 we write the integral∫
Q

h(y) [g(Un(y))− g(U(y))] dy

=

∫
{|Un−U|≤k}

h(y) [g(Un(y))− g(U(y))] dy +

∫
{|Un−U|>k}

h(y) [g(Un(y))− g(U(y))] dy,

where ∣∣∣∣∫
{|Un−U|≤k}

h(y) [g(Un(y))− g(U(y))] dy

∣∣∣∣ ≤ kc1(h, g),

while ∣∣∣∣∫
{|Un−U|>k}

h(y) [g(Un(y))− g(U(y))] dy

∣∣∣∣ < εc2(h, g)

if n is large enough. Consequently, choosing ε, k small and n large we get the desired result.

Step 2: Assume now that∫
Q

h(y)g(Un(y)) dy →
∫
Q

h(y)g(U(y)) dy for any h ∈ L1(Q) and any g ∈ Cc(RM).

This implies, in particular∫
Q

h(y)|g(Un(y))|2dy →
∫
Q

h(y)|g(U(y))|2 dy for any h ∈ L1(Q) and any g ∈ Cc(RM).

This gives rise to
g(Un)→ g(U) in L2(Q) for any g ∈ Cc(RM),

yielding
g(Un)→ g(U) in measure in Q

for any g ∈ Cc(RM). This, together with hypothesis (3.5), implies

Un → U in measure in Q.

Step 3:
As the sequence converging in measure contains a subsequence converging pointwise, and ac-

cording to Proposition 2.8, the associated sequence of Young measures contains a K−converging
subsequence, the remaining part of the conclusion of Lemma 3.8 follows.
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4 Isentropic Euler system

We consider the isentropic Euler system describing the time evolution of the density % = %(t, x)
and the momentum m = m(t, x) of a compressible inviscid fluid:

∂t%+ divxm = 0

∂tm + divx

(
m⊗m

%

)
+∇xp(%) = 0, p(%) = a%γ, a > 0, γ > 1.

(4.1)

For the sake of simplicity, we consider the space periodic boundary conditions, meaning the spatial
domain can be identified with the flat torus

Td =
(
[−1, 1]|{−1,1}

)d
, d = 1, 2, 3. (4.2)

The problem is supplemented by the initial conditions

%(0, ·) = %0, m(0, ·) = m0. (4.3)

We consider solutions defined on the time interval (0, T ). Accordingly, the relevant physical
space is

Q = (0, T )× Td ⊂ Rd+1.

As the mass density is a priori a non–negative quantity, we set the phase space S to be

S =
{

[%,m]
∣∣∣ % ∈ [0,∞), m ∈ Rd

}
.

Thus K = M = d+ 1, d = 1, 2, 3.
We also introduce the energy inequality in the form

d

dt

∫
Td

[
1

2

|m|2

%
+ P (%)

]
dx ≤ 0,

∫
Td

[
1

2

|m|2

%
+ P (%)

]
(0+, ·) dx ≤

∫
Td

[
1

2

|m0|2

%0

+ P (%0)

]
dx,

(4.4)
where

P (%) =
a

γ − 1
%γ

is the pressure potential.
As already mentioned in Section 1.1, the Euler system (4.1)–(4.3) is essentially ill–posed on

(0, T ). Specifically, the unique strong solutions exist only on a possible short time interval [0, Tmax),
while the problem admits infinitely many weak solutions for general initial data. In addition, there
are infinitely many weak solutions for certain initial data even if the energy inequality (4.4) is
imposed. On the other hand, the existence of global in time admissible weak solutions, meaning
weak solutions satisfying the energy inequality (4.4), for general initial data is an open problem. To
overcome this difficulty, we introduce a class of generalized dissipative solutions that exist globally
in time for all finite energy initial data.
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4.1 Weak solutions

We start with the weak formulation of (4.1)–(4.3) that reads:[∫
Td
%ϕ dx

]t=τ
t=0

=

∫ τ

0

∫
Td

[
%∂tϕ+ m · ∇xϕ

]
dx dt, %(0, ·) = %0, (4.5)

for any 0 < τ < T , ϕ ∈ C1([0, T ]× Td);[∫
Td

m ·ϕ dx

]t=τ
t=0

=

∫ τ

0

∫
Td

[
m · ∂tϕ +

m⊗m

%
: ∇xϕ + p(%)divxϕ

]
dx dt, m(0, ·) = m0, (4.6)

for any 0 < τ < T , ϕ ∈ C1([0, T ]× Td;Rd).
In addition, the total energy is a non–decreasing function of time,∫

Td

[
1

2

|m|2

%
+ P (%)

]
(τ+, ·) dx ≤

∫
Td

[
1

2

|m|2

%
+ P (%)

]
(s−, ·) dx for any τ ≥ s ≥ 0,

where we set

∫
Td

[
1

2

|m|2

%
+ P (%)

]
(0−, ·) dx ≡

∫
Td

[
1

2

|m0|2

%0

+ P (%0)

]
dx.

