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Abstract. We develop a generalized Newton scheme called IHNC (inverse hypernetted-chain
iteration) for the construction of effective pair potentials for systems of interacting point-like particles.
The construction is realized in such a way that the distribution of the particles matches a given
radial distribution function. The IHNC iteration uses the hypernetted-chain integral equation for an
approximate evaluation of the inverse of the Jacobian of the forward operator.

In contrast to the full Newton method realized in the Inverse Monte Carlo (IMC) scheme, the
IHNC algorithm requires only a single molecular dynamics computation of the radial distribution
function per iteration step, and no further expensive cross-correlations. Numerical experiments are
shown to demonstrate that the method is as efficient as the IMC scheme, and that it easily allows
to incorporate thermodynamical constraints.
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1. Introduction. A common problem in material science is the quantification
of interactions between a set of given particles. For example, in computer simulations
of complex materials, where all sorts of numerical multiscale techniques are inevitable
tools to treat relevant timescales and/or spatial resolutions (cf., e.g., Potestio, Peter,
and Kremer [22]), larger atomistic structures are often replaced by artificial particles,
so-called beads, and the simulation of these beads requires the knowledge of effective
interactions between them and other molecules or atoms.

In the simplest case one may assume that the beads are point-like particles, whose
interactions are governed by a potential u “ uprq, which only depends on the distance
r ą 0 of each interacting pair of particles and vanishes in the limit r Ñ8. According
to Henderson [10] such a pair potential u “ uprq is uniquely determined by the so-
called radial distribution function g “ gprq, which measures the number of particle
pairs with a given distance in a homogeneous fluid in thermal equilibrium. The inverse
Henderson problem of computing the pair potential from the given radial distribution
is therefore exactly what needs to be solved in order to settle the aforementioned
problem in physical chemistry.

One of the difficulties with this problem is the fact that the associated map

G : u ÞÑ g , (1.1)

which takes the pair potential onto the corresponding radial distribution function
(for specified values of density and temperature of the fluid) is not given in closed
terms, but has to be evaluated numerically, using expensive molecular dynamics or
Monte-Carlo simulations. It goes without saying that the inverse map G´1 is not
known, either. Methods for solving the inverse Henderson problem therefore can be
distinguished in two classes: one class uses closed form approximations ofG orG´1, re-
spectively, most notably the hypernetted-chain or the Percus-Yevick approximations,
cf., e.g., Ben-Naim [2] or Hansen and McDonald [7]; the other class uses iterative
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schemes which start from a certain educated guess uk of u, simulate the correspond-
ing radial distribution function gk “ Gpukq and use this information to determine an
improved approximation uk`1 by some sophisticated update rule, proceeding in this
manner until convergence. Most prominent representatives of the latter class are the
Iterative Boltzmann Inversion (IBI) or Inverse Monte Carlo (IMC); cf., e.g., Mirzoev
and Lyubartsev [20], Rühle et al [24], or Tóth [30].

In this paper we suggest a new method of the second class, i.e., an iterative
method, which combines the advantages of the two aforementioned schemes, namely
the simplicity and robustness of IBI, and the rapid convergence of IMC for an appro-
priate initial guess. Our method is a generalized Newton iteration – as opposed to
IMC, which corresponds to the much more expensive full Newton scheme for invert-
ing (1.1) – and we use the hypernetted-chain approximation to compute a simplified
derivative of G. We show by numerical examples for simulated and measured radial
distribution data that the method outperforms IBI and requires about the same num-
ber of iterations as does IMC, even when the density and the temperature of the fluid
are near a phase transition. We also demonstrate how to include thermodynamical
constraints like a known value for the pressure of the system into our scheme. In this
work we only treat the case of a homogeneous fluid of single particles; we plan to show
in a forthcoming paper how to extend the method to binary mixtures.

The outline of this paper is as follows. In the following section we briefly summa-
rize the necessary ingredients from statistical mechanics which are fundamental for
this work. Then, in Section 3, we derive the approximation of the inverse of the Jaco-
bian of G which will be used for our generalized Newton scheme. Section 4 presents
the mathematical core of this paper and is concerned with the well-posedness of differ-
ent variants of our algorithm. Readers who are only interested in the algorithms and
in implementation details can skip this part without any loss. In the subsequent two
sections we then discuss the numerical implementation and further extensions of these
schemes; in particular, we show in Section 6 how to incorporate pressure constraints.
Finally, numerical results for some benchmark systems are presented in Section 7. In
the appendix we include a proof for an extension of the classical Wiener lemma (cf.,
e.g., Jörgens [15]) to some weighted L8 space, which is needed for our mathematical
analysis.

2. Mathematical setting of the problem. Consider an ensemble of identical
classical point-like particles in thermodynamical equilibrium, where the interaction of
the particles is given in terms of a pair potential u : R` Ñ R of Lennard-Jones type,
i.e., there exist a core radius r0 ą 0 and a parameter α ą 3 such that

uprq ě ar´α , r ď r0 ,

|uprq| ď br´α , r ě r0 ,
(2.1)

for suitable constants a, b ą 0. We assume that the number of particles and the size
of the spatial domain under consideration is so big that one can treat this ensemble
in the thermodynamical limit, i.e., as if it fills the full space R3. For our mathemat-
ical analysis we further assume that the counting density ρ0 ą 0 of the ensemble is
sufficiently small and the temperature T ą 0 is sufficiently large, so that the system
is in its so-called gas phase, cf., e.g., Ruelle [25, p. 84].

The radial distribution function g : R` Ñ R`, referred to in the introduction,
measures the number of particle pairs at distance r ą 0, normalized in such a way that
gprq Ñ 1 as r Ñ8; see [7] for the precise definition of this function. Then, as shown
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in [5], the map G of (1.1), which takes u onto g, is well-defined and differentiable in
a certain neighborhood of u with respect to the Banach space V of perturbations v
of u, for which the corresponding norm

}v}V “ max
 

}v{u}p0,r0s, }%v}rr0,8q
(

(2.2)

is sufficiently small∗; here,

%prq “ p1` r2qα{2 , r ě 0 , (2.3)

is a weight function associated with the parameter α of (2.1).
In [6] it has been shown that the so-called pair correlation function h “ g´ 1 for

a Lennard-Jones type pair potential given by (2.1) belongs to the Banach space L8%
of functions f P L8 with finite norm

}f}L8
%
“ }%f}p0,8q , (2.4)

where % is defined in (2.3). Since α ą 3, the radially symmetric extension of any
f P L8% to the full space R3 is absolutely integrable and has a well-defined (three-
dimensional) continuous Fourier transform. This is important, because although u,
g, and h are defined as functions of a positive argument r ą 0, they can be viewed
as representations of radial functions of a three-dimensional spatial variable in full
space. In particular, the Fourier transform of the corresponding extension of h –
which is again radially symmetric and can therefore be represented by a function
ph : r0,8q Ñ R by some slight abuse of the standard notation – is used to define the
structure factor

Spωq “ 1` ρ0
phpωq , ω ě 0 , (2.5)

which is known to be continuous and nonnegative.
Going one step further, if f1, f2 P L

8
% , then the three-dimensional convolution

integral of their radially symmetric extensions to R3 is again a radial function and –
as has also been shown in [6] – its representation (as a function defined in R`) again
belongs to L8% ; we adopt the notation f1 ˚ f2 for the resulting convolution product,
which turns L8% into a (commutative) Banach algebra.

