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The inverse Henderson problem of statistical mechanics is the theoretical foundation for many bottom-up
coarse-graining techniques for the numerical simulation of complex soft matter physics. This inverse problem
concerns classical particles in continuous space which interact according to a pair potential depending on
the distance of the particles. Roughly stated, it asks for the interaction potential given the equilibrium pair
correlation function of the system. In 1974 Henderson proved that this potential is uniquely determined in
a canonical ensemble and he claimed the same result for the thermodynamical limit of the physical system.
Here we provide a rigorous proof of a slightly more general version of the latter statement using Georgii’s
variant of the Gibbs variational principle.

I. INTRODUCTION

The numerical simulation of soft matter requires a
large variety of multiscale techniques – even on high-
performance computers of the latest generation – to get
close to relevant time and length scales; cf., e.g., the
survey of Potestio, Peters, and Kremer37, or the special
issue7 of The European Physical Journal, Special Topics.

Among these multiscale ingredients is a technique
known as (bottom-up) coarse-graining34,35,39: complex
systems are represented, where possible, by fictitious par-
ticles (called beads) with reduced degrees of freedom, and
the fine-grained details are only reinserted into the overall
system when necessary physically, cf. Praprotnik, Delle
Site, and Kremer38. The construction of such a coarse-
grained system requires (i) a sophisticated selection of the
molecular pieces to be represented by a single bead (and
its corresponding position, mass, and shape), and (ii) the
design of interacting forces between individual beads. To
be thermodynamically consistent the latter should be de-
fined via the so-called multibody potential of mean force
(compare, e.g., Noid34) which, alas, is computationally
intractable. A common alternative is to ignore three- or
more-particle interactions, and to calculate effective pair
potentials by fitting structural properties of the coarse-
grained system to real measurements (neutron scattering
experiments) or fine-grained numerical case studies.

For the simplest conceivable case let us assume that the
coarse-grained system consists of a translation and rota-
tion invariant ensemble of a single type of beads, and
that data are given for the so-called radial distribution
function g of these beads when the fine-grained system
is in thermodynamical equilibrium: Roughly speaking,
this function assigns to each r > 0 the expected number
g(r) of beads on a sphere of radius r around any given
bead, normalized by the surface area of the sphere and
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the square of the density ρ(1) of the system. Then the
aforementioned problem amounts to finding a pair po-
tential for the interaction of classical point-like particles
such that the statistical distribution of the corresponding
canonical or grand canonical ensemble matches the given
data. This is a typical instance of an inverse problem18,
where the cause for a given observation is sought.

In an often cited paper, which may be considered the
theoretical basis of modern bottom-up coarse-graining
techniques, Henderson20 has claimed that under given
conditions of temperature and density there is indeed at
most one pair potential depending only on the distance
between the interacting particles, for which the statistics
of the corresponding ensemble obeys a given radial dis-
tribution function in the thermodynamical limit, i.e., as
volume and particle count go to infinity. To give credit
to Henderson’s contribution, we will refer to this inverse
problem of statistical mechanics as the inverse Henderson
problem.

Since there exist only approximate identities connect-
ing a given pair potential with the associated radial dis-
tribution function (cf., e.g., Hansen and McDonald11),
and those fail to provide sufficiently accurate potentials
in general (Schommers44), physicists have started in the
1970’s to design iterative algorithms for the numerical
solution of the inverse Henderson problem28,29,39,43,45,46,
and this still is a very active area of research9,19,31,48.

Today one can say that the determination of effective
pair potentials for a given radial distribution function
is the working horse in state-of-the-art coarse-graining
technology, and it has been applied successfully to a wide
range of challenging complex physical, chemical, and bio-
chemical case studies, cf., e.g., the papers1,3,30,36, and the
references therein.

