
Adjoint-based inversion for porosity in shallow reservoirs using pseudo-transient
solvers for non-linear hydro-mechanical processes

Georg S. Reubera,b,∗, Lukas Holbachc, Ludovic Rässd,e,f

aJohannes Gutenberg University Mainz, Institute of Geosciences, Mainz, Germany
bMax Planck Graduate Center, Mainz, Germany

cJohannes Gutenberg University Mainz, Institute of Mathematics, Mainz, Germany
dStanford University, Geophysics Department, Stanford CA, USA

eLaboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Zurich, Switzerland
fSwiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland

Abstract

Porous flow is of major importance in the shallow subsurface, since it directly impacts on reservoir-scale processes
such as waste fluid sequestration or oil and gas exploration. Coupled and non-linear hydro-mechanical processes
describe the motion of a low-viscous fluid interacting with a higher viscous porous rock matrix. This two-phase
flow may trigger the initiation of solitary waves of porosity, further developing into vertical high-porosity pipes or
chimneys. These preferred fluid escape features may lead to localised and fast vertical flow pathways potentially
problematic in the case of for instance CO2 sequestration. Constraining the porosity and the non-linearly related
permeability distribution in such environments is a major challenge. Although seismic imaging methods accurately
localise the high-porosity chimneys in the inverted wave-speed field, the conversion to porosity is not straightforward.
We develop an inversion framework to reconstruct the unknown porosity field using relevant observable quantities
such as subsurface fluid fluxes. We introduce the adjoint framework for the two-phase flow equations, which allows
for efficient calculations of the pointwise gradients of the flow solution with respect to the porosity. We then use
the gradients in a gradient descent method to invert for the pointwise porosity. We solve the forward and the adjoint
equations using an iterative matrix-free pseudo-transient approach with the finite difference method. The proposed
parallel solving procedure executes optimally on the latest many-core hardware accelerators such as GPUs. Numerical
results show that an inversion for porosity is challenging if data is sparse since the porosity is very locally sensitive
to the fluid flux. We introduce the concepts of sensitivity kernels as employed in seismology for the set of two-phase
equations and suggest this approach as a standard for future studies.

Keywords: Two-phase flow, Adjoint gradients, Inversion, Pseudo-transient solver, GPU accelerators

1. Introduction

The two-phase flow equations describe the composite motion of two viscous fluids that can be arbitrarily distinct
in their behaviour. Geological applications of two-phase flow dynamics are for instance the motion of magma (linear
viscosity of 1−103 Pa.s) in the pore space of host rocks (non-linear viscosity of 1018−1030 Pa.s) [e.g. 1, 2, 3, 4, 5, 6, 7],
or buoyant fluids in the pore space of shallow sedimentary rock stacks leading to the formation of fluid escape pipes5

or chimneys [e.g. 8, 9, 10, 11, 12, 13]. Thus, solving the two-phase flow equations is crucial if one is to understand
and predict the behaviour of the pore-fluid interaction with the porous matrix deformation, i.e. capturing the hydro-
mechanical processes and interactions. [14] has shown that the pore fluid, which is less dense than the host rock, can
potentially create a pathway through the host rock breaching toward the seafloor. The buoyant pore fluid generates
a continuous and localised force on the porous matrix that undergoes creep, opening and closing pore space at rates10

∗Corresponding author
Email address: reuber@uni-mainz.de (Georg S. Reuber)

Preprint submitted to Journal of Computational Physics August 18, 2020

proportional to the matrix’s bulk decompaction and compaction viscosity, respectively [3, 15, 16, 14]. The resulting
wave-like propagation of an elevated porosity anomaly – also referred to as a porosity wave – is sensitive to the
difference in decompaction and compaction viscosity values. This asymmetry leads to the formation of elongated
high-porosity chimneys responsible for creating vertical fluid escape pathways in the subsurface. An interesting
problem is locating these channels and determining their porosity and permeability in order to constrain the prediction15

of potential fluid migrations. Finding these channels can be achieved by seismic imaging. However, this method
is neither able to determine the channels’ porosity, nor the viscosity and density of the pore fluid, which can be
interesting for resources exploration (oil and gas) or for monitoring CO2 sequestration operations. An automatic
inversion approach can help to constrain the porosity as well as various material parameters of the fluid and the
porous matrix.20

Our first aim is to develop an inversion framework for the system of non-linear hydro-mechanical equations
[15, 14]. Instead of performing many forward simulations or a direct parameter search [e.g. 17, 18], we compute the
gradient of a given physical variable (here, the fluid flux and solid velocity) with respect to the porosity at any point
in the model domain. As a result we get a new porosity field as update, unraveling information about the channel’s
geometry as well as its porosity. To make this approach tractable, we develop an adjoint framework, both in the25

strong and weak form, to efficiently calculate the gradients. This adjoint approach has been applied in many fields in
geosciences, for instance to Stokes problems [e.g. 19, 20, 21, 22] or to the wave equation [e.g. 23, 24].