Proposition 2.1. Let u be a Lennard-Jones type pair potential (2.1) with pa-
rameter α ą 3, and let the counting density ρ0 of the ensemble be sufficiently small.
Using the pair correlation function h of this ensemble and the above definition of the
convolution product in L8% , define

A : L8% Ñ L8% , A : f ÞÑ ρ0 h ˚ f . (2.6)

Then I `A is invertible in L pL8% q, if the structure factor (2.5) is strictly positive.
The proof of this result follows from a weighted version of the Wiener lemma,

stated and proved in the appendix, cf. Lemma A.1.
Under the assumptions of Proposition 2.1 it follows in particular that the so-called

Ornstein-Zernike relation

c ` ρ0h ˚ c “ h (2.7)

∗If I Ă R denotes a real interval then } ¨ }I refers to the supremum norm of real functions defined
on this respective interval.
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has a unique solution c P L8% , known as the direct correlation function, cf. [7]. Then,
with kB the Boltzmann constant and

β “
1

kBT

the inverse temperature, the hypernetted-chain approximation mentioned in the in-
troduction states that

g « e´βu`h´c . (2.8)

Historically (2.8) has been used to approximate g without lengthy molecular dynamics
simulations, but by solving a (nonlinear) integral equation instead. On the other hand,
(2.8) can be solved for u to provide an explicit approximation uHNC of the true pair
potential, namely

uHNC “ Upgq “ ´
1

β
log g `

1

β
ph´ cq , (2.9)

which only depends on quantities that are readily available from the given radial
distribution function.

We close this section by formally differentiating U of (2.9) to determine the impact
of small perturbations g1 of g on uHNC, namely

U 1pgqg1 “ ´
1

β

g1

g
`

1

β
pg1 ´ c1q , (2.10)

where c1 is the derivative of c with respect to g or h, respectively: Using (2.7) and the
fact that pL8% , ˚q is a Banach algebra, we conclude that

c1 ` ρ0h ˚ c
1 ` ρ0g

1 ˚ c “ g1 . (2.11)

Convolving this equation with ρ0h, adding the result to (2.11) again, and using the
associativity and commutativity of the convolution product, we obtain

c1 ` 2ρ0h ˚ c
1 ` ρ2

0 h ˚ h ˚ c
1 ` ρ0pc ` ρ0h ˚ cq ˚ g

1 “ g1 ` ρ0h ˚ g
1 ,

and inserting (2.7), this yields

c1 ` 2ρ0h ˚ c
1 ` ρ2

0 h ˚ h ˚ c
1 “ g1 .

With the operator A of Proposition 2.1 the latter can be rewritten as

pI `Aq2c1 “ g1 ,

showing that c1 P L8% is well-defined when the structure factor is positive. Inserting
this identity into (2.10), we eventually obtain

U 1pgqg1 “ ´
1

β

g1

g
`

1

β
ϕ , (2.12)

where

ϕ “ pI `Aq´2p2I `AqAg1 . (2.13)
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3. Generalized Newton schemes for the inverse Henderson problem.
We now present iterative algorithms for an approximate solution of the inverse Hen-
derson problem, i.e., for determining a pair potential ru, for which the associated radial
distribution function Gpruq is close to the given data g for specified values of ρ0 and
β.

One of the most successful methods of this kind is the Iterative Boltzmann Inver-
sion (IBI)

uk`1 “ uk `
1

β
log

gk
g
, gk “ Gpukq , (3.1)

k “ 0, 1, 2, . . . , originally suggested by Schommers [27]. In (3.1), as in Section 2,
g, gk, u, and uk are functions of r P p0,8q, and we continue to omit the independent
variable r as long as there is no danger of confusion. Note that each iteration of
IBI requires an expensive evaluation of the forward operator G. IBI is widely used,
because it has been found to be fairly robust. Soper, who redeveloped this scheme
in [29], gave some heuristic arguments to support this observation. However, a rig-
orous convergence analysis is still lacking; see [6] for some preliminary results in this
direction.

A certain shortcoming of IBI is that it may require quite a few iterations to de-
termine a sufficiently accurate potential. In [17] Lyubartsev and Laaksonen therefore
proposed the Newton method

uk`1 “ uk ` G1pukq
´1pg ´ gkq , gk “ Gpukq , (3.2)

k “ 0, 1, 2, . . . , as an alternative. In this scheme, now called Inverse Monte Carlo
(IMC)†, the numerical evaluation of the Fréchet derivative of G can be implemented
by using higher order statistics of the ensemble corresponding to some integrated
3- and 4-particle distribution functions. As it requires longer forward simulations to
achieve sufficiently accurate statistics of these higher order distribution functions, each
IMC iteration is much more expensive than one step of IBI. Another shortcoming of
IMC is the need to start the iteration with a fairly accurate initial guess. It is therefore
sometimes recommended to first run a number of IBI steps before switching to IMC,
cf., e.g., Mirzoev and Lyubartsev [20] or Murtola et al [21].

Here we consider a generalized Newton scheme, whereG1pukq
´1 in (3.2) is replaced

by some approximation. Note, for example, that the low-density approximation

Gpuq « GLDLpuq “ e´βu ,

which is correct of order Opρ0q as ρ0 Ñ 0, suggests to replace

G1pukq
´1g1 « G1LDLpuq

´1
g1 “ ´

1

β
eβug1 « ´

1

β

g1

g
,

cf. [13]. When using this approximation in (3.2) we arrive at the iterative scheme

uk`1 “ uk `
1

β

gk ´ g

g
, k “ 0, 1, 2, . . . . (3.3)

†We mention that this name may be misleading in that the approximate pair potential computed
by IMC is not the result of some sophisticated Monte-Carlo simulation.
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Note that this is reminiscent of the IBI scheme (3.1), because

log
gk
g
“ log

´

1`
gk ´ g

g

¯

«
gk ´ g

g

for gk close to g. In fact, in numerical experiments that we have made, we did not
observe a significant difference between the performance of the two iterative schemes
(3.1) and (3.3).