In his fundamental paper Henderson employs a tech-
nique suggested by Hohenberg and Kohn21, Mermin32,
and others, for studying a similar inverse problem for ex-
ternal potentials; see also5,22. The key idea is to apply
a Gibbs variational principle, which states that in a sys-
tem with given thermodynamic conditions the associated
thermodynamic potential becomes minimal, if and only if
the distribution of the particles is given by the probabil-
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ity measure associated with this system. The particular
version of this principle used by Henderson is based on
the free energy functional in a canonical ensemble, where
the finite volume pair correlation function defined in (2)
below, and not the radial distribution function is the rel-
evant stochastic quantity. (The pair correlation function
is also known as pair density function in the pertinent lit-
erature, cf., e.g.,11). To extend the uniqueness result to
the radial distribution function, Henderson subsequently
turns to the thermodynamical limit, ignoring the possi-
bility that the strict inequality of the variational princi-
ple for finite volumes may turn into an equality when the
volume tends to infinity. Accordingly, there is a gap in
the argument provided in20 – aside of the fact that no
mention is made concerning the necessary requirements
for the pair potential, e.g., its behavior for particle pairs
with diminishing distances.

Given the importance of Henderson’s statement, the
purpose of this note is to fix this gap and to provide
a rigorous proof of his result by using a version of the
Gibbs variational principle due to Georgii13. We show
that Henderson’s result holds true for a suitably rich class
of pair potentials including the most relevant ones for
physical applications, namely hard core potentials and
the so-called Lennard-Jones type potentials. This class
of potentials, however, is a strict subclass of all super-
stable potentials, for which the thermodynamical limit is
well-defined; cf., e.g., Ruelle41 for this and further termi-
nology. Strictly speaking, this means that our result does
not answer the question whether the radial distribution
function associated with, say, the classical Lennard-Jones
potential can also occur for a much more exotic type of
pair potential and the same values of temperature and
density.

The thermodynamical limit may either be reached
from a canonical or a grand canonical ensemble. We
therefore also state a variant of Henderson’s result which
is more natural from the grand canonical perspective: It
will be shown below that the pair potential is uniquely de-
termined when given the temperature, the chemical po-
tential, and the infinite volume pair correlation function;
it is unknown whether in this second version of Hender-
son’s statement the pair correlation function can be re-
placed by the radial distribution function in the isotropic
case.

For completeness we mention that the uniqueness re-
sult for the inverse Henderson problem on the lattice is
contained in the work by Griffiths and Ruelle17; see also
Caglioti, Kuna, Lebowitz, and Speer2.

The outline of this note is as follows: In Section II we
review the rigorous mathematical setting of the thermo-
dynamical limit of a grand canonical ensemble when the
system is translation invariant and its potential energy is
given by pairwise interactions only. Then we formulate
in Section III the particular version of the Gibbs varia-
tional principle that is valid in this setting. Section IV is
devoted to the proof of the uniqueness results, and even-
tually we close with a few comments and open problems

in Section V.

II. THE THERMODYNAMICAL LIMIT OF THE GRAND
CANONICAL ENSEMBLE

We start from a grand canonical ensemble of pointlike
classical particles in a bounded box Λ` = [−`, `]d, with
specified inverse temperature β > 0 and chemical poten-
tial µ ∈ R. We restrict our attention to the case that
the interaction of the particles is given by a pair poten-
tial u : Rd → R ∪ {+∞}, which is an even function, i.e.,
u(x) = u(−x), satisfying the following two assumptions:

1. There exists r0 > 0 and a decreasing function
ϕ : (0, r0]→ R+

0 with∫ r0

0

rd−1ϕ(r) dr = +∞

and

u(x) ≥ ϕ(|x|) for |x| ≤ r0.

2. There exists a decreasing function ψ : [r0,∞)→ R+
0

with ∫ ∞
r0

rd−1ψ(r) dr <∞

and

|u(x)| ≤ ψ(|x|) for |x| ≥ r0. (1)

For this class U of potentials the associated configu-
rational Hamiltonian of m ∈ N0 particles at positions
xi ∈ Rd, i = 1, . . . ,m, given by

Hu(xm) =
∑

1≤i<j≤m

u(xi − xj) , xm = (x1, . . . , xm) ,

is stable (cf. Dobrushin8), i.e., for every u ∈ U there
exists B > 0 such that

Hu(xm) ≥ −Bm ,

independent of the number m of particles. The statistical
distribution of the particles of such a grand canonical
ensemble is determined by the corresponding m-particle
correlation functions

ρ
(m)
Λ`

(xm) =

eβµm

Ξ(Λ`, β, µ, u)

∞∑
N=0

eβµN

N !