Our second aim is to test whether iterative matrix-free pseudo-transient (PT) solvers [e.g. 25] can be used to solve
the adjoint equations. These solvers rely on iterating on physically-motivated numerical transient terms to simultane-
ously converge both the linear and the non-linear problem. Second-order methods prevent a non-scalable growth of30

the iteration count [26] with increase in numerical grid resolution. The method has the advantage of producing short
and concise codes that do not rely on matrix-vector operations. The resulting codes exhibit a close to optimal scalabil-
ity on many-core accelerators such as graphical processing units (GPUs) and multi-GPU implementations, which we
will demonstrate. One limitation of this approach is the solvers’ sensitivity to the iterative time-step criterion and the
tuning of the second-order damping coefficient. We provide the methodological foundation and the proof of concept35

that a pseudo-transient approach is viable to solve the two-phase adjoint equations providing a matrix-free and totally
scalable inversion procedure. We present a finite-difference based (FD) pseudo-transient solver and verify it using a
FEniCS developed [27] finite element (FE) code. We limited the calculations to two dimensions (2-D) in space for
augmented methodological conciseness.

Our third aim is to introduce the concept of sensitivity kernels for the non-linear hydro-mechanical equations in40

analogy to recent developments in the field of computational seismology with application to the wave equation [e.g.
23]. These kernels only require a small modification to the adjoint equation to enable the calculation of the gradient of
the integral mean of the forward solution with respect to an input material parameter, here the pointwise porosity. They
reveal the ‘resolution’ or ‘sensitivity’ of the current forward solution (in a chosen subdomain) to the input parameters,
providing an additional tool to highlight the robustness of interpretations made based on the forward solution. Owing45

to the low numerical cost of the evaluation of the adjoint equation (there is only one additional linear solve) these
kernels can be calculated after every forward simulation, i.e. for each time-step. In contrast to the sensitivity kernels
derived from the linear wave equation, the ones we present in the two-phase framework are neither invariant to the
evolution of the forward solution nor to the initial conditions, owing to the non-linear nature of the underlying equation
system.50

Finally, the Appendix contains the proof-of-concept study of the adjoint derivation and solution, including the
calculation of the sensitivity kernels, with a PT-FD and a FE FEniCS solver presented for the 1-D non-linear diffusion
equation. The codes produced for the Appendix, which illustrate the methods for this particular example, can be
accessed from the Bitbucket repository: https://bitbucket.org/hydromechanics_adjoint_pt/hm_adj_pt/
src/master/. The GPU-based routines can be accessed upon request to the authors.55

2. The governing equations and the numerical methods

2.1. The two-phase flow equations
We describe the steady flow solution of a viscous fluid in an incompressible viscously deforming porous medium

on an open and bounded rectangular domain Ω ⊂ Rd, d ∈ {2, 3}, by the following system of partial differential
equations (see [15] for derivation):60

2

https://bitbucket.org/hydromechanics_adjoint_pt/hm_adj_pt/src/master/
https://bitbucket.org/hydromechanics_adjoint_pt/hm_adj_pt/src/master/
https://bitbucket.org/hydromechanics_adjoint_pt/hm_adj_pt/src/master/

div us = −
p − p f

η(1 − Φ)
, (1)

div u f =
p − p f

η(1 − Φ)
, (2)

divσ = ρged, (3)

u f = −κ
(
∇p f + ρ f ged

)
, (4)

representing the mass (1) - (2) and the momentum (3) - (4) balance equations for the solid and the fluid, respectively.
The deviatoric stress tensor σ is given by (5), ρ is the bulk density, g the gravitational acceleration, ed the d-th unit
vector in Rd, us is the solid velocity, p is the total pressure, p f is the fluid pressure, η is the bulk viscosity of the
two-phase system, Φ is the porosity, u f is the fluid flux (or velocity), κ is the effective permeability, ρ f is the fluid
density, and ρs is the solid density. A set of constitutive relationships closes the system of equations:

σ = σ(us, p) = 2µsε̇(us) − pI, (5)

ρ = ρ f Φ + ρs(1 − Φ), (6)

η =
µs

Φ
C

(
1 +

1
2

(
1
R
− 1

) (
1 + tanh

(
−

p − p f

λ

)))
, (7)