We therefore propose a more sophisticated approximation of G, namely one that
is based on the hypernetted-chain approximation (2.8), which is correct of order Opρ2

0q

as ρ0 Ñ 0, cf. [7], to obtain a useful compromise between IBI and IMC. To be specific,
with U of (2.9) we approximate

G1pukq
´1g1 « U 1pgqg1 “ ´

1

β

g1

g
`

1

β
ϕ , (3.4)

cf. (2.12), where g is the measured radial distribution function and ϕ is given by (2.13)
with A of (2.6). Inserting (3.4) into (3.2) we thus obtain the iteration

uk`1 “ uk `
1

β

gk ´ g

g
`

1

β
ϕk , k “ 0, 1, 2, . . . , (3.5a)

with

ϕk “ pI `Aq´2p2I `AqA pg ´ gkq . (3.5b)

We call (3.5) the hypernetted-chain Newton iteration (HNCN). Take note that this
approach does not involve a computation of the hypernetted-chain approximation
uHNC of (2.9) itself; the hypernetted-chain approximation is only used formally to
determine an approximate Newton inverse. Accordingly, when the iteration (3.5)
converges, i.e., when uk Ñ u and gk Ñ g as k Ñ 8, then the limit u is the true
solution of the Henderson problem for the given data.

Note that HNCN coincides with (3.3) up to an additive correction term. The
similarity between (3.3) and IBI therefore suggests to consider also the alternative
IBI-type scheme

uk`1 “ uk `
1

β
log

gk
g
`

1

β
ϕk , k “ 0, 1, 2, . . . , (3.6)

with ϕk of (3.5b), which we call the inverse hypernetted-chain iteration (IHNC).
We finally mention that IHNC and HNCN differ from the so-called LWR scheme

developed by Levesque, Weis, and Reatto [16] and rediscovered recently by Heinen [9]:
in our notation the LWR scheme proceeds by computing

uk`1 “ uk `
1

β
log

gk
g
`

1

β

`

g ´ gk ´ c` ck
˘

, k “ 0, 1, 2, . . . ,

where c is the direct correlation function (2.7), and ck is defined accordingly via

ck ` ρ0hk ˚ ck “ hk

with hk “ gk ´ 1. It is straightforward to verify that the LWR scheme can also be
rewritten as

uk`1 “ uk ` Upgq ´ Upgkq
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with U of (2.9), hence the LWR update of the potential can be seen as the secant
approximation of U 1pgqpg ´ gkq used by the HNCN scheme. While this may appear
on first sight to be a minor difference only between the two schemes, the tangent
approximation turns out to be crucial to allow for subsequent extensions of the HNCN
scheme described in Section 6.

4. Well-posedness of the IHNC and HNCN schemes. We are now going
to analyze the two new iterative schemes (3.5) and (3.6) similar to the analysis of IBI
in [6]. For this we work in the topology of the Banach space V defined in (2.2).

Proposition 4.1. Let u be a Lennard-Jones type pair potential and ρ0 be suf-
ficiently small. Moreover, assume that the structure factor (2.5) is a strictly posi-
tive function. Then the IHNC iteration (3.6) is well-posed in the following sense: If
}u0 ´ u}V is sufficiently small, then u1 is again a Lennard-Jones type pair potential,
and there holds

}u1 ´ u}V ď C}u0 ´ u}V

for some C ą 0, depending on u, ρ0, and the inverse temperature β.
Proof. In the analysis of IBI in [6] it has been shown that

›

›logpg0{gq
›

›

V
ď C}u0 ´ u}V (4.1)

for some constant C ą 0, cf. [6, (6.3)]. Furthermore, since L8% is continuously embed-
ded in V because of (2.1), and since A and pI `Aq´1 belong to L pL8% q by virtue of
Proposition 2.1, it follows from (3.5b) that

}ϕ0}V ď C}ϕ0}L8
%
ď C}g0 ´ g}L8

%
ď C}u0 ´ u}V

for some (other) constants C ą 0 that may be different in each of the individual terms;
here, the last inequality is borrowed from [6, Theorem 5.3]. Together with (3.6) and
(4.1) we thus obtain the assertion.

Concerning HNCN we have a similar result which is stated next, but this one
requires u0 to be close to u in the stronger norm of L8% .

Theorem 4.2. Under the assumptions of Proposition 4.1 the HNCN itera-
tion (3.5) is conditionally well-posed in the following sense: If }u0´u}L8

%
is sufficiently

small, then u1 is again a Lennard-Jones type pair potential, and there holds

}u1 ´ u}L8
%
ď C}u0 ´ u}L8

%

for some C ą 0, depending on u, ρ0, and the inverse temperature β.
Proof. According to (3.5) there holds

u1 ´ u “ u0 ´ u `
1

β

g0 ´ g

g
`

1

β
ϕ0 ,

where

}ϕ0}L8
%
ď C}u0 ´ u}L8

%

for some constant C ą 0 by virtue of (4.1), because L8% is continuously embedded in
V . It therefore remains to prove that

›

›

›

g0 ´ g

g

›

›

›

L8
%

ď C}u0 ´ u}L8
%

(4.2)

7



for some (other) suitable C ą 0.
Consider first a fixed radius r ě r0. We rewrite

gprq “ yprqe´βuprq

in terms of the cavity distribution function y, compare [7], which is known to be
bounded away from zero for small enough density ρ0 according to Proposition 3.1 in
[6]. It follows that g is bounded away from zero for r ě r0, and hence, there exist
positive constants C ą 0 such that

%prq
ˇ

ˇ

ˇ

g0prq ´ gprq

gprq

ˇ

ˇ

ˇ
ď C%prq

ˇ

ˇg0prq ´ gprq
ˇ

ˇ ď C}g0 ´ g}L8
%

ď C}u0 ´ u}L8
%
, r ě r0 ;

(4.3)

compare (4.1) again for the final estimate.
For a fixed radius r with 0 ă r ď r0, on the other hand, we use the cavity

distribution functions y0 and y corresponding to u0 and u, respectively, and rewrite

g0prq ´ gprq

gprq
“

eβuprq
`

g0prq ´ gprq
˘

yprq
.