∫
ΛN`

e−βHu(xm,yN ) dyN ,
(2)

where xm = (x1, . . . , xm) ∈ Λm` , yN = (y1, . . . , yN ) ∈
ΛN` , the integral

∫
∆0 cdx0 with bounded domain ∆ ⊂ Rd

is always taken to be equal to c, and the normalizing
constant

Ξ(Λ`, β, µ, u) =

∞∑
N=0

eβµN

N !

∫
ΛN`

e−βHu(xN ) dxN
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is the associated grand canonical partition function. In

(2) m varies in N0, with ρ
(0)
Λ`

being set to one.
We assume that for some sequence (`k)k going to infin-

ity as k → ∞, these correlation functions converge uni-
formly on compact subsets to translation-invariant func-
tions ρ(m) : (Rd)m → R+

0 , m ∈ N0, defined on the entire

space; in particular, this implies that ρ(1) is a constant. It
is known that these limiting correlation functions satisfy
a so-called Ruelle bound, i.e.,

sup
xm∈(Rd)m

ρ(m)(xm) ≤ ξm , m ∈ N0 , (3)

for some ξ > 0, depending only on µ, β, and u, and that
they define a translation invariant probability measure P
on the configuration space

Γ =
{
γ ⊂ Rd

∣∣∣ ∆ ⊂ Rd bounded ⇒ #(γ ∩∆) <∞
}
,

i.e., the set of all locally finite subsets of Rd representing
the positions of the (at most countably many) individ-
ual particles in space, equipped with an appropriate σ-
algebra, cf. Ruelle42. This means that if m ∈ N0 is fixed
and an observable F depends on all possible m-tuples of
particles in a given configuration, i.e.,

F (γ) =
∑

x1,...,xm∈γ
xi 6=xj

f(xm)

for some f = f1 + f2 with f1 ∈ L1((Rd)m) and f2 ≥ 0,
then∫

Γ

F (γ) dP(γ) =

∫
(Rd)m

f(xm)ρ(m)(xm) dxm (4)

is the expected value of the corresponding observable.
In particular, if |∆| denotes the volume of any bounded
domain ∆ ⊂ Rd then

ρ(P) =
1

|∆|

∫
Γ

#(γ ∩∆) dP(γ) = ρ(1)

is the limiting particle counting density.
According to42, P is a translation invariant tempered

(β, µ, u)-Gibbs measure, denoted P ∈ G (β, µ, u). This
means that P is supported by the set of tempered con-
figurations (defined in42), and that for every F ∈ L1(P)
and every bounded domain ∆ ⊂ Rd there holds∫

Γ

F (γ) dP(γ) =

∞∑
N=0

zN

N !∫
∆N

∫
Γ(∆c)

F (γ′)e−βWu(xN ;γ) dP(γ) e−βHu(xN ) dxN ,

(5)

where γ′ = γ ∪ {x1, . . . , xN}, Γ(∆c) =
{
γ ∈ Γ : γ ⊂

Rd \∆
}

, and the interaction Wu between particles at xi,
i = 1, . . . , N and those of γ ∈ Γ is defined as

Wu(xN ; γ) =

N∑
i=1

∑
y∈γ

u(xi − y) , (6)

if the series converges absolutely, and as +∞ otherwise.
Given the limiting correlation functions one can define

Janossy densities j
(m)
Λ`

: Λm` → R for every m ∈ N0 and
` > 0 via

j
(m)
Λ`

(xm) =

∞∑
k=0

(−1)k

k!

∫
Λk`

ρ(m+k)(xm,yk) dyk . (7)

These Janossy densities provide the induced probability
density on Λ`, for which∫

Γ

F (γ) dP(γ) =

∞∑
m=0

1

m!