κ = κ0µ
−1
f

(
Φ

Φ0

)n

, (8)

where µs is the solid shear viscosity, ε̇(us) =
(
∇us + ∇uT

s

)
/2 is the deviatoric strain rate tensor, I is the identity matrix,

C is the shear viscosity ratio, R is the compaction strength ratio for the bulk viscosity, λ is the effective pressure
transition zone, κ0 is the constant reference permeability, µ f is the fluid viscosity, Φ0 is the constant background
porosity, and n = 3 is the permeability power-law exponent. Notably, the two-phase equations (1) - (4) are non-linear
since the bulk viscosity η depends on the effective pressure and the porosity. An evolution equation for the porosity
finalizes the system of two-phase equations:

∂Φ

∂t
= (1 − Φ) div us . (9)

In this work, we only consider a steady solution of the two-phase flow problem after a given number of time-steps, i.e.
we neglect the porosity evolution and advection. The forward problem would be transient and thus computationally
more expensive, and the adjoint problem would therefore be transient backward in time. Our aim is to describe the
general framework, provide the set of two-phase adjoint equations, and investigate the performance of the overall
inversion framework, leaving the transient problem for future studies. Further technical details regarding the two-65

phase flow equations with application to spontaneous fluid flow localisation can be found in [25].
To close the system of partial differential equations, we define boundary conditions on the boundary Γ = Γsides ∪

Γtop∪Γbottom of Ω. We employ a free slip condition and no normal flow on the entire boundary for the Stokes problem,
using no normal flux on the sides and constant pressure on the top and bottom for the Darcy flow problem:

us · ν = 0 on Γ, (10)
T (σν) = 0 on Γ, (11)

u f · ν = 0 on Γsides, (12)
p f = p0 on Γtop, (13)
p f = p1 on Γbottom, (14)

where ν denotes the outward normal vector, T = I − ννT the tangential projection, and p0, p1 ∈ R are constants. The
primary and constant input variables are summarised in Table 1.

3

Next, we derive the weak form of the two-phase system of equations. We will use this weak formulation to
derive the adjoint equations in Section 2.3. The first step is to multiply equations (1) - (4) with sufficiently smooth test
functions q, q f , vs and v f respectively. Here, vs needs to satisfy (10) and q f needs to satisfy the homogeneous versions
of (13) and (14) (i.e. q f = 0 on Γtop ∪ Γbottom), whereas the other boundary conditions are natural. We integrate the
equations over the domain Ω followed by integration by parts and the addition of the equations. Defining the operators

a(us, p,u f , p f ; vs, q, v f , q f) =

∫
Ω

2µsε̇(us) : ε̇(vs) dx −
∫

Ω

p div vs dx

−

∫
Ω

q div us dx −
∫

Ω

q
p − p f

η(1 − Φ)
dx

−

∫
Ω

u f · v f dx −
∫

Ω

κv f · ∇p f dx

−

∫
Ω

∇q f · u f dx −
∫

Ω

q f
p − p f

η(1 − Φ)
dx

(15)

and

`(vs, q, v f , q f) = −

∫
Ω

vs · ρged dx +

∫
Ω

κv f · ρ f ged dx, (16)

the weak form of (1) - (4) is therefore: Find z = (us, p,u f , p f) such that

a(z,w) = `(w) (17)

for all test functions w = (vs, q, v f , q f).

2.2. The inverse problem70

Because the porosity in fluid-saturated subsurface regions may not be a direct observable, our goal is to infer the
porosity from field observations such as fluid fluxes or matrix deformation (solid velocities).

We formulate the inverse problem as an infinite-dimensional constrained least-squares optimisation problem of
the form

min
Φ
J(Φ) (18)

with

J(Φ) :=
1
2

∫
Ωobs

(
(u f − uobs

f) · ν
)2

dx, (19)

where uobs
f denotes the fluid fluxes measured on Ωobs ⊂ Ω and u f is the solution of the forward problem (17) corre-

sponding to the parameter field Φ.
There are several methods to minimise the cost functional, for instance quasi-Newton methods that include the

computation (or an approximation) of the Hessian, or a simple gradient descent (GD), which will be sufficient for the
studies we present here:

Φ(i+1) = Φ(i) − αG(Φ(i)), (20)

where i denotes the iteration index, α is a line-search parameter that we can choose according to a simple bisection or75

an Armijo line-search condition [28], and G denotes the gradient of the cost functionalJ . All gradient-based methods
require efficient computation of G, which we will address now.