Since y is bounded away from zero we deduce from the mean value theorem that

%prq
ˇ

ˇ

ˇ

g0prq ´ gprq

gprq

ˇ

ˇ

ˇ
ď C eβuprq

ˇ

ˇg0prq ´ gprq
ˇ

ˇ

ď C
´

ˇ

ˇy0prq ´ yprq
ˇ

ˇ ` g0prq
ˇ

ˇeβuprq ´ eβu0prq
ˇ

ˇ

¯

“ C
´

ˇ

ˇy0prq ´ yprq
ˇ

ˇ ` βg0prqe
βru

ˇ

ˇuprq ´ u0prq
ˇ

ˇ

¯

for some C ą 0 independent of r and some ru between u0prq and uprq. Note that the
latter implies that

ũ ď u0prq `
ˇ

ˇu0prq ´ uprq
ˇ

ˇ ď u0prq ` }u0 ´ u}L8
%
.

Since the cavity distribution function in L8pR`q depends locally Lipschitz continu-
ously on the pair potential in L8% (see Proposition 3.1 in [6]) it follows that

%prq
ˇ

ˇ

ˇ

g0prq ´ gprq

gprq

ˇ

ˇ

ˇ
ď C }u0 ´ u}L8

%

´

1` βg0prqe
βru
¯

ď C }u0 ´ u}L8
%

´

1` βy0prqe
β}u0´u}L8

%

¯

ď C }u0 ´ u}L8
%
, 0 ă r ď r0 ,

for some suitable constants C ą 0, provided that }u0 ´ u}L8
%

is sufficiently small.
This being independent of r P p0, r0s, we have thus achieved to establish (4.3) also for
0 ă r ď r0, and hence the proof of (4.2) is done.

Theorem 4.2 indicates that the HNCN iteration requires a better initial approxi-
mation of the true potential within the core region 0 ă r ď r0 than IHNC. Neverthe-
less, as shown in [6], if the data g are exact, then the potential of mean force,

u0 “ ´
1

β
log g , (4.4)
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which is often taken as initial guess in practice, does satisfy u0 ´ u P L8% , which
means that the assumptions of Theorem 4.2 are not too far-fetched. We have used
the potential of mean force in all our experiments (with the simulated, i.e., noisy
radial distribution function g as input), and both HNCN and IHNC performed well
with this choice, see Section 7.

5. Numerical discretization. Compared with IBI the only additional difficulty
in a numerical implementation of HNCN and IHNC consists in computing ϕk of (3.5b).
To simplify notation let us denote by

T “ pI `Aq´2p2I `AqA (5.1)

the operator occuring in (3.5b). Recall that A corresponds to a three-dimensional
convolution integral with ρ0 times the radially symmetric extension of the pair corre-
lation function h “ g ´ 1 as convolution kernel, cf. (2.6). The natural framework for
discretizing A and T is therefore the Fourier space, using the representation

pfpωq “
2

ω

ż 8

0

r fprq sinp2πrωqdr (5.2a)

for the three-dimensional Fourier transform of the radially symmetric extension of f P
L8% , where ω ą 0 is the absolute value of the three-dimensional frequency. Likewise,

we can compute f from pf by using the formula

fprq “
2

r

ż 8

0

ω pfpωq sinp2πrωqdω . (5.2b)

To implement ϕ “ Tf for f P L8% we therefore need to determine pf and the corre-

sponding representation ph for h, form

pϕ “
2` ρ0

ph
`

1` ρ0
ph
˘2 ρ0

ph pf , (5.3)

and transform back using (5.2b) to obtain ϕ.
In order to achieve reasonable accuracy of the low frequencies of the Fourier

transform of h, the simulation box and the particle count need to be sufficiently large.
Generally this implies that the radial distribution function is being sampled on a
larger radial interval than is used for tabulating the pair potential. To be specific, we
will assume that the radial distribution function g is given on a grid

∆ “ trj “ j∆r : j “ 1, . . . ,mu (5.4)

with m grid points and spacing ∆r ą 0, and that hprq is negligible for r ą rm. On
the other hand, the potentials uk are being tabulated on the subgrid

∆1 “ tri “ i∆r : i “ 1, . . . , nu Ă ∆ (5.5)

with n ď m grid points and the understanding that ukprq “ 0 for r ě rn. Note that
from a theoretical point of view n ą m would not make much sense, while n “ m
would be just fine. However, to reduce computational costs of the forward simulation,
a choice of n ă m is very reasonable and natural; a good value of the associated
cut-off parameter rn, however, is largely a matter of experience.
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For a generic function f P L8% which is vanishing for r ą rm and which has been
sampled on ∆ the integral (5.2a) can be discretized with the trapezoidal quadrature
rule. Introducing the odd extension

ψprq “

#

rfprq , r ě 0 ,

rfp´rq , r ă 0 ,

of r ÞÑ rfprq to the whole real line (and to the extended grid with nonpositive grid
points rj with j ď 0), and taking into account that ψprjq “ 0 for |j| ą m, the
quadrature approximation of (5.2a) can be written as

pfpωq «
1

iω

´

∆r
m`1
ÿ

j“´m

ψprjqe
´2πiωrj

¯

. (5.6)

This approximation is in good agreement with the true values of the Fourier transform
of f as long as

0 ď ω ď ω˚ :“
1

2∆r
,

provided that f is negligible for r ą rm and pf is negligible for ω ą ω˚, cf, e.g.,
Henrici [11, § 13.3]. Note that if the term in brackets in (5.6) is to be evaluated at
the 2pm` 1q frequencies

ωl “
l

m` 1
ω˚ , l “ ´m . . . ,m` 1 ,

then this can be implemented efficiently with a one-dimensional fast Fourier transform
(fft) of length 2pm` 1q, simultaneously for all these frequencies.

Alternatively, a matrix representation T P Rmˆm of the operator T of (5.1) can
be assembled as

T “ F´1HF , (5.7)

where F corresponds to the Fourier matrix which takes rfprjqs
m
j“1 onto r pfpωlqs

m
l“1

given by (5.6), and H P Rmˆm is a diagonal matrix with the entries

hll “
2` ρ0

phpωlq
`

1` ρ0
phpωlq

˘2 ρ0
phpωlq , l “ 1, . . . ,m ,

on its diagonal; compare (5.3). Note that the multiplication of T with the vector
g ´ gk of samples of g ´ gk results in an m-dimensional vector with the values of ϕk
of (3.5b) over ∆. If ∆1 is a true subset of ∆, then we simply cut off the redundant
entries when updating the pair potential uk, as it is done in IBI.