∫
Λm`

fm(xm)j
(m)
Λ`

(xm) dxm (8)

for every F ∈ L1(P), which satisfies F (γ) = F (γ ∩ Λ`),
and which is given by functions fm : Λm → R, m ∈ N0,
such that F (γm) = fm(xm), when γm = {x1, . . . , xm} ⊂
Λ. Such observables F are thus called local observables.

Varying β > 0, µ ∈ R, and u ∈ U , we denote by

G =
⋃
β,µ,u

G (β, µ, u)

the union of all translation invariant tempered Gibbs
measures, some of which may not be obtained as limits
of finite-volume Gibbs measures with empty boundary
conditions (cf., e.g., Georgii12). We mention for later use
that for almost every x ∈ Rd and P-almost surely for
every P ∈ G the interaction defined in (6) is finite, and
there holds

lim
`→∞

Wu(x; γ ∩ Λ`) = Wu(x; γ) , (9)

see Section 5 in Kondratiev and Kuna23. We mention
further that there exists some µ0 ∈ R depending on β and
u ∈ U , such that for µ < µ0 – the so-called gas phase
– the set G (β, µ, u) consists of a single Gibbs measure
P only42, and that in this case the correlation functions

ρ
(m)
Λ`

converge to ρ(m) as `→∞ for every m ∈ N0, cf.41.

III. THE GIBBS VARIATIONAL PRINCIPLE

The Gibbs variational principle goes back to Gibbs’
work (cf.16, p. 131) and appears in different variants in
statistical mechanics and stochastic analysis; we refer,
e.g., to the books by Ruelle41, Gallavotti10, and Georgii14

for rigorous mathematical treatments of this variational
principle. Here we apply a particular version established
by Georgii and Zessin in the series of papers12,13,15.

For pair potentials u ∈ U and Gibbs measures P ∈ G ,
we introduce the specific energy

E(u,P) = lim
`→∞

1

|Λ`|

∫
Γ

1

2

∑
x,y∈γ∩Λ`

x6=y

u(x− y) dP(γ) (10)
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and the specific (relative) entropy

S(P) =

lim
`→∞

1

|Λ`|

∞∑
m=0

1

m!

∫
Λm`

j
(m)
Λ`

(xm) log
(
j

(m)
Λ`

(xm)
)

dxm ,

where both limits are known to exist in R∪ {+∞}: con-
cerning the specific energy see Proposition 1 below; con-
cerning the specific entropy we refer to Robinson and
Ruelle40 – in fact, using (7) and (3) it is not too difficult
to see that S(P) is finite for every P ∈ G . The relative
entropy differs from the standard entropy by a sign; to
simplify language we call S(P ) nevertheless the entropy.
We take similar liberties with the sign of the (specific)
grand potential

Ωβ,µ(u,P) = µρ(P)− E(u,P)− 1

β
S(P) , (11)

for which the following variational principle holds true,
see Theorem 3.4 in Georgii13.

Theorem A. For fixed µ ∈ R, β > 0, and u ∈ U
the grand potential Ωβ,µ(u, · ) has values in R ∪ {−∞}.
Its maximal value p on G is attained for every P ∈
G (β, µ, u), and there holds

Ωβ,µ(u,P) < p

for every other P ∈ G . Here,

p = lim
`→∞

1

β|Λ`|
log Ξ(Λ`, β, µ, u)

is the pressure in the thermodynamical limit.

For the proof of the Henderson result we will also
need the following identity, for which we include a self-
contained proof for the ease of the reader.

Proposition 1. For every u ∈ U and every P ∈ G the
limit in (10) belongs to R ∪ {+∞}, and is given by

E(u,P) =
1

2

∫
Rd
u(x)ρ(2)(x, 0) dx , (12)

where ρ(2) is the pair correlation function associated with
P.