(4.7)

4.2 Dissipative measure–valued solutions

Following [6] we introduce a class of generalized solutions using the theory of Young measures. The
leading idea is to replace all nonlinear compositions in (4.5)–(4.7) by the action of a suitable Young
measure {Vy}y∈Q, Vy ∈ P(S). A weak solution would then correspond to V = δ[%,m]. Unfortunately,
the only a priori bounds available result from boundedness of the total energy uniformly in time.
In view of the specific form of the isentropic EOS, this yields

|m|2

%
∈ L∞(0, T ;L1(Td)), % ∈ L∞(0, T ;Lγ(Td)), m ∈ L∞(0, T ;L

2γ
γ+1 (Td;Rd)). (4.8)

Our goal is to generate the measure–valued solutions by means of an energy dissipative numerical
scheme. Given rather poor stability estimates that basically reflect (4.8), the energy, the pressure
as well as the convective term in the momentum equation (4.6) may develop concentrations that
give rise to the so–called concentration defect measures in the limit equations. We shall therefore
make an ansatz

%(t, x) ≈ 〈Vt,x; %̃〉 , m(t, x) ≈ 〈Vt,x; m̃〉 ,
P (%)(t, x) ≈ 〈Vt,x;P (%̃)〉+ Cint(t, x), p(%)(t, x) ≈ 〈Vt,x; p(%̃)〉+ (γ − 1)Cint(t, x),

1

2

|m|2

%
(t, x) ≈ 1

2

〈
Vt,x;

|m̃|2

%̃

〉
+ Ckin(t, x),

13



where the energy concentration defect measures belong to the class

Ckin, Cint ∈ L∞(0, T ;M+(Td)).

The convective term in the momentum equation is more delicate. We write

m⊗m

%
= 2

(
m

|m|
⊗ m

|m|

)
1

2

|m|2

%

seeing that the expression on the right–hand side is a rank-one symmetric matrix with the trace
|m|2
%

. This motivates the following ansatz for the convective term:

m⊗m

%
(t, x) =

〈
Vt,x;

m̃⊗ m̃

%̃

〉
+ Cconv(t, x),

where

Cconv ∈ L∞(0, T ;M(Td;Rd×d
sym)),∫

Td
M : dCconv(t) ≥ 0 for any M ∈ C(Td;Rd×d

sym), M ≥ 0, and a.a. t ∈ (0, T ),

1

2

∫
Td
hI : dCconv(t) =

∫
Td
h dCkin(t) for any h ∈ C(Td), and a.a. t ∈ (0, T ).

(4.9)

Remark 4.1. The second condition in (4.9) indicates that C(t, ·) is positively define, while the
third one can be interpreted as

1

2
trace[Cconv] = Cint.

Definition 4.2 (Dissipative measure–valued solution). We say that a Young measure
V ∈ L∞weak−(∗)((0, T )×Td;P(S)), and the concentration defect measures Ckin ∈ L∞(0, T ;M+(Td)),
Cint ∈ L∞(0, T ;M+(Td)), Cconv ∈ L∞(0, T ;M(Td;Rd×d

sym)), satisfying the compatibility condition
(4.9), are dissipative measure valued solution of the Euler system (4.1), (4.2) with the initial data

[%0, m0, E0], %0 ≥ 0,

∫
Td

1

2

|m0|2

%0

+ P (%0) dx ≤ E0

if:
• ∫

Td
〈Vt,x; %̃〉 dx−

∫
Td
%0ϕ dx =

∫ τ

0

∫
Td

[
〈Vt,x; %̃〉 ∂tϕ+ 〈Vt,x; m̃〉 · ∇xϕ

]
dx dt (4.10)

for any 0 < τ < T , ϕ ∈ C1([0, T ]× Td);
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•∫
Td
〈Vt,x; m̃〉 ·ϕ dx−

∫
Td

m0 ·ϕ dx

=

∫ τ

0

∫
Td

[
〈Vt,x; m̃〉 · ∂tϕ +

〈
Vt,x;

m̃⊗ m̃

%̃

〉
: ∇xϕ + 〈Vt,x; p(%̃)〉 divxϕ

]
dx dt

+

∫ τ

0

∫
Td
∇xϕ : dCconv(t, ·) dt+ (γ − 1)

∫ τ

0

∫
Td

divxϕ dCint(t, ·) dt

(4.11)

for any 0 < τ < T , ϕ ∈ C1([0, T ]× Td;Rd);
• the total energy E is a non–increasing function on [0, T ],

E(τ) =

∫
Td

〈
Vτ,x;

1

2

|m̃|2

%̃
+ P (%̃)

〉
dx+

∫
Td

[
dCkin(τ, ·) + dCint(τ, ·)

]
, E(0−) = E0, (4.12)

for a.a. τ ∈ (0, T ).

Remark 4.3. Definition 4.2 may seem rather awkward containing both the Young measure and the
concentration defect measures. We show in Section 6, that the deviations of the Young measure
from its barycenter can be included in the concentration defect. In particular, we may always
assume that V can be replaced by δ[%,m] in (4.10)–(4.12).

Dissipative measure–valued solutions enjoy an important property of weak–strong uniqueness.
Here “strong” is meant in a generalized sense. To state the relevant result, we introduce a class of
functions r and u:

r ∈ C([0, T ];L1(Td)), u ∈ C([0, T ];L1(Td;Rd));

0 < r ≤ r ≤ r, |u| ≤ u a.a. in (0, T )× Ω;

r ∈ Bα,∞
p ([δ, T ]× Td), u ∈ Bα,∞

p ([δ, T ]× Td;Rq) for any 0 < δ < T, α >
1

2
, p ≥ 4γ

γ − 1
;∫

Td

[
−ξ · u(τ, ·)(ξ · ∇x)ϕ+D(τ)|ξ|2ϕ

]
dx ≥ 0 for a.a. τ ∈ (0, T ),

for any ξ ∈ Rd and any ϕ ∈ C1(Td), ϕ ≥ 0, where D ∈ L1(0, T ).