Remark 5.1. We mention that common software like votca‡ [24] for running
IBI typically comes with additional tricks for pre- and postprocessing the relevant
quantities, which are not explicit in the recursion (3.1). The same applies to the new
schemes HNCN and IHNC; more precisely the following items have been addressed in
our implementation of (3.5) and (3.6):

‡http://www.votca.org

10



(i) The simulated radial distribution functions will be numerically zero in the
core region 0 ă r ď r0, in which case IBI as well as the new iterative schemes
(3.5) and (3.6) fail to produce a well-defined potential update for these radii;
instead, the potential uk`1 needs to be extrapolated into the core region§

by some ad hoc scheme. In our implementation we fit and extrapolate the
computed values of uk`1 in the core region to a function of the form a1r´α

1

with appropriate positive parameters a1 and α1.
(ii) After each iteration the new potential uk`1 is shifted by an additive constant

to satisfy uk`1prnq “ 0, so that the extension of uk`1 by zero for arguments
r ą rn is continuous.

(iii) We have used gromacs, version 2016.3 [1, 12] for the numerical computation
of gk “ Gpukq, with interpolated input values of uk on a grid which is ten
times finer than ∆1.

We finally emphasize that our implementation of HNCN and IHNC uses no postpro-
cessing (e.g., smoothing) of the computed radial distribution functions, nor of the
approximate potentials. ˛

6. Extensions of the method. Due to the many simplifying modeling assump-
tions, and also due to inevitable noise in the given data, the inverse Henderson problem
may not have a solution, and even when, it may not be appropriate to determine a
pair potential u which satisfies Gpuq “ g exactly. Rather, one should think of the
problem as of an optimization problem

minimize }g ´Gpuq}

in some suitable norm, where the goal is to find an approximate minimizer only.
In the context of our generalized Newton approach the obvious way of treating this
minimization problem numerically is via a Gauss-Newton type scheme, where each
iteration consists of solving the linearized minimization problem

minimize }g ´ gk ´G
1pukqv} (6.1)

before updating uk`1 “ uk ` v; compare, e.g., Lyubartsev et al [18] or Murtola et
al [21]. In view of (3.4) we again propose to replace G1pukq by U 1pgq´1. With the
same discretization as in Section 5 this leads to the minimization problem

minimize }W pg ´ gk ´U´1vq}2 (6.2)

over v P Rm, where } ¨ }2 denotes the standard Euclidean norm in Rm, W P Rmˆm
is an appropriate nonnegative diagonal weighting matrix, and

U “ ´
1

β
D´1

`
1

β
T (6.3)

is the discretized approximation of U 1pgq, cf. (3.4); here, D is the diagonal matrix
with the samples of the given radial distribution function on its diagonal and T is
defined in (5.7).

In view of Remark 5.1 there are some numerical problems with the definition (6.3)
of U : As the samples of the radial distribution function in the core region are numer-
ically zero, the matrix D will fail to be invertible; but since the potential is extended

§For the core region the radius r0 is chosen in each step as the smallest grid point of (5.4), such
that g and gk are nonzero for every rj ą r0.

11



by extrapolation into the core region, anyway, we neither need to keep track of the
corresponding samples of g nor of the respective function values of uk. So, by some
abuse of notation, we assume in the sequel that the grid ∆ only consists of the grid
points rj in the exterior of the core region; we still denote the number of grid points
in ∆ by m. The resulting restriction of D is invertible and defines a corresponding
restriction of U to the exterior of the core region.

As has been mentioned in the previous section, ∆ will typically have more grid
points than ∆1, and similar to above we assume below that ∆1 consists of the first
n ă m grid points rj of ∆ outside the core region. If ∆1 Ĺ ∆, then we only admit
vectors v P Rm for updating the pair potential which have zero entries for grid points
rj P ∆z∆1. Moreover, for several reasons we prefer to restrict admissible vectors v for
(6.2) somewhat further by substituting

v “ A0w

with w P Rn´1 and

A0 “

«

A

O

ff

, where A “ ∆r

»

—

—

—

—

–

1 1 ¨ ¨ ¨ 1
0 1 ¨ ¨ ¨ 1
... 0

. . .
......

...
. . . 1

0 0 ¨ ¨ ¨ 0

fi

ffi

ffi

ffi

ffi

fl

P Rnˆpn´1q (6.4)

stands for a discrete (negative) antiderivative operator and O is an pm´ nq ˆ n zero
block; accordingly, v corresponds to a piecewise linear function v over ∆ which is
vanishing on ∆z∆1 and whose piecewise constant derivative on the grid intervals of
∆1 is given by the entries of ´w.

We thus determine the vector uk`1 with the values of uk`1 over ∆1 by considering
the weighted linear least squares problem

minimize
›

›W pg ´ gk ´U´1A0wkq
›

›

2
, (6.5a)

to be solved for wk P Rn´1, and then update

uk`1 “ uk ` Awk . (6.5b)

This we call the hypernetted-chain Gauss-Newton iteration (HNCGN).
One advantage of minimizing (6.5a) over w “ wk rather than v as in (6.2)

is that this adds some correlations to neighboring function values of the pair po-
tentials; another advantage is that we automatically respect the normalization con-
dition uk`1prnq “ 0, and therefore we avoid the extra shifting step mentioned in
Remark 5.1 (ii).

With HNCGN it is easy to impose additional constraints on uk`1. As a simple
example we treat the case that a certain value p for the pressure of the system is
being imposed, because this particular constraint has often been addressed in the
literature as a possibility for improving the thermodynamical properties of coarse-
grained models resulting from IBI or IMC iterations, cf., e.g., [4, 14, 21, 22, 23, 32].
In the thermodynamical limit the pressure of the system is given by the virial integral

p “
ρ0

β
´

2

3
πρ2

0

ż 8

0

u1prqgprqr3 dr ,
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provided that the pair potential is differentiable and that its derivative decays suf-
ficiently rapidly near infinity; compare [7]. One way to enforce (approximately) the
same pressure for the ensemble corresponding to the pair potential uk`1 – assuming
that the simulated radial distribution function gk`1 is sufficiently close to the true
one – is by constraining uk`1 to satisfy

2

3
πρ2

0

ż 8

0

´

u1kprq ´ u
1
k`1prq

¯

gprqr3 dr « p´ pk ,

where pk is the pressure corresponding to uk; the latter can either be evaluated
within the simulation run for evaluating Gpukq or by numerical quadrature of the
corresponding virial integral. Since the entries wi,k of wk approximate the values of
u1k ´ u

1
k`1 over the interval pri, ri`1q, the left-hand side of the previous equation can

be discretized as

2

3
πρ2

0

n´1
ÿ

i“1

wi,k
gpriq ` gpri`1q

2

r4
i`1 ´ r

4
i

4
“: `Twk

for a corresponding vector ` P Rn´1, and this leads to a discrete constraint of the
form

`Twk “ p´ pk (6.5c)

for all wk P Rn´1, over which (6.5a) is to be minimized.
The standard recommendation for dealing with the constrained minimization

problem (6.5a), (6.5c) numerically is to solve (6.5c) for one of the entries in wk,
wi0,k say, and to use the resulting expression to eliminate this variable from (6.5a);
cf., e.g., Björck [3]. To achieve maximal stability i0 should be the very index for
which the corresponding element `i0 of ` P Rn´1 has maximal modulus. Once wi0,k
has been eliminated, (6.5a) becomes an unconstrained minimization problem over the
remaining entries of wk, the solution of which is given by the corresponding normal
equation system, cf. [3]. The final algorithm is slightly more expensive than IHNC,
but the extra cost is negligible compared to the overall costs of an individual iteration
of either of the schemes.