Proof. Let ρ(2) be the translation invariant pair correla-
tion function associated with P. Then we can apply (4)
with m = 2 and

f(x, y) =

{
u(x− y) , x, y ∈ Λ` ,

0 , else ,

to rewrite∫
Γ

∑
x,y∈γ∩Λ`

x 6=y

u(x− y) dP(γ)

=

∫
Λ2
`

u(x− y)ρ(2)(x, y) d(x, y)

=

∫
Λ`

(∫
∆x,`

u(x− y)ρ(2)(x, y) dy (13a)

+

∫
Λ`\∆x,`

u(x− y)ρ(2)(x, y) dy

)
dx, (13b)

where the set ∆x,` = {y ∈ Λ` | u(x− y) ≥ 1} is bounded,
and u(x − · ) is absolutely integrable over Rd \∆x,` be-

cause of (1). Therefore, and since ρ(2) is bounded, com-
pare (3), the integral in (13b) is uniformly bounded, in-
dependent of ` and x ∈ Λ`. The integrand of the integral
in (13a) is nonnegative. In case this integral diverges
for some ` ∈ N and some x ∈ Λ` then the total right-
hand side of (13) equals +∞, and this remains true for
all larger values of `, i.e., E(u,P) = +∞. The same
argument applied to the right-hand side of (12) shows
that equality holds in (12) in this case, because ρ(2) is
translation invariant.

On the other hand, if the integral over ∆x,` in (13a)
is finite for every ` ∈ N and every x ∈ Λ`, then the
same argument as before, together with the translation
invariance of ρ(2) shows that∫

Rd
u(x− y)ρ(2)(x, y) dy =

∫
Rd
u(y)ρ(2)(y, 0) dy (14)

is absolutely convergent. Now we assume that ` is greater
than the parameter r0 which occurs in (1). Then we
choose some r between r0 and `, and we split the domain
Λ2
` of integration into

Λ2
` = ∆1 ∪∆2 ∪∆3 ,

where

∆1 = { (x, y) ∈ Λ2
` : x ∈ Λ`−r , |y − x| ≤ r } ,

∆2 = { (x, y) ∈ Λ2
` : x ∈ Λ` \ Λ`−r , |y − x| ≤ r } ,

∆3 = { (x, y) ∈ Λ2
` : |x− y| > r } .

Under these assumptions on r and ` it follows from the
fact that (14) is absolutely convergent that∣∣∣∫

∆2

u(x− y)ρ(2)(x, y) d(x, y)
∣∣∣

≤
∫

Λ`\Λ`−r

∫
|y−x|≤r

∣∣u(x− y)
∣∣ρ(2)(x, y) dy dx

≤
(
|Λ`| − |Λ`−r|

) ∫
R3

∣∣u(y)
∣∣ρ(2)(y, 0) dy



5

and∣∣∣∫
∆3

u(x− y)ρ(2)(x, y) d(x, y)
∣∣∣

≤
∫

∆3

∣∣u(x− y)
∣∣ρ(2)(x, y) d(x, y)

≤
∫

Λ`

∫
|y−x|>r

∣∣u(x− y)
∣∣ρ(2)(x, y) dy dx

≤ |Λ`|
∫
|y|>r

∣∣u(y)
∣∣ρ(2)(y, 0) dy .

Since (14) converges absolutely we can thus choose r =
r(ε) sufficiently large to make sure that

lim sup
`→∞

∣∣∣∣∣ 1

|Λ`|

∫
∆2∪∆3

u(x−y)ρ(2)(x, y) d(x, y)

∣∣∣∣∣ ≤ ε (15)

for any given positive number ε. On the other hand,
using the translation invariance again, we have∫

∆1

u(x− y)ρ(2)(x, y) d(x, y)

=

∫
Λ`−r

∫
|y−x|≤r

u(x− y)ρ(2)(x, y) dy dx

= |Λ`−r|
∫
|y|≤r

u(y)ρ(2)(y, 0) dy ,

and hence,

lim sup
`→∞

∣∣∣∣∣ 1

|Λ`|

∫
∆1

u(x− y)ρ(2)(x, y) d(x, y)

−
∫
Rd
u(y)ρ(2)(y, 0) dy

∣∣∣∣∣
≤
∫
|y|>r

∣∣u(y)
∣∣ρ(2)(y, 0) dy .

(16)

Combining (16) for r = r(ε) with (15), the assertion (12)
follows by letting ε→ 0.