(4.13)

The relevant weak–strong uniqueness principle reads, see [14, Theorem 2.1]:

Proposition 4.4 (Weak–strong uniqueness). Let %̂ = r, m̂ = ru be a weak solution to the Euler
system (4.1), (4.2) (specifically the integral identities (4.5), (4.6) are satisfied), where r, u belong
to the class (4.13). Let V, Ckin, Cint, Cconv be a dissipative measure–valued solution of the same
problem with the initial data [%0,m0, E0] such that

%0 = r(0, ·), m0 = ru(0, ·), E0 =

∫
Td

[
1

2
r|u|2 + P (r)

]
(0, ·) dx.
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Then
Ckin = Cint = Cconv = 0 in (0, T )× Td

and
V = δ[%̂,m̂] a.a. in (0, T )× Td.

As shown in [14], there are “genuine” weak solutions satisfying (4.13), in particular the 1D
rarefaction waves emanating from (discontinuous) Riemann data.

4.3 Dissipative solutions

Following [6] we finally introduce the concept of dissipative solution of the Euler system:

Definition 4.5 (Dissipative solution). We say that

% ∈ Cweak([0, T ];Lγ(Td)), m ∈ Cweak([0, T ];L
2γ
γ+1 (Td;RD)), E ∈ BV [0, T ]

is a dissipative solution of the Euler system (4.1), (4.2), with the initial data (4.3) and the initial
energy E0, if there exists a dissipative measure–valued solution in the sense of Definition 4.2, with
the total energy E, such that

%(t, x) = 〈Vt,x; %̃〉 , m(t, x) = 〈Vt,x; m̃〉 for a.a. (t, x) ∈ (0, T )× Td.

Finally, we reformulate the weak–strong uniqueness principle in terms of dissipative solutions.

Proposition 4.6 (Weak–strong uniqueness). Let %̂ = r, m̂ = ru be a weak solution to the Euler
system (4.1), (4.2) (specifically the integral identities (4.5), (4.6) are satisfied), where r, u belong
to the class (4.13). Let [%,m, E] be a dissipative solution of the same problem with the initial data
[%0,m0, E0] such that

%0 = r(0, ·), m0 = ru(0, ·), E0 =

∫
Td

[
1

2
r|u|2 + P (r)

]
(0, ·) dx.

Then
% = %̂, m = m̂ a.a. in (0, T )× Td,

and

E(τ) =

∫
Td

[
1

2

|m̂|2

%̂
+ P (%̂)

]
(τ, ·) dx for a.a. τ ∈ (0, T ).
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5 Finite volume scheme for the isentropic Euler system

We illustrate the abstract theory applying the results to the numerical solutions resulting from
a finite volume approximation of the isentropic Euler system. Our strategy is inspired by the
fundamental Lax equivalence theorem [22] on the convergence of consistent and stable numerical
schemes:

1. Existence. We first recall existence of the approximate numerical solutions %h, mh, with
the associated energy Eh for any discretization parameter h > 0.

2. Stability. We make sure that the scheme is energy dissipative. In particular, we recover the
same energy bounds as for the continuous problem, including a discrete form of the energy
inequality.

3. Consistency. We establish a consistency formulation and find suitable bounds on the error
terms.

4. Convergence. Using the technique developed in Section 3, we associate to each sequence
of numerical approximations {%hn ,mhn}∞n=1 its Young measure representation δ[%hn ,mhn ]. We
perform the limit hn ↘ 0 and show that, up to a subsequence, the K−limit of {δ[%hn ,mhn ]}∞n=1

is a Young measure V associated to a dissipative measure–valued solution. In particular, we
recover the strong convergence of the arithmetic means

1

N

N∑
n=1

%hn(t, x)→ %(t, x),
1

N

N∑
n=1

mhn(t, x)→m(t, x) as N →∞ for a.a. (t, x) ∈ (0, T )×Td,

where %, m is a dissipative solution of the Euler system in the sense of Definition 4.5.

5. Unconditional convergence. Applying the weak–strong uniqueness principle we show
unconditional strong L1−convergence of the numerical solutions provided that the Euler
system admits a weak solution belonging to the regularity class (4.13).

We infer that the Young measure framework can substitute the linearity property. Accordingly,
our result can be seen as a nonlinear version of the Lax equivalence theorem.

5.1 Preliminaries of finite volume methods

We start by introducing the basic notation concerning the mesh, temporal and spatial discretiza-
tion, and discrete differential operators. We recall that the spatial domain coincides with the flat

torus Td. We shall write A
<∼ B if A ≤ cB for a generic positive constant c independent of h.
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5.1.1 Mesh

The grid T is a family of compact parallelepiped elements,

Td =
⋃
K∈T

K, K =
d∏
i=1

[0, hi] + xK , 0 < λh ≤ hi ≤ h, i = 1, . . . , d, 0 < λ < 1,

where h denotes the mesh size and xK the position of the center of mass of an element K. The
intersection K ∩ L of two elements K,L ∈ T , K 6= L, is either empty, or a common vertex, a
common edge, or a common face.