4

2.3. The adjoint equations
The adjoint method is an efficient way to compute gradients of the cost function J and can be derived in multiple

ways. One way is to first discretise the equations and then apply the chain rule multiple times to obtain the final set80

of local derivatives [e.g. 19, 29]. However, since we want to compare numerical solutions with different discretisation
approaches, for consistency, it is necessary to first derive the equations in the infinite-dimensional setting and to then
discretise the equations.

Thus, we use the formal Lagrangian approach on function spaces [see e.g. 30, 31], which involves the definition
of the Lagrangian functional:

L(z,w,Φ) := J(Φ) + a(z,w) − `(w). (21)

In this method, z, w, and Φ are treated as independent variables, and the test functions serve as Lagrange multipliers
that become the adjoint variables. In the next step, we compute the variations of the Lagrangian functional with85

respect to i) the Lagrange multipliers w, which recovers the weak form of the forward problem, ii) the forward
solution z, which yields the weak form of the adjoint equation, and iii) the design parameter (in our case the porosity
Φ), which yields the weak form of the gradient of the cost function depending on the solution of the forward and
adjoint equations. In the Appendix, we apply the formal Lagrangian approach to a 1-D non-linear diffusion equation
so as to outline the workflow in a concise and simple example.90

Taking variations of the Lagrangian with respect to the forward solution variables z = (us, p,u f , p f) in direc-
tion ẑ = (ûs, p̂, û f , p̂ f) and requiring them to vanish for all ẑ yields the weak form of the adjoint equation: Find
(vs, q, v f , q f) such that

0 !
= Lz(z,w,Φ) ẑ =

∫
Ωobs

û f · ν (u f − uobs
f) · ν dx +

∫
Ω

2µsε̇(ûs) : ε̇(vs) dx −
∫

Ω

p̂ div vs dx

−

∫
Ω

q div ûs dx −
∫

Ω

q
(p̂ − p̂ f)η + (pp̂ + p f p̂ f)ψ(Φ, p, p f)

η2(1 − Φ)
dx

−

∫
Ω

û f · v f dx −
∫

Ω

κv f · ∇ p̂ f dx

−

∫
Ω

∇q f · û f dx −
∫

Ω

q f
(p̂ − p̂ f)η + (pp̂ + p f p̂ f)ψ(Φ, p, p f)

η2(1 − Φ)
dx

(22)

for all (ûs, p̂, û f , p̂ f), where (us, p,u f , p f) denotes the solution of the forward problem (17) corresponding to Φ and

ψ(Φ, p, p f) :=
µsC
Φ2λ

(
1
R
− 1

) (
1 − tanh2

(
−

p − p f

λ

))
. (23)

We emphasise that the adjoint equation (22) is linear and can therefore be efficiently solved numerically. Further, the
first term in this equation depends on the explicit form of the cost functionJ . Thus, for different data types considered
in Section 4, the only change in the cost functional and thus the adjoint equation is either the domain over which one
needs to integrate, or replacing fluid fluxes with solid velocities. The strong form of the adjoint equation is therefore
also affected, as we will explain at the end of this section.95

Differentiating L with respect to the design variable, porosity, yields the weak form of the gradient G of J in
direction Φ̂, evaluated at Φ:

LΦ(z,w,Φ) Φ̂ =

∫
Ω

Φ̂ vs ·
(
ρ f − ρs

)
ged dx −

∫
Ω

Φ̂ n κ0 µ
−1
f

Φn−1

Φn
0

v f · ρ f ged dx

−

∫
Ω

Φ̂ n κ0 µ
−1
f

Φn−1

Φn
0

v f · ∇p f dx −
∫

Ω

Φ̂
(q + q f)(p − p f)
ηΦ(1 − Φ)2 dx.

(24)

Here, one must insert the corresponding solutions (us, p,u f , p f) and (vs, q, v f , q f) of the forward problem (17) and
the adjoint problem (22), respectively.

5

As demonstrated, the Lagrangian approach naturally provides a complete set of equations to compute the gradient
of the cost function with respect to some design variable. Since FE discretisations are based on the weak form of
the equation, one can take advantage of equations (17), (22) and (24), choose appropriate shape functions and solve
the systems to retrieve the gradient in a straightforward way. On the other hand, other discretisation techniques, for
instance FD methods, require the strong form of the equation that can be obtained by isolating the test functions
through integration by parts. Thus, the strong form of the adjoint equation is:

divσ(vs, q) = 0, (25)

−div vs = (q + q f)
η + pψ(Φ, p, p f)

η2(1 − Φ)
, (26)

v f =

−∇q f + ed(u f − uobs
f) · ed on Ωobs

−∇q f on Ω \Ωobs
, (27)