We mention that the Kirkwood-Salsburg equations
(cf., e.g.,42) can be used to argue that the integrand of
(12) is bounded near the origin when P is a (β, µ, u)-
Gibbs measure, so that for “matching” u and P the in-
tegral is absolutely convergent and finite by virtue of (1)
and (3).

IV. UNIQUENESS RESULTS OF HENDERSON TYPE
IN THE THERMODYNAMICAL LIMIT

We now formulate Henderson’s theorem in the spirit of
his original paper20, and provide a rigorous proof, based
on arguments borrowed from20 and from the proof of
Theorem 2.34 in14.

Theorem 2. Let u, v ∈ U , β > 0, and µ, µ′ ∈ R
be given, and assume that Pu ∈ G (β, µ, u) and Pv ∈
G (β, µ′, v) admit the same density ρ(1) and the same pair
correlation function ρ(2). Then µ = µ′ and u = v almost
everywhere.

Proof. By Theorem A we have

Ωβ,µ(u,Pv) ≤ Ωβ,µ(u,Pu)

and

Ωβ,µ′(v,Pu) ≤ Ωβ,µ′(v,Pv) .

Since Ωβ,µ(u,Pu) and Ωβ,µ′(v,Pv) are finite we may write
these inequalities as

Ωβ,µ(u,Pv)− Ωβ,µ(u,Pu) ≤ 0 (17)

and

Ωβ,µ′(v,Pu)− Ωβ,µ′(v,Pv) ≤ 0 , (18)

and adding them we get

Ωβ,µ(u,Pv)− Ωβ,µ(u,Pu)

+ Ωβ,µ′(v,Pu)− Ωβ,µ′(v,Pv) ≤ 0 .
(19)

Recalling the definition (11) of the grand potential we
have

Ωβ,µ(u,Pv)− Ωβ,µ(u,Pu) + Ωβ,µ′(v,Pu)− Ωβ,µ′(v,Pv)

= µρ(Pv)− E(u,Pv)−
1

β
S(Pv)

− µρ(Pu) + E(u,Pu) +
1

β
S(Pu)

+ µ′ρ(Pu)− E(v,Pu)− 1

β
S(Pu)

− µ′ρ(Pv) + E(v,Pv) +
1

β
S(Pv)

= −E(u,Pv) + E(u,Pu)− E(v,Pu) + E(v,Pv) , (20)

because ρ(Pu) = ρ(Pv) = ρ(1) by assumption. Further-
more, by virtue of Proposition 1 and the fact that the
pair correlation functions of Pu and Pv coincide, there
holds

E(u,Pu) =
1

2

∫
Rd
u(x)ρ(2)(x, 0) dx = E(u,Pv)

and

E(v,Pu) =
1

2

∫
Rd
v(x)ρ(2)(x, 0) dx = E(v,Pv) .

Inserting this into (20) we conclude that

Ωβ,µ(u,Pv)− Ωβ,µ(u,Pu)

+ Ωβ,µ′(v,Pu)− Ωβ,µ′(v,Pv) = 0.
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Accordingly, equality holds in (19), and thus necessarily
in both (17) and (18). By the Gibbs variational principle
(Theorem A) this implies that Pv ∈ G (β, µ, u) and Pu ∈
G (β, µ′, v).

It therefore follows from (5) that∫
Γ

F (γ) dPu(γ)

=

∞∑
N=0

1

N !

∫
∆N

(∫
Γ(∆c)

F (γ′)e−βWu(xN ;γ) dPu(γ)

)
eNβµ−βHu(xN ) dxN

=

∞∑
N=0

1

N !