The symbol E denotes the set of all faces σ. To each face we associate a normal vector n. We
write E(K) for the family of all boundary faces of an element K, K|L = E(K) ∩ E(L).

5.1.2 Discrete function spaces

We denote Qh the space of L∞ functions constant on each element K ∈ T , with the associated
projection:

ΠT : L1(Td)→ Qh, ΠT v =
∑
K∈T

1K
1

|K|

∫
K

v dx.

5.1.3 Numerical flux

For a piecewise continuous function v we define

vout(x) = lim
δ→0+

v(x+δn), vin(x) = lim
δ→0+

v(x−δn), v(x) =
vin(x) + vout(x)

2
, [[v(x)]] = vout(x)−vin(x)

whenever x ∈ σ ∈ E .
Given a velocity field v ∈ Qh(Td;Rd) and a transported scalar function r ∈ Qh, the upwind

flux is defined as

Up[r,v] = rupv · n = rin[v · n]+ + rout[v · n]− = r v · n− 1

2
|v · n| [[r]]

on any face σ, where

[f ]± =
f ± |f |

2
and rup =

{
rin if v · n ≥ 0,

rout if v · n < 0.

Finally, we define the numerical flux,

Fh(r,v) = Up[r,v]− hα [[r]] = r v · n− 1

2

(
hα + |v · n|

)
[[r]] , α > 0. (5.1)

If r is a vector the numerical flux is defined componentwise.
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5.1.4 Time discretization

For a given time step ∆t ≈ h > 0, we denote the approximation of a function v at time tk = k∆t by
vk for k = 1, . . . , NT (= T/∆t). The time derivative is discretized by the backward Euler method,

Dtv
k =

vk − vk−1

∆t
, for k = 1, 2, . . . , NT .

We introduce the piecewise constant functions on time interval,

v(t, ·) = v0 for t < ∆t, v(t, ·) = vk for t ∈ [k∆t, (k + 1)∆t), k = 1, 2, . . . , NT .

Finally, we set

Dtv =
v(t, ·)− v(t−∆t, ·)

∆t
for t ∈ [0, T ].

5.2 Numerical scheme

Using the above notation we are ready to introduce an implicit finite volume scheme to approximate
the Euler system (4.1).

Given the initial values (%0
h,u

0
h) = (ΠT %0,ΠT u0), find (%kh,u

k
h) ∈ Qh × Qh satisfying for k =

1, . . . , NT the following equations∫
Td
Dt%

k
hϕh dx−

∑
σ∈E

∫
σ

Fh(%
k
h,u

k
h) [[ϕh]] dS(x) = 0 for all ϕh ∈ Qh, (5.2a)∫

Td
Dt(%

k
hu

k
h) ·ϕh dx−

∑
σ∈E

∫
σ

Fh(%
k
hu

k
h,u

k
h) · [[ϕh]] dS(x)−

∑
σ∈E

∫
σ

p(%kh)n · [[ϕh]] dS(x)

= −hβ
∑
σ∈E

∫
σ

[[
ukh
]]
· [[ϕh]] dS(x), for all ϕh ∈ Qh(Td;Rd), β > −1. (5.2b)

The weak formulation (5.2) of the scheme can be rewritten in the standard per cell finite volume
formulation for all K ∈ T :

(%0
h,u

0
h) = (ΠT %0,ΠT u0),

Dt%
k
K +

∑
σ∈E(K)

|σ|
|K|

Fh(%
k
h,u

k
h) = 0,

Dt(%
k
hu

k
h)K +

∑
σ∈E(K)

|σ|
|K|

(
Fh(%

k
hu

k
h,u

k
h) + p(ρkh)n− h

β
[[

ukh
]])

= 0.

(5.3)

Similarly to [17], we prefer the formulation in primitive variables (%,u) instead of conservative
ones (%,m = %u). Indeed the scheme (5.3) mimics the physical process of vanishing viscosity limit
in the Navier–Stokes system. As a result we get uniform stability estimates on %h and uh without
any CFL condition.
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5.3 Solvability of the numerical scheme

Here and hereafter, we impose a technical but physically grounded hypothesis

1 < γ < 2,

noting the physical range of the adiabatic exponent for gases 1 < γ ≤ 5
3
.

At the discrete level, the scheme (5.3) coincides with that one used for discretization of the
Navier–Stokes system in [17], with the viscosity coefficients µ = −λ ≡ hβ+1. As shown by Hošek
and She [20], there exists a numerical solution [%kh,u

k
h], or extended in time as [%h,uh], for any

given initial data and any h > 0. Moreover, we have

%kh > 0 for any fixed h > 0, k = 1, . . . whenever %0
h > 0.