−div (κv f) = (q + q f)
η − p f ψ(Φ, p, p f)

η2(1 − Φ)
, (28)

with boundary conditions defined as:

vs · ν = 0 on Γ, (29)
T (σ(vs, q) ν) = 0 on Γ, (30)

κv f · ν = 0 on Γsides, (31)
q f = 0 on Γtop ∪ Γbottom. (32)

If vertical solid velocities instead of fluid fluxes are measured on Ωobs, equations (25) and (27) are replaced by

divσ(vs, q) =

ed(us − uobs
s) · ed on Ωobs,

0 on Ω \Ωobs,
(25b)

v f = −∇q f . (27b)

Independent of the data type used, the strong form of the gradient G of the cost functional J evaluated at Φ is:

G(Φ) = vs ·
(
ρ f − ρs

)
ged − n κ0 µ

−1
f

Φn−1

Φn
0

v f ·
(
ρ f ged + ∇p f

)
−

(q + q f)(p − p f)
ηΦ(1 − Φ)2 , (33)

where (us, p,u f , p f) and (vs, q, v f , q f) are the corresponding solutions of the forward equations (1) - (14) and adjoint
system (25) - (32), respectively.

Adjoint-based gradient evaluations have the advantage that the computational cost is independent of the number of100

parameters and thus offer the possibility to invert for a parameter field such as porosity, which is known to strongly vary
within an exploration area. However, gradient-based inversion methods have the general weakness that they cannot
explore the full space of a non-convex cost function but may only converge to a local minimum, which statistical
methods can overcome at significantly higher computational costs. Here, we focus on the deterministic gradient-
based inversion that could be embedded in a statistical framework in the future [e.g. 32, 33, 34].105

2.4. The numerical implementation

We discretise the presented system of equations (Sections 2.1 – 2.3) over a finite domain Ω in order to solve them
numerically. We rely on two discretisation methods: finite differences and finite elements. For each method, we
employ a different solver type. Our main contribution builds on the FD discretisation on a regular Cartesian staggered
grid using a matrix-free iterative solver we hereafter refer to as pseudo-transient (PT). This alternative and classical110

approach is particularly well suited for parallel computations due to the related low memory footprint, the high data
locality and the straightforward parallelisation on both shared and distributed memory machines [see e.g. 35, 25,

6

and references therein]. We extend the framework that solves the forward two-phase hydro-mechanical problem
introduced in [14, 25] to solve the adjoint problem in an analogous way. We benchmark the PT-FD-based calculations
against a FEniCS-based [27] FE workflow relying on matrix-based solvers. We present a specific implementation of115

a 1-D non-linear diffusion equation to showcase the MATLAB-based [36] PT-FD solution procedure and provide the
FEniCS-based FE verification in the supplementary material to this paper.

The results we present are produced using the matrix-free iterative PT-FD approach that, to our best knowledge,
has not yet been applied to solve an adjoint equation.

2.4.1. The pseudo-transient finite difference approach120

PT methods [as discussed in 25, 37] can be used to solve linear equation systems that may result from steady-state,
elliptic equations or from the linearisation of a non-linear equation. The two-phase equations, as described, represent
such a system, since they build an elliptic non-linear system of equations. The essence of the PT approach lies in
rearranging the targeted equations to a residual form and augmenting them by introducing physically-motivated tran-
sient terms. Such transient terms may, for instance, represent inertia or bulk compressibility in the Stokes momentum
and mass balance equations, respectively [see e.g. 25, 37, 38, for further details]. The main advantage is the ability
to iterate toward the steady state using these transient terms. We discretise the strong form of the forward and adjoint
equations using an FD scheme, which minimises the necessary memory usage because we use a matrix-free approach,
explicitly iterating within the pseudo-time. For instance, rearranging the momentum equation (3) in the residual form
yields

divσ − (0, ρg)T = r , (34)

where r is the residual for the momentum conservation. The solution is considered converged once the absolute error
reaches the desired accuracy threshold ε, i.e. || r || ≤ ε, retrieving an implicit solution of the original equations. We
introduce the PT term

∂us

∂τ
= r , (35)

that allows us to iterate on us using a straightforward update rule. We choose the discrete pseudo-time-step ∆τ based
on the current physical quantities, mesh size, and degree of non-linearity. This definition may represent one limitation
of the PT solver. We specifically use the following iterative pseudo-time-steps for the velocities, total pressure and the
fluid pressure equations, respectively:

∆τu =
min(∆x,∆y)2

µs(1 + β)4.1usc
, (36)

∆τp =
4.1µs(1 + β)

max(nx, ny)psc
, (37)

∆τp f =
min(∆x,∆y)2

4.1κp f sc
, (38)

where ∆x and ∆y represent the discretisation-dependent mesh size, nx and ny the corresponding number of nodes, β125

represents some numerical divergence to balance the divergence-free implementation during the transient phase, usc,
psc, and p fsc are variable scaling terms limiting the momentum, total pressure and fluid pressure iterative time-steps,
respectively, and the factor 4.1 is the 2-D explicit diffusion CFL limiter.