∫
∆N

(∫
Γ(∆c)

F (γ′)e−βWv(xN ;γ) dPu(γ)

)
eNβµ

′−βHv(xN ) dxN

for every F ∈ L1(Pu) and every bounded domain ∆ ⊂
Rd. Therefore

Hu(xN ) +Wu(xN ; γ)−Nµ
= Hv(xN ) +Wv(xN ; γ)−Nµ′

(21)

for every N ∈ N, almost every xN ∈ ∆N and Pu almost
surely for γ ∈ Γ(∆c). For N = 1 this means that

Wu(x; γ)− µ = Wv(x; γ)− µ′ (22)

for almost every x ∈ ∆ and Pu and Pv almost surely for
γ ∈ Γ(∆c). Using the additivity of Wu and Wv in the
first argument we thus conclude from the case N = 2 of
(21) that

u(x− y) = v(x− y) (23)

for almost every x, y ∈ ∆, and since ∆ was arbitrarily
chosen, we have u = v almost everywhere.

Inserting (23) into (6) it follows that

Wu(x; γ0) = Wv(x; γ0)

for almost every x ∈ ∆ and almost every finite subset
γ0 ⊂ ∆c ∩ Λ`. Together with (8) this implies that for
every P ∈ G there holds

Wu(x; γ ∩ Λ`) = Wv(x; γ ∩ Λ`) (24)

P almost surely for γ ∈ Γ(∆c). By virtue of (9) and (24)
we therefore have

Wu(x; γ) = Wv(x; γ)

for almost every x ∈ ∆ and Pu almost surely for γ ∈
Γ(∆c), and hence we conclude from (22) that µ = µ′,
which remained to be shown.

Henderson stipulated the assumptions of Theorem 2
from the canonical ensemble point of view. Concerning
the grand canonical perspective an analogous uniqueness
result is as follows.

Theorem 3. Let u, v ∈ U , β > 0, and µ ∈ R be given,
and assume that Pu ∈ G (β, µ, u) and Pv ∈ G (β, µ, v)
admit the same pair correlation function ρ(2). Then u =
v almost everywhere.

The proof is the same as for Theorem 2: This time (20)
holds true because the chemical potentials are the same.
We mention, however, that we do not know whether the
counting densities of the two Gibbs measures are neces-
sarily the same, unless it is assumed that the correspond-
ing (β, µ, u)-Gibbs measure is uniquely determined – as
it is, e.g., in the gas phase.

V. CONCLUDING REMARKS

We emphasize that for our results we do not stipulate
that the system is in the gas phase, nor that the set
G (β, µ, u) consists of a single Gibbs measure only.

In case it is known that u is also radially symmetric,
i.e., if the interaction of two particles only depends on
their distance, then one can show – using the Markov-
Kakutani fixed point theorem as in the proof of The-
orem 5.8 in41, compare Kuna25 – that there exists at
least one rotation and translation invariant Gibbs mea-
sure Pu ∈ G (β, µ, u), which can be used to define a radial
distribution function g : R+ → R+

0 given by

g(r) =
ρ(2)(x1, x2)

(ρ(1))2
, r = |x1 − x2| , (25)

provided that the density is nonzero. Assuming further
that Pv ∈ G (β, µ, v) is also rotation invariant, then one
obviously can impose in Theorem 2 – as did Hender-
son – that the radial distribution functions and the den-
sities are the same for these two Gibbs measures, and
the statement of the theorem remains valid. We do not
know whether in the formulation of Theorem 3 ρ(2) can
also be replaced by the radial distribution function in the
isotropic case.

Finally we remark that the representation (12) of the
specific energy is not essential for the uniqueness argu-
ment. By its definition (10), the specific energy E(u,P)
is the limit in R ∪ {+∞} of the expression given in (13)
normalized by two times the volume of Λ`, and hence,
its value only depends on u and on the pair correlation
function ρ(2) associated with P. This suffices to conclude
that the expression (20) sums up to zero.

VI. SUMMARY

Henderson’s theorem states that the pair potential of
an isotropic system of identical classical particles in equi-
librium without multibody interactions is uniquely deter-
mined from the finite-volume pair correlation function
of the system and its temperature and density. In this
note we have provided sufficient conditions under which
a rigorous proof of Henderson’s theorem is possible in
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the thermodynamical limit. We have also shown that
the same result is true if the chemical potential instead
of the density is given.