5.3.1 Discrete energy balance

The scheme (5.2) is energy dissipative. More specifically, as shown in [17, Theorem 3.3],

Dt

∫
Td

[
1

2
%kh|ukh|2 + P (%kh)

]
dx+

∑
σ∈E

∫
σ

(
hα%kh

[[
ukh
]]2

+ hβ
[[

ukh
]]2)

dS(x)

= −∆t

2

∫
Td
P ′′(ξ)|Dt%

k
h|2 dx− 1

2

∑
σ∈E

∫
σ

P ′′(η)
[[
%kh
]]2 (

hα + |ukh · n|
)

dS(x)

− ∆t

2

∫
Td
%k−1
h |Dtu

k
h|2 dx− 1

2

∑
σ∈E

∫
σ

(%kh)
up|ukh · n|

[[
ukh
]]2

dS(x),

(5.4)

where ξ ∈ co{%k−1
h , %kh}, η ∈ co{%kK , %kL} with the notation co{A,B} ≡ [min{A,B},max{A,B}].

5.3.2 Consistency formulation

In the consistency formulation, we rewrite the scheme in the form of the limit system perturbed
by consistency errors. Referring to [17, Theorem 4.1], we have:

−
∫
Td
%0
hϕ(0, ·) dx =

∫ T

0

∫
Td

[
%h∂tϕ+ %huh · ∇xϕ

]
dx dt+

∫ T

0

∫
Td
e1(t, h, ϕ) dx dt

for any ϕ ∈ C3
c ([0, T )× Td),

−
∫
Td
%0
hu

0
h ·ϕ(0, ·) dx =

∫ T

0

∫
Td

[
%huh · ∂tϕ + %huh ⊗ uh : ∇xϕ + p(%h)divxϕ

]
dx dt

− hβ
∫ T

0

∑
σ∈E

∫
σ

[[
ukh
]]
· [[ΠTϕ]] dS(x) dt+

∫ T

0

∫
Td
e2(t, h,ϕ) dx dt
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for any ϕ ∈ C3
c ([0, T ) × Td;Rd). The error terms e1(t, h, ϕ), e2(t, h,ϕ) were identified in [17,

Section 4]. Our goal is to show that these error terms vanish in the asymptotic limit h → 0.
Similarly to [17], the necessary bounds are deduced from the energy inequality (5.4). We focus
only on the integrals depending on the velocity that must be handled differently in the present
setting. These are:

E1(rh) =
1

2

∫ T

0

∑
σ∈E

∫
σ

|uh · n| [[rh]] [[ΠT ϕ]] dS(x) dt,

E2(rh) =
1

4

∫ T

0

∑
σ∈E

∫
σ

[[uh]] · n [[rh]] [[ΠT ϕ]] dS(x) dt

for rh being %h or %hui,h, i = 1, . . . , d.
Analogously to [17], we get

E1(rh)
<∼ h||ϕ||C3||rh||L2(0,T ;L2(Ω))

‖uh‖L2(0,T ;L2(Ω)) +

(∫ T

0

∑
σ∈E

∫
σ

[[uh]]
2

h
dS(x)

)1/2


<∼ h||ϕ||C3||rh||L2(0,T ;L2(Ω))

1 +

(∫ T

0

∑
σ∈E

∫
σ

[[uh]]
2

h
dS(x)

)1/2


<∼ h||ϕ||C3 h−
α+2
2γ

[
1 + h

−(β+1)
2

]
<∼ hδ1||ϕ||C3 for δ1 = 1−

(
α + 2

2γ
+
β + 1

2

)
,

where [17, Lemma 2.4] combined with (5.4) and the estimates from [17, Lemma 3.5] have been
used to control the norms ||uh||L2(0,T ;L2(Ω)) and ||rh||L2(0,T ;L2(Ω)), respectively.

Furthermore, we have

E2(%h)
<∼ h||ϕ||C3

(∫ T

0

∑
σ∈E

∫
σ

[[uh]]
2 dS(x) dt

)1/2(∫ T

0

∑
σ∈E

∫
σ

[[%h]]
2 dS(x) dt

)1/2

<∼ h||ϕ||C3

(∫ T

0

∑
σ∈E

∫
σ

[[uh]]
2 dS(x) dt

)1/2(∫ T

0

∑
σ∈E

∫
σ

%h
2 dS(x) dt

)1/2

<∼ h
1
2
−β

2 ||ϕ||C3||%h||L2L2
<∼ hδ1||ϕ||C3 , for δ1 = 1−

(
α + 2

2γ
+
β + 1

2

)
,

and exactly as in [17],

E2(%huh)
<∼ h

(∫ T

0

∑
σ∈E

∫
σ

%h [[uh]]
2 dS(x)

)1/2(∫ T

0

∑
σ∈E

∫
σ

%h|uh|2 dS(x)

)1/2
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+ h

∫ T

0

∑
σ∈E

∫
σ

%h [[uh]]
2 dS(x)

<∼ h(1−α)/2 + h1−α <∼ hδ2 for δ2 =
1− α

2
.

Clearly, δ1, δ2 > 0 whenever −1 < β < 1− α+2
γ

and α < 1.
Finally, diffusive correction in the momentum equation

d(h,ϕ) := −hβ
∫ T

0

∑
σ∈E

∫
σ

[[
ukh
]]
· [[ΠTϕ]] dS(x) dt

can be handled as follows∣∣∣∣∣hβ
∫ T

0

∑
σ∈E

∫
σ

[[
ukh
]]
· [[ΠTϕ]] dS(x) dt

∣∣∣∣∣ ≤ h
β+1
2

(
hβ
∫ T

0

∑
σ∈E

∫
σ

[[
ukh
]]2

dS(x) dt

)1/2

·

(∫ T

0

∑
σ∈E

∫
σ

[[ΠTϕ]]2

h
dS(x) dt

)1/2

<∼ h
β+1
2 ||ϕ||C3 → 0 as h→ 0 for β > −1.