It remains to discuss the choice of the weighting matrix W in (6.1). A natural
candidate is W “ I, the m ˆ m identity matrix. Alternatively, since it is known
that g ´ gk “ h ´ hk P L

8
% for some exponent α ą 3, one could also think of using

W to enforce that the discrete approximation of g ´ gk shows a similar qualitative
behavior for larger radii. In this case the diagonal entries wjj of W should increase
with increasing index, e.g.,

wjj “ p1` r2
j q
γ , 1 ď j ď m, (6.6)

for some exponent γ ą 0. However, we found that the choice (6.6) for γ ą 0 lent too
much flexibility to the values of ukprq for radii r near the core region, so that the com-
puted potentials became worse eventually. In our numerical results in Subsection 7.3
we therefore have used W “ I throughout.

7. Numerical results. We now present some numerical results to illustrate the
performance of the new methods as compared to IBI and IMC. For this we concentrate
on the results of IHNC; in all our tests we did not see significant differences between
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IHNC and HNCN, but the theoretical results of Section 4 indicate that IHNC may
be slightly more robust.

Our benchmark problems include simulated data for a truncated and shifted
Lennard-Jones potential as well as measured data for liquid argon taken from the
literature. We mention that for the latter problem, in particular, our mathematical
assumption that the system be in its gas phase, is violated. As it turns out this does
not affect the applicability of our algorithms, but we have no theory to explain this
observation.

In all our numerical examples we have used gromacs to evaluate the forward
operator G with a molecular dynamics simulation: to be specific, we have used the
leap-frog integrator with time step dt “ 0.001 (in dimensionless units correspond-
ing roughly to 2 fs in real units), coupled to the Langevin thermostat with a unit
inverse friction constant to simulate ensembles with N “ 2000 particles and periodic
boundary conditions, i.e., pN,V, T q-ensembles. In each iteration the ensemble has
been equilibrated with 106 timesteps (corresponding to about 2 ns) starting from a
distribution of the particles on a regular lattice, and afterwards the radial distribu-
tion function has been determined from 3500 uncorrelated snapshots of the system
(the decorrelation times between two snapshots depends on the system and spans ap-
proximately 2000 time steps, i.e., 4 ps). For IMC the same snapshots have also been
used to set up the sensitivity matrix corresponding to G1. Remark 5.1 applies to our
implementations of IBI and IMC in the same way.

7.1. Truncated and shifted Lennard-Jones fluids near phase transitions.
Let

uLJ “ 4ε
`

pσ{rq12 ´ pσ{rq6
˘

, r ą 0 , (7.1)

be the classical Lennard-Jones potential with parameters ε, σ ą 0. Taking ε “ σ “ 1,
i.e., working in reduced (dimensionless) units with Boltzmann constant kB “ 1, we
consider the truncated and shifted Lennard-Jones potential

uprq “

#

uLJprq ´ uLJp2.5q , 0 ă r ă 2.5 ,

0 , r ě 2.5 ,
(7.2)

i.e., the Lennard-Jones potential is shifted, so that it becomes zero at r “ 2.5, and
then extends continuously by zero for r ě 2.5. The corresponding ensemble is studied
at two different state points, namely

(a) the critical point with counting density ρ0 “ 0.304 and temperature T “

1.316, cf. Smit [28],
(b) a state point in the liquid phase close to the triple point with counting density

ρ0 “ 0.8 and temperature T “ 1, cf. Hansen and Verlet [8].
In both cases the radial distribution function is sampled on an equidistant grid with
mesh width ∆r “ 0.02; for state point (a) we have data for m “ 463 grid points
covering a radial interval r P p0, 9.26s, for state point (b) we have m “ 335 grid points
within the interval p0, 6.7s. The latter interval is smaller than the former one, because
the density of the system is larger, and hence the simulation box is smaller. The
given data are displayed as little circles in Figure 7.1. Note that the pair correlation
function h “ g´ 1 decays much faster at the critical point than near the triple point;
as a consequence the inverse problem is much more difficult near the triple point.

To solve the inverse problem we have tabulated the approximate potentials on
the first n “ 125 grid points ri P p0, 2.5s of the same grid. Because of the particular
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Fig. 7.1. Truncated and shifted Lennard-Jones fluids: radial distribution functions vs. radius
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Fig. 7.2. Truncated and shifted Lennard-Jones fluids: data fit vs. iteration count

definition of the IBI and IMC schemes, cf. (3.1) and (3.2), only those n grid points
of the radial distribution function have been used for these two methods; this radial
interval is indicated by the dashed lines in Figure 7.1. For IHNC we have used the full
data displayed in Figure 7.1. In all three iterative schemes the same potential (4.4)
of mean force has been used as initial guess.

The approximate radial distribution functions obtained by IBI, IHNC, and IMC,
respectively, are also shown in Figure 7.1. Essentially, all three functions are on top
of each other in both plots, and they constitute perfect fits of the given data for each
of the two state points. But IHNC and IMC require far less iterations to achieve this
goal: Figure 7.2 provides the corresponding iteration histories of the data fit, i.e., the
graphs of the functions

k ÞÑ }Gpukq ´ g}8{}Gpu0q ´ g}8

for all three individual iteration schemes and for each of the two state points, respec-
tively; here, }Gpukq ´ g}8 measures the maximal absolute error between all given
measurement data and the corresponding approximations in the exterior of the core
region. (For some obscure reason this measure of the data fit is slightly increasing
for IBI and IMC in the first iteration.) From these plots it can be seen that IHNC
requires about five iterations at the critical point and eleven iterations near the triple
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Fig. 7.3. Truncated and shifted Lennard-Jones fluids: error (7.4) vs. iteration count

point to reach the global minimum of the data fit, while IMC requires nine (or five)
iterations at the critical point and seven iterations near the triple point; the data
fit of the two methods is comparable, eventually. IBI, on the other hand, needs ten
iterations at the critical point and more than twenty near the triple point.