We emphasize that when higher-order interactions are
relevant, pairwise potentials are only crude approxima-
tions of the ideal multibody potential of mean force, and
will often fail to be thermodynamically useful. Chayes
and Chayes4 and Navrotskaya33 have used variational
principles to show that multibody interactions are also
uniquely determined by the corresponding multibody
statistics in continuous space for the canonical and grand
canonical ensembles in finite volumes; see also Tóth47.
For translation invariant stable interactions with finite
range it is possible to extend these results to the thermo-
dynamical limit of these systems in a similar manner as
in the proof of Theorem 2 by using a version of the Gibbs
variational principle established by Dereudre6. As par-
ticular examples for such interactions, Dereudre refers to
Delaunay triangle interactions or the Widom-Rowlinson
interaction. The corresponding problem on the lattice
was again studied in17.

Having settled the uniqueness problem the natural
follow-up question concerns the existence of solutions
of the inverse Henderson problem, i.e., what are neces-
sary and sufficient conditions on a given triplet β, ρ > 0,
µ ∈ R, and a nonnegative translation invariant function
ρ(2) : (Rd)2 → R, such that there exists a pair potential
u ∈ U for which ρ is the density and ρ(2) is the pair
correlation function of a Gibbs measure P ∈ G (β, µ, u).
Partial results for this problem have been contributed,
e.g., by Caglioti, Kuna, Lebowitz, and Speer2,26,27 and
Koralov24. The general existence problem is widely open,
though.
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A. Laaksonen, Systematic hierarchical coarse-graining with the
inverse Monte Carlo method, J. Chem. Phys., 143 (2015),
243120.

31S.Y. Mashayak, L. Miao, and N.R. Aluru, Integral equation
theory based direct and accelerated systematic coarse-graining
approaches, J. Chem. Phys., 148 (2018), 214105.

32N. Mermin, Thermal properties of the inhomogeneous electron
gas, Phys. Rev., 137 (1965), pp. A 1471–A1473.



8

33I. Navrotskaya, Inverse problem in classical statistical mechan-
ics, PhD Thesis, University of Pittsburgh, 2016.

34W.G. Noid, Perspective: Coarse-grained models for biomolecu-
lar systems, J. Chem. Phys., 139 (2013), 090901.

35C. Peter and K. Kremer, Multiscale simulation of soft matter
systems, Faraday Discuss., 144 (2010), pp. 9–24.

36B.L. Peters, K.M. Salerno, A. Agrawal, D. Perahia,
G.S. Grest, Coarse-grained modeling of polyethylene melts:
effect on dynamics, J. Chem. Theor. Comput., 13 (2017),
pp. 2890–2896.

37R. Potestio, C. Peter, and K. Kremer, Computer simulations
of soft matter: Linking the scales, Entropy, 16 (2014), pp. 4199–
4245.

38M. Praprotnik, L. Delle Site, and K. Kremer, Adaptive res-
olution molecular-dynamics simulation: changing the degrees of
freedom on the fly, J. Chem. Phys., 123 (2005), 224106.

39D. Reith, M. Pütz, and F. Müller-Plathe, Deriving effec-
tive mesoscale potentials from atomistic simulations, J. Comput.
Chem., 24 (2003), pp. 1624–1636.

40D.W. Robinson and D. Ruelle, Mean entropy of states in
classical statistical mechanics, Comm. Math. Phys., 5 (1967),
pp. 288–300.

41D. Ruelle, Statistical Mechanics: Rigorous Results, W.A. Ben-
jamin Publ., New York, 1969.

42 , Superstable interactions in classical statistical mechanics,
Comm. Math. Phys., 18 (1970), pp. 127–159.

43W. Schommers, A pair potential for liquid rubidium from the
pair correlation function, Physics Letters, 43A (1973), pp. 157–
158.

44 , Pair potentials in disordered many-particle systems: A
study for liquid gallium, Phys. Rev. A, 28 (1983), pp. 3599–3605.

45M.S. Shell, The relative entropy is fundamental to multiscale
and inverse thermodynamic problems, J. Chem. Phys., 129
(2008), 144108.

46A.K. Soper, Empirical potential Monte Carlo simulation of fluid
structure, Chemical Physics, 202 (1996), pp. 295–306.
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