Combining the above estimates with those obtained in [17, Section 4], we obtain:

Proposition 5.1. Let

0 < α < 1, −1 < β <

(
1− 2

γ

)
− α

γ
. (5.5)

Then the finite volume method (5.3) is consistent with the Euler equations (4.1), i.e.

−
∫
Td
%0
hϕ(0, ·) dx =

∫ T

0

∫
Td

[
%h∂tϕ+ %huh · ∇xϕ

]
dx dt+

∫ T

0

∫
Td
e1(t, h, ϕ) dx dt (5.6)

for any ϕ ∈ C3
c ([0, T )× Td),

−
∫
Td
%0
hu

0
h ·ϕ(0, ·) dx =

∫ T

0

∫
Td

[
%huh · ∂tϕ + %huh ⊗ uh : ∇xϕ + p(%h)divxϕ

]
dx dt

+ d(h,ϕ) +

∫ T

0

∫
Td
e2(t, h,ϕ) dx dt

(5.7)

for any ϕ ∈ C3
c ([0, T )× Td;Rd), with the consistency errors∣∣∣∣∫ T

0

∫
Td
e1(t, h, ϕ) dx dt

∣∣∣∣ <∼ hδ‖ϕ‖C3 ,∣∣∣∣∫ T

0

∫
Td
e2(t, h,ϕ) dx dt

∣∣∣∣ <∼ hδ‖ϕ‖C3 ,∣∣∣d(h,ϕ)
∣∣∣ <∼ h

β+1
2 ‖ϕ‖C3

for a certain δ > 0.
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5.4 Convergence

At this stage, we are ready to apply the machinery developed in Section 3. Recall that

Q = (0, T )× Td ⊂ Rd+1, S = [0,∞)×Rd ⊂ Rd+1.

For a sequence of discretization parameters hn ↘ 0, consider a sequence

Uhn = [%hn ,mhn ], mhn = %hnuhn

of numerical solutions resulting from (5.3). In view of the energy bounds (5.4), there exists a
subsequence nk →∞ such that for Uk ≡ [%k,mk] ≡ [%hnk ,mhnk

] we get:

1

2

|mk|2

%k
→Mkin weakly-(*) in L∞(0, T ;M+(Td)),

P (%k)→Mint weakly-(*) in L∞(0, T ;M+(Td)),
mk ⊗mk

%k
→Mconv weakly-(*) in L∞(0, T ;M(Td;Rd×d

sym)),

p(%k)→ (γ − 1)Mint weakly-(*) in L∞(0, T ;M+(Td))

(5.8)

as k →∞.
Next, by the same token, we observe that [%k,mk] possesses the weak−K property. In particular,

passing to another subsequence as the case may be, we may suppose that

δ[%k,mk]
K(Y )−−−→ V , (5.9)

where Vt,x ∈ P(S), (t, x) ∈ Q is a Young measure. Moreover, by virtue of Proposition 2.7,

δ[%k,mk]
N (Y )−−−→ V . (5.10)

We denote
%(t, x) = 〈Vt,x; %̃〉 , m(t, x) = 〈Vt,x; m̃〉 , (t, x) ∈ Q.

Evoking again the energy bound (5.4), we deduce that the convex functions

[%̃, m̃] 7→ |m̃|
2

%̃
, %̃ 7→ P (%̃)

are Vt,x integrable for a.a. (t, x) ∈ Q. We set

Ckin = Mkin −
〈
Vt,x;

1

2

|m̃|2

%̃

〉
( dx⊗ dt),

Cint = Mint − 〈Vt,x;P (%̃)〉 ( dx⊗ dt),

Cconv = Mconv −
〈
Vt,x;

m̃⊗ m̃

%̃

〉
( dx⊗ dt).

(5.11)
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We show that the concentration defect satisfies the compatibility condition (4.9). Let

χε(Y ) = Y for 0 ≤ Y ≤ 1

ε
, χε(Y ) =

1

ε
for Y ≥ 1

ε
.

For M ∈ C([0, T ]× Td;Rd×d
sym), we have∫ T

0

∫
Td

M : dMconv(t) dt = lim
k→∞

∫ T

0

∫
Td

M :
mk ⊗mk

%k
dx dt

= lim
k→∞

∫ T

0

∫
Td

[
M :

mk

|mk|
⊗ mk

|mk|
χε(|mk|2)

%k + ε
+ M :

mk

|mk|
⊗ mk

|mk|

(
|mk|2

%k
− χε(|mk|2)

%k + ε

)]
dx dt

=

∫ T

0

∫
Td

M :

〈
Vt,x;

m̃

|m̃|
⊗ m̃

|m̃|
χε(|m̃|2)

%̃k + ε

〉
dx dt

+ lim
k→∞

∫ T

0

∫
Td

M :
mk

|mk|
⊗ mk

|mk|

(
|mk|2

%k
− χε(|mk|2)

%k + ε

)
dx dt

Letting ε→ 0 we may use the Lebesgue convergence theorem to conclude that∫ T

0

∫
Td

M : dCconv(t) dt = lim
ε→0

[
lim
k→∞

∫ T

0

∫
Td

M :
mk

|mk|
⊗ mk

|mk|

(
|mk|2

%k
− χε(|mk|2)

%k + ε

)
dx dt

]
which implies (4.9).