We employ second-order Richardson pseudo-transient iterations [26] in order to ensure that the PT iteration count
scales as close as possible to order N, where N represents the total number of grid points. The second-order PT130

forward (synthetic) solver scales to the order of N1.3 for the specific two-phase equations in 3-D [35]. The introduced
damping term arising from the second-order method sums up a significant portion of the previous rate of change to
the current rate of change at every PT iteration with a factor close to 1.0 [26, 25].

7

PT-FD solvers have significant potential for two reasons. They are less complex, and therefore faster and more
versatile to develop than implicit direct (or iterative) types of FE or FD solvers. An equal ease of development can only135

be achieved if one uses high-order libraries, such as FEniCS, which may reduce the control of the possible amount of
optimisation. PT-FD solvers unleash their full potential when targeting the current and future high-performance and
supercomputing parallel hardware accelerators, such as GPUs.

We show that the PT-FD method is a viable approach to solving the adjoint equation, paving the way for a high-
performance parallel GPU-based framework implementation. We will now demonstrate the robustness of the proposed140

FD discretisation. More detailed information about the forward solution of the two-phase equations using a PT scheme
can be found in [25].

2.4.2. The finite element method
In the finite element method (FEM) [39], one seeks a solution to the weak form (17) of the underlying system of

partial differential equations, including all necessary boundary conditions and constitutive relationships. The numer-145

ical solution of the weak form requires an appropriate choice of test functions, for instance piecewise polynomials
of arbitrary order. An advantage of the FE method is that the computation is carried out on a reference element of
finite size in an arbitrary coordinate system, which allows for a fairly simple implementation of complex meshes com-
pared to FD-based methods. However, this comes with the additional implementation effort of non-trivial numbering
schemes and transformation functions. FEniCS [27] is a high-level software tool that offers a Python interface to150

lower-level parallel solver libraries such as PETSc [40] while, to a given extent, taking care of the underlying paral-
lelisation, numbering schemes, meshing, and implementation of various test function types. One can develop an FE
solver for a system of partial differential equations with comparatively little effort.

We use a standard Q2P1 element (also known as Taylor-Hood element [41]) for the Stokes equations (1 and 3),
a zeroth-order Raviart-Thomas element [42] for the Darcy fluid fluxes (4) and a first-order Lagrange element for the155

fluid pressure (2) in our FEniCS-based benchmarking workflow.

2.5. GPU acceleration

Among the motivations that drive the development of the adjoint workflow in a PT-FD framework, the current
availability and continuous development of many-core computing hardware are prominent. GPUs are one type of
massively parallel computing accelerators that populate most modern supercomputers and are necessary to tackle160

computing at the exascale. Although GPUs feature an inherent potential in accelerating serial calculations, the speed-
up may not be achieved in a straightforward way. Besides some successful GPU-based implementations there is
also a growing frustration in various scientific communities regarding the current movement toward GPU-accelerated
machines.

In this context, our study may provide some insights into concise, robust and efficient algorithms to tackle forward165

and inverse workflows, taking full advantage of the intrinsic fine-level parallelism unique to many-core hardware such
as GPUs. To unleash the optimal computing performance of GPUs, algorithms should feature high locality, an as low
as possible memory footprint, and a high potential of parallelism, and should execute in a very local way. Matrix-free
iterative FD solvers fulfil most of these requirements and are therefore optimal candidates to build massively parallel
solvers to optimally execute on GPU-accelerated machines.170

Building on the successful implementation of coupled multi-physics forward solvers [14, 25, 37, 38], we propose
to follow a similar path in implementing the adjoint solver of the two-phase equations. We assign a GPU thread to
every grid point of the FD domain using the identical mapping as for the forward solver. The adjoint solution can be
retrieved using a similar second-order iteration as in the forward solver.

The 2-D inversion workflow we present serves as proof of concept for the future step: the porting of the GPU-based175

inversion procedure to 3-D multi-GPU solvers.