While the data fit is a straightforward indicator of the performance of the iterative
schemes, the true error history is the really relevant quality measure. However, the
latter is not available in practice. It is the advantage of this particular example that
the true solution is known, so that the error history can be computed. For a particular
potential ru given on the grid ∆1 we define the error measure

εpruq “
´

∆r
n
ÿ

i“1

gpriq
`

rupriq ´ upriq
˘2
r2
i

¯1{2

, (7.3a)

which approximates the weighted L2 norm

εpruq «
´

ż 8

0

gprq
`

ruprq ´ uprq
˘2
r2 dr

¯1{2

(7.3b)

of the error ru ´ u. This norm can be motivated by a more detailed analysis of the
operator G, but this is beyond the scope of this paper; here we only emphasize that
the factor g in (7.3b) compensates for the divergence of the potentials as r Ñ 0.

Figure 7.3 shows the relative error

k ÞÑ εpukq{εpu0q (7.4)

as a function of the iteration count for all iterative schemes and both state points,
respectively. The plots confirm that the particular iterates recommended above do
indeed provide good approximations of the true truncated and shifted Lennard-Jones
potential. Accordingly, IMC and IHNC both converge very rapidly in much the same
number of iterations, whereas IBI is doing significantly worse. To illustrate this further
the corresponding reconstructions for the more difficult problem near the triple point
are shown in Figure 7.4: This plot displays the 11th IHNC iterate, the 7th IMC
iterate and the 50th (!) IBI iterate, together with the true pair potential as a black
solid line (marked “LJ”) and the potential u0 of mean force as a dotted line. As can
be seen the IHNC and IMC approximations are hardly distinguishable from the true
truncated and shifted Lennard-Jones potential, while even after fifty iterations IBI is
still relatively far off.
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Fig. 7.5. Liquid argon: data fit vs. iteration count

7.2. Liquid argon. As a second example we have determined approximate pair
potentials for argon, using measurements by Schmidt and Tompson [26] for a state
point with temperature T “ ´125˝ C and mass density 0.982 g{cm3 in the liquid
phase near the critical point.¶ The corresponding data are given on an equidistant
grid‖ with m “ 200 grid points and mesh width ∆r “ 0.1 Å. The approximate pair
potentials have been tabulated on the first n “ 100 grid points of this grid, and taken
to be identically zero for r ą 10 Å.

The iteration history shown in Figure 7.5 documents that, again, IHNC and
IMC match the data much faster than IBI does: according to this plot six IHNC
(five IMC) iterations are sufficient, whereas IBI needs 39 iterations to achieve the
same accuracy. Figure 7.6 presents the corresponding approximations of the radial
distribution function and Figure 7.7 the corresponding potentials, together with the
potential of mean force as dotted line. As before, all computed approximations are
very close to each other.

We have chosen argon as benchmark test case, because the interactions between

¶According to the US National Institute of Standards and Technology the critical point
of argon is located at about temperature T “ ´122.3˝ C and mass density 0.536 g{cm3; see
https://webbook.nist.gov/cgi/inchi?ID=C7440371&Mask=4.
‖For r ą 10 Å only every second data point is tabulated in [26]; the missing data have been filled

in by linear interpolation.
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Fig. 7.7. Liquid argon: approximate potentials (in units of ε) vs. radius (in Å)

argon atoms are widely considered to be well-described by the Lennard-Jones pair
potential (7.1) with parameters

σ “ 3.405 Å and ε “ 119.8 kB J ,

cf., e.g., Tuckerman [31, p. 127]. This Lennard-Jones potential is given by the thin
black line in Figure 7.7, but it differs quite a bit from our computed pair potentials.
In fact, the radial distribution function corresponding to this Lennard-Jones approx-
imation, which has also been included in Figure 7.6, does not fit the measured data
well, as can easily be seen in the magnified detail in the right-hand plot. Even the
initial approximation from the potential of mean force is doing better than that. So
for this real-world example we cannot trust this Lennard-Jones potential to be the
“ground truth” to compare our numerical results to.

7.3. The pressure constrained HNCGN scheme. Finally, we show some nu-
merical results for p-HNCGN, i.e., the pressure constrained hypernetted-chain Gauss-
Newton iteration described in Section 6. For this we have used the same data set for
liquid argon as in the previous example and have imposed the corresponding value
p “ 9918.7 kPa of the pressure reported by Mikolaj and Pings [19].

Figures 7.8 and 7.9 present the corresponding numerical results. In the left-hand
plot of Figure 7.8 we recollect the data fit history of Figure 7.5 and also show the
corresponding graph for the performance of p-HNCGN: since the latter aims for a
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best possible fit of all 200 data points gprjq, it reaches a smaller value than all other
competing methods.

The right-hand plot of Figure 7.8, on the other hand, displays the average pressure
(as returned by gromacs) of all corresponding ensembles for each individual iterate
of the respective methods. The correct value of the pressure is indicated by the dotted
horizontal line. As can be seen, except for p-HNCGN all methods fail to reproduce
this number by a factor of three or more. p-HNCGN, on the other hand, achieves an
excellent match of the target pressure after about 12 iterations.

Assessing both plots of Figure 7.8 we consider the 14th iterate of p-HNCGN to be
“optimal”, because it corresponds to the first local minimum of the data fit after hav-
ing reached a fairly accurate value of the pressure. The corresponding pair potential
is compared in Figure 7.9 with the Lennard-Jones reference and the IHNC potential
from Figure 7.7. It can be seen that the match of the pressure has a discernible
(positive) impact on the computed pair potential.

Remark 7.1. Since p-HNCGN fits the data points of the measured radial dis-
tribution function, it does provide a good fit of the compressibility κT of the fluid as
well, because the compressibility is given by the Kirkwood-Buff integral

ρ0

β
κT “ 1 ` 4πρ0

ż 8

0

hprq r2 dr ,
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which only depends on the pair correlation function h “ g´1. Therefore p-HNCGN is
able to fit both the compressibility and the pressure of a fluid to a reasonable accuracy.
In the pertinent literature this has been considered impossible when using isotropic
pair potentials, compare, e.g., Wang, Junghans, and Kremer [32]. ˛

8. Conclusion. We have determined new generalized Newton schemes for the
inverse Henderson problem, where we approximate the inverse of the Jacobian by the
functional derivative of the hypernetted-chain approximation of the pair potential.
These methods have about the same computational costs per iteration as IBI, but
need much less iterations near phase transitions. In terms of iteration counts they
are competitive to IMC, but the individual iterations are much cheaper than the IMC
ones, because no cross-correlations need to be evaluated in the numerical simulation
of the corresponding ensemble of particles. While these methods turn out to be
similar (but not identical) to the LWR scheme of Levesque, Weis and Reatto, they
are more flexible by construction, and can easily be modified, e.g., to also match the
true pressure of the target ensemble.