Finally, as the discrete energy is non–increasing, we may apply Helly’s selection theorem ob-
taining

Ek ≡
∫
Td

[
1

2
%k|uk|2 + P (%k)

]
dx→ E pointwise in [0, T ],

where E is a non–decreasing function in [0, T ], with

E(0−) =

∫
Td

[
1

2

|m0|2

%0

+ P (%0)

]
dx.

Combining the previous observations with the estimates of the consistency errors established in
Proposition 5.1, we obtain the main result concerning convergence of the numerical scheme (5.3).

Theorem 5.2. Let the initial data %0, m0 belong to the class

%0 ∈ Lγ(Td), %0 > 0, E0 =

∫
Td

[
1

2

|m0|2

%0

+ P (%0)

]
dx <∞.

Let

0 < α < 1, −1 < β <

(
1− 2

γ

)
− α

γ
.

Finally, let [%hn ,mhn = %hnuhn ] be a sequence of numerical solutions resulting from the scheme
(5.3) with h = hn ↘ 0.

Then there is a subsequence nk →∞ such that:
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•
δ[%hnk

,mhnk
]
K(Y )−−−→ V as k →∞,

where V is a Young measure on (0, T )× Td;

• %k = %hnk , mk = mhnk
generate the measures Mkin, Mint, Mconv via the limits in (5.8);

• the Young measure V, together with the concentrations measures defined through (5.11),
represent a dissipative measure–valued solution of the Euler system, with the initial data %0,
m0, and the initial energy E(0−) = E0.

In particular,

%hnk → % weakly-(*) in L∞(0, T ;Lγ(Td)),

mhnk
→m weakly-(*) in L∞(0, T ;L

2γ
γ+1 (Td;Rd)),

and

Ehnk → E pointwise in [0, T ],

1

N

N∑
k=1

%hnk → % as N →∞ a.a. in (0, T )× Td,

1

N

N∑
k=1

mhnk
→m as N →∞ a.a. in (0, T )× Td,

(5.12)

where [%,m, E] is a dissipative solution of the Euler system with the initial data %0, m0, E0.

Remark 5.3. Theorem 5.2 holds even for % ≥ 0. In that case, the initial data for the approximate
density must be taken

%0
h = ΠT %0 + h.

The main novelty with respect to the existing results is the strong convergence of the arithmetic
averages of the numerical solutions established in (5.12). In view of the energy bounds, relation
(5.12) implies

1

N

N∑
k=1

%hnk → % as N →∞ in L1((0, T )× Td),

1

N

N∑
k=1

mhnk
→m as N →∞ in L1((0, T )× Td;Rd).
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5.4.1 Unconditional convergence

Theorem 5.2 asserts convergence of the numerical scheme up to a subsequence. Unconditional
convergence holds provided the continuous Euler system admits a unique (dissipative) solution.
According to the weak–strong uniqueness principle, this is the case provided % and u belong to
the regularity class (4.13). Combining Theorem 5.2, Proposition 4.4, and Lemma 3.8, we obtain
the following result.

Theorem 5.4. Let the initial data %0, m0 belong to the class

%0 ∈ Lγ(Td), %0 > 0, E0 =

∫
Td

[
1

2

|m0|2

%0

+ P (%0)

]
dx <∞.

Suppose that the Euler system (4.1), (4.2) admits a weak solution %, m = %u, where % and u belong
to the class (4.13). Let [%hn ,mhn = %hnuhn ] be a sequence of numerical solutions resulting from
the scheme (5.3) with h = hn ↘ 0, and

0 < α < 1, −1 < β <

(
1− 2

γ

)
− α

γ
.

Then

%hn → % in L1((0, T )× Td), mhn →m in L1((0, T )× Td;Rd) as n→∞.

Note that Lipschitz (strong) solutions of the Euler system with strictly positive density obvi-
ously belong to the class (4.13); whence Theorem 5.4 yields unconditional strong convergence to
the strong solution as long as the latter exists.

It is known, see e.g. Benzoni–Gavage and Serre [5], Majda [23], that the Euler system admits
local–in–time strong solutions for sufficiently regular initial data, specifically,

%0 > 0, %0 ∈ W k,2(Td), u0 ∈ W k,2(Td;Rd), k >

[
d

2

]
+ 1.

The strong solution exists on a maximal time interval [0, Tmax) and stay regular as long as its
derivatives remain uniformly bounded,

lim sup
t→Tmax−

‖∇x%‖L∞(Td;Rd) →∞ and/or lim sup
t→Tmax−

‖∇xu‖L∞(Td;Rd×d) →∞,

see, e.g., Alinhac [1]. Thus Theorem 5.4 yields the following result.

Theorem 5.5. Let the initial data %0, m0 belong to the class

%0 > 0, %0 ∈ W k,2(Td), u0 ∈ W k,2(Td;Rd), k >

[
d

2

]
+ 1.
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Let [%hn ,mhn = %hnuhn ] be a sequence of numerical solutions resulting from the scheme (5.3) with
h = hn ↘ 0, and

0 < α < 1, −1 < β <

(
1− 2

γ

)
− α

γ
.