3. Verification

To demonstrate the PT-FD solver’s robustness, we compare its forward results for a reference model to the so-
lution obtained with the FEM using FEniCS. We perform the calculations and report the simulation results in non-
dimensional units. The reference model domain has a length and height of 20 characteristic compaction lengths δc180

8

Figure 1: Normalized synthetic porosity field Φ/Φ0 used for the comparison of the steady-state PT-FD and FE implementations. The porosity field
is produced by evolving the time-dependent PT-FD forward code for 210 time-steps, starting with the initial configuration depicted in the sub-figure
at the bottom left. The ellipsoidal initial fluid inclusion has a normalised porosity of three times the background reference porosity value Φ0 = 0.01.

Parameter non-dimensional value

ρs 2
ρ f 1
g 1
κ0 1
φ0 0.01
n 3
µs 0.001
µ f 1
C 10
R 100, 200 or 400
λ 0.01
p0 0
p1 0

Table 1: Primary physical constant input parameters in non-dimensional units.

[1, 43]. We discretise the domain using 64 FD cells or 64 elements (FEM) in both x-direction and y-direction. To
generate a realistic porosity field for the model, we run the PT-FD solver for 210 time-steps using an initial physical
∆t = 10−5 within the porosity evolution equations until the high-porosity channels propagate close to the surface
(Figure 1). For this comparison benchmark, we employ a value of R = 100. The obtained porosity field is then used
to compare the results of the PT-FD and the FEM implementations of the steady-state forward two-phase equations.185

The related non-dimensional physical parameters appear in Table 1.
We compare the horizontal x and vertical y fluid fluxes (Figure 2) obtained with the PT-FD and FE method. The

reported x and y solid velocities (Figure 3) as well as the total and fluid pressure (Figure 4) agree well among the
PT-FD method and the FEM.

To verify the adjoint-based gradients (33) in the PT-FD framework, we compare them with the gradients obtained
using forward finite differences of the cost function, i.e. with

(dJ/dΦ)FD ≈
J(Φ + h Φ̂) − J(Φ)

h
, (39)

where Φ̂ is a randomly chosen perturbation field and h a small step size. In the case presented here, Φ̂ represents a
perturbation of a randomly chosen single porosity point. We report the convergence of the FD gradient toward the

9

Figure 2: A Comparison of the non-dimensional fluid flux components for the PT-FD and FEM solvers. The left-hand and right-hand columns
stand for the x-direction and y-direction, respectively. The top and bottom rows depict the PT-FD and FEniCS-based FEM results, respectively.

10

Figure 3: A comparison of the non-dimensional solid velocity components for the PT-FD and FEM solvers. The left-hand and right-hand columns
stand for the x-direction and y-direction, respectively. The top and bottom rows depict the PT-FD and FEniCS-based FEM results, respectively.

11

Figure 4: A comparison of the non-dimensional total and fluid pressure for the PT-FD and FEM solvers. The left-hand and right-hand columns
stand for the total and fluid pressure respectively. The top and bottom rows depict the PT-FD and FEniCS-based FEM results respectively.

12

Figure 5: Left-hand column: PT-FD pointwise adjoint-based gradient of the cost function with respect to the porosity (equation (33)) using a
homogeneous initial guess. Middle column: The same gradient, but calculated using the FEniCS FEM solver. Right-hand column: Convergence of
the FD approximation of the gradient toward the PT-FD adjoint-based gradient in a specific direction Φ̂. The gradients agree well for sufficiently
small perturbation parameter h.

adjoint-based PT-FD gradient (Figure 5 – right-hand panel), illustrating the relative error between these quantities:

∆(dJ/dΦ) =
(dJ/dΦ)PT-FDΦ̂ − (dJ/dΦ)FD

‖(dJ/dΦ)PT-FDΦ̂‖2
. (40)

Further, the pointwise adjoint-based derivatives of the cost function obtained with the PT-FD and the FEM approaches190

are consistent (Figure 5 – left-hand and the centre panel, respectively). In both cases, we use the vertical fluid flux
corresponding to the porosity field depicted in Figure 1 at each point in the domain as synthetic data uobs

f and evaluate
the gradients at a homogeneous porosity field with a porosity of 1 %.

The time needed for one non-linear forward sequential solve run on the same machine is about 2.2 seconds for
the MATLAB PT-FD solver and about 127 seconds for the FEniCS FE solver, executed from a Jupyter notebook [44]195

running within a Docker virtual machine [45].