We finally mention that one can also use the Percus-Yevick approximation in-
stead of the hypernetted-chain approximation for the derivation of a corresponding
generalized Newton method. The resulting scheme is very similar to (3.6), the only
difference being that ϕk is replaced by ϕk{yk, where yk is the cavity distribution
function associated with the k-th pair potential uk. In our numerical experiments
we found the iteration (3.6) to perform better near phase transitions of the truncated
and shifted Lennard-Jones potentials than the corresponding Percus-Yevick recursion,
and therefore we have restricted our attention to the IHNC scheme in this work.

In future work we plan to extend our methods to binary mixtures of different
fluids.

Appendix: The Wiener lemma. For % defined in (2.3) we have shown in [6]
that the space L8% pR3q of all functions f : R3 Ñ R, for which

}f}L8
% pR3q “ ess sup

RPR3

%p|R|q
ˇ

ˇfpRq
ˇ

ˇ ă 8

constitutes a Banach algebra with respect to convolution†. We can extend L8% pR3q

to a Banach algebra W% with unit element e (given by the delta distribution at the
origin), using the canonical norm

}λe` f}W% “ |λ| ` γ}f}L8
% pR3q , λ P R, f P L8% pR3q ,

where γ ą 0 is a small enough constant to make the norm of W% submultiplicative.

The standard Wiener lemma for the Fourier transform starts with a similar con-
struction for the Banach algebra L1pR3q and states that if f P L1pR3q is such that

1` pf ‰ 0, then

p1` pfq´1 “ 1´ pc (A.1)

†Throughout this appendix we only consider functions of three variables, whether they be radial
functions, or not. If f P L8% pR3q is radially symmetric, then its representation defined in R` belongs

to the Banach space L8% introduced in (2.4). The three-dimensional Fourier transform of f P L8% pR3q

is denoted by pf .
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for some c P L1pR3q with Fourier transform pc, cf., e.g., Jörgens [15]‡. The weighted
Wiener lemma which is required for the proof of Proposition 2.1 reads as follows.

Lemma A.1. Let f P L8% pR3q be such that 1 ` pf ‰ 0. Then the function c of
(A.1) belongs to L8% pR3q. If f is a radial function, so is c.

Proof. We choose u (not to mix up with the pair potential in the remainder of
this paper) from the standard Schwartz space S, sufficiently close to f in L1pR3q so
that 1` pu ‰ 0. Then we can apply the classical Wiener lemma to deduce that there
exist c, d P L1pR3q which satisfy (A.1) and

p1` puq´1 “ 1´ pd , (A.2)

respectively. Moreover, dÑ c in L1pR3q as uÑ f in L1pR3q; see [15]. Evidently,

pd “
pu

1` pu
P S ,

and hence, d P S, and

w “ pe´ dq ˚ pu´ fq P L8% pR3q (A.3)

with

}w}L1pR3q ď
`

1` }d}L1pR3q

˘

}u´ f}L1pR3q ă 1 ,

provided u is sufficiently close to f . In (A.3) and below the symbol ˚ refers to the
standard three-dimensional convolution, i.e.,

wpRq “ upRq ´ fpRq ´

ż

R3

dpR´R1q
`

upR1q ´ fpR1q
˘

dR1 , R P R3 .

Since }w}L1pR3q has been shown to be less than 1, Corollary 4.3 in [6] allows to conclude
that the series

WΣ :“
8
ÿ

n“1

Wn (A.4)

of the n-fold autoconvolutions Wn of w converges in L8% pR3q, and hence,

c0 :“ d´WΣ ` d ˚WΣ P L8% pR3q .

It turns out that this very function c0 coincides with c, for we have

pc0 “ pd ´ p1´ pdq
pw

1´ pw
“

pd´ pw

1´ pw
,

and when inserting (A.3) and (A.2) it follows that

pc0 “
pd´ p1´ pdqppu´ pfq

1´ p1´ pdqppu´ pfq
“

pu´ ppu´ pfq

1` pu´ ppu´ pfq
“

pf

1` pf
“ pc , (A.5)

‡Note that we have deliberately denoted this function by c; in fact, if h is the radially symmet-
ric extension of the pair correlation function and if f “ ρ0h, then c{ρ0 coincides with the direct
correlation function in the Ornstein-Zernike relation (2.7); compare (A.5).
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as has been claimed. This shows that c P L8% pR3q.

If f is a radial function, so is pf and also pc according to (A.5). Hence, c is a radial
function, too.

Motivated by (A.5) we simply write

c “ f ˚ pe` fq´1 (A.6)

for the solution c of (A.1) in the sequel. For the ease of completeness we also include
the following result on continuous dependence of c P L8% pR3q.

Lemma A.2. Let f P L8% pR3q satisfy the assumptions of Lemma A.1, and let c be
given by (A.6). If fk P L

8
% pR3q is sufficiently close to f in L8% pR3q, then the Ornstein-

Zernike relation (A.1) with f replaced by fk has a well-defined solution ck P L
8
% pR3q,

and there holds

}ck ´ c}L8
% pR3q Ñ 0 as }fk ´ f}L8

% pR3q Ñ 0 .

Proof. We write

pe` fkq
´1 “ pe` fq´1 ˚ pe` wkq

´1

with

wk “ pe` fq´1 ˚ pfk ´ fq , (A.7)

and note that }wk}L1pR3q ď q ă 1 for }fk ´ f}L8
% pR3q sufficiently small. Using (A.1) it

follows that

ck “ fk ˚ pe` fkq
´1 “ fk ˚ pe` fq

´1 ˚ pe` wkq
´1

“ fk ˚ pe´ cq ˚ pe` wkq
´1 “ fk ˚ pe´ cq ˚ pe`WΣ,kq

“ fk ´ fk ˚ c` pfk ´ fk ˚ cq ˚WΣ,k , (A.8)

where WΣ,k is the series (A.4) of the n-fold autoconvolutions of wk. Note that

}WΣ,k}L8
% pR3q ď C}wk}L8

% pR3q (A.9)

for some C ą 0 which only depends on the upper bound q of }wk}L1pR3q, cf. [6].
Rewriting c as f ˚ pe´ cq by virtue of (A.1) and (A.6), we conclude from (A.8) that

ck ´ c “ fk ´ f ´ pfk ´ fq ˚ c ` pfk ´ fk ˚ cq ˚WΣ,k ,

and hence, the assertion follows from (A.9) and (A.7).
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