In addition, suppose that

sup
σ∈E

| [[%nh ]] |
h

+ sup
σ∈E

| [[unh ]] |
h

≤ L (5.13)

uniformly for hn ↘ 0.
Then

%hn → % in L1((0, T )× Td), mhn →m in L1((0, T )× Td;Rd) as n→∞

where %, u is a classical solution of the Euler system (4.1), (4.2).

Indeed Theorem 5.4 guarantees the strong convergence to the unique classical solution in
(0, Tmax)× Td. In view of hypothesis (5.13), the limit is uniformly Lipschitz; whence Tmax = T .

5.4.2 Absence of smooth solution

We conclude the discussion by presenting a negative result concerning the absence of the strong
solution should the numerical solutions develop oscillations. In accordance with Proposition 3.7,
the strong convergence of numerical solutions [%hn ,mhn ] implies

[%hn ,mhn ]
strong−K−−−−−→ [%,m].

This observation yields the following result.

Theorem 5.6. Under the hypotheses of Theorem 5.4 suppose that there exists a function g ∈
BC(Rd+1) such that

1

N

N∑
k=1

g(%hnk ,mhnk
)→ G 6= g(%,m) on a set of positive measure in (0, T )× Td. (5.14)

Then the Euler system (4.1), (4.2) does not admit a classical solution in (0, T ) × Td for the
initial data %0, m0.

Note that the limit on the left–hand side of (5.14) always exists as the numerical solutions
K−converge. However, the limit must be a Dirac mass δ[%,m] applied to g should the continuous
solution exist, in contrast with (5.14).
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6 Concluding remarks

We have extended the concept of K−convergences to sequences of numerical solutions approximat-
ing the models of inviscid fluids in continuum fluid mechanics. We have also introduced a class of
generalized solutions – the dissipative solutions to the isentropic Euler system.

To illustrate the theoretical results, we have studied a finite volume method as an numerical
approximation of the isentropic Euler system on a periodic spatial domain. Note that a particular
vanishing viscosity term

d(h,ϕ) := −hβ
∫ T

0

∑
σ∈E

∫
σ

[[
ukh
]]
· [[ΠTϕ]] dS(x)dt

allowed us to obtain suitable stability estimates on the discrete velocity uh and unconditional
consistency of the scheme. Consequently, we have shown that, up to a subsequence, the arithmetic
averages of numerical solutions converge pointwise a.a. to a dissipative solution of the Euler system.
The convergence is unconditional provided the limit solution is unique. We have also shown a
simple criterion based on the oscillatory behavior of the numerical sequence that indicates absence
of smooth solution to the limit system.

Finally, it is interesting to note that in the context of the isentropic Euler system considered
in this paper, the dissipative solutions discussed in Section 4.3 can be defined without making
reference to the Young measure V . More specifically, we can include the “oscillation” defects

Dconv(t) ≡
〈
Vt,x;

m̃⊗ m̃

%̃

〉
− mi ⊗mj

%
(t, x), Dint ≡ 〈Vt,x;P (%̃)〉 − P (%)(t, x)

and

Dkin(t, x) ≡
〈
Vt,x;

1

2

|m̃|2

%̃

〉
− 1

2

|m|2

%

in Cconv, Cint, and Ckin, respectively. Indeed this is obvious for Dint as, by Jensen’s inequality and
convexity of P ,

Dint ≥ 0.

Moreover, again obviously,

〈Vt,x; p(%̃)〉 − p(%)(t, x) = (γ − 1)Dint(t, x) for a.a. (t, x) ∈ (0, T )× Td.

Next we observe that Dconv is a symmetric matrix for a.a. (t, x) with

1

2
trace[Dconv] =

〈
Vt,x;

1

2

|m̃|2

%̃

〉
− 1

2

|m|2

%
= Dkin ≥ 0.

Thus it remains to show that Dconv is positively definite. To this end, we write

Dconv : (ξ ⊗ ξ) =

〈
Vt,x;

|m̃ · ξ|2

%̃

〉
− |m · ξ|

2

%
≥ 0,
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where we have used convexity of the function

[%,m] 7→ |m · ξ|
2

%
, ξ ∈ Rd.

Consequently, without loss of generality, we may replace V in (4.10)–(4.12) by δ[%,m].
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scheme for the compressible Navier–Stokes system. Arxiv Preprint Series, arxiv 1811.02866,
2018.
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30



[25] P. Pedregal. Optimization, relaxation and Young measures. Bull. Amer. Math. Soc., 36:27–58,
1999.

[26] Y.V. Prokhorov. Convergence of random processes and limit theorems in probability theory.
Theory of Prob. And Appl. I., 2(2):157–214, 1958.

[27] L. Tartar. On mathematical tools for studying partial differential equations of continuum
physics: H-measures and Young measures. Developments in partial differential equations and
applications to mathematical physics., 201–217, Plenum, New York, 1992.

[28] L. Tartar. Compensated compactness and applications to partial differential equations. Non-
linear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, 136–212, Res. Notes in
Math. 39, Pitman, Boston, Mass.-London, 1979.

31