4. Results and discussion

We now present the performance of a simple gradient descent inversion for various observables using the PT-FD
approach. We seek to reconstruct the porosity field related to the synthetic forward results depicted in Figure 6. For
benchmarking purposes we assume the synthetic data to be noise-free throughout this study. We further discuss the200

sensitivity of the solid velocities and fluid fluxes to changes of the porosity. The porosity field used as the ‘true’
parameter of the steady-state inversions is obtained in the same way as described in the beginning of Section 3, only
using a higher resolution. In all the simulations, the initial guess for the porosity field is chosen to be constant and
equal to 1% in the entire domain.

The numerical grid resolution contains 1024 × 1024 grid points in 2-D. The targeted high resolution is only205

achievable by relying on an HPC approach. We used a GPU-accelerated version of the dynamical cores of the PT-FD
inversion procedure, namely the forward and adjoint solvers. These solvers are written in CUDA-C and run on a
single Nvidia GPU. In future work we plan to employ a straightforward MPI-based multi-GPU implementation using
a similar approach as in [14, 25, 35] in order to port the inversion workflow for 3-D geometries.

4.1. Vertical fluid flux in the entire domain210

Here, we use the vertical fluid flux (u f
y) in the entire domain as synthetic data (the lower right-hand panel in

Figure 6). Although it is unlikely that this amount of data will ever be available in a practical geological setting, we
use it here to show the local sensitivity of the inversion to the anomaly. Figure 7 depicts the results of this inversion.

13

Figure 6: High-resolution 2-D forward numerical simulation results obtained with the PT-FD method on a regular Cartesian grid of 1024 × 1024
grid points. From left to right: the upper panels depict the total p and fluid p f pressure respectively; the lower panels depict the vertical (y) solid
velocity us

y and the fluid flux u f
y. The horizontal line in the u f

y panel represents the observation horizon used for one of the inversions.

14

Figure 7: Inversion for the pointwise porosity using the vertical fluid flux in the entire domain as data. The left-hand panel shows the reconstructed
porosity field after the inversion is converged, using a homogeneous initial guess. The centre panel depicts the ‘true’ porosity field that was used to
create the observations. The right-hand panel shows the convergence history of the gradient descent algorithm. The value of the cost function was
reduced by three orders of magnitude within 200 GD iterations.

Figure 8: Inversion for the pointwise porosity using the vertical fluid flux along a horizontal line representing the surface as data. The left-hand
panel shows the reconstructed porosity field after the inversion is converged, using a homogeneous initial guess. The centre panel depicts the ‘true’
porosity field that was used to create the observations. The right-hand panel shows the convergence history of the gradient descent algorithm. The
value of the cost function could be reduced by half an order of magnitude within 200 GD iterations.

The porosity field can be reproduced consistently in the high-porosity channels that propagate toward the surface. The
residual porosity in the initial anomaly is not recovered in all detail by the inversion. We stop the inversion after 200215

gradient descent (GD) iterations, which is sufficient to reduce the cost function by three orders of magnitude and to
reach a convergence plateau.

4.2. Vertical fluid flux along a line

A more realistic scenario is that the vertical fluid flux is known at a given horizon close to the subsurface. In case of
reservoir geology, this could be done by a measurement of the vertical fluid flow at the ocean bottom above a chimney220

anomaly. We realise this numerically by collecting the synthetic data along a line, depicted as a white horizontal line
in Figure 6 (the lower right-hand panel). We choose the line to be within the upper part of the numerical domain
and as sufficiently far away from any possible boundaries to avoid boundary effects. We summarise the inversion
result in Figure 8. Only the porosity very close to the available observable can be recovered, converging toward the
correct porosity value. This highlights the extremely local sensitivity of the fluid flux to the porosity in the two-phase225

equations. Thus, a change of porosity anywhere else in the domain does not affect the fluid flux at the measurement
positions, which is a very different outcome to what one may expect from the Stokes behaviour. We limit the inversion
to 200 GD iterations, which reduces the cost function value by half an order of magnitude. Considering that the
channelised porosity propagates in a truncated wave-like motion, this observation could be used to determine what
the current magnitude of a porosity wave at the surface is.230

15

Figure 9: Inversion for the pointwise porosity using the vertical solid velocity in the entire domain as data. The left-hand panel shows the
reconstructed porosity field after the inversion is converged, using a homogeneous initial guess. The centre panel depicts the ‘true’ porosity field
that was used to create the observations. The right-hand panel shows the convergence history of the gradient descent algorithm. The value of the
cost function was reduced by two orders of magnitude within 150 GD iterations. The solid velocity is less sensitive to the actual chimneys but
shows a more diffusive sensitivity produced by the pure density contrast.

4.3. Vertical solid velocity in the entire domain
Alternatively, one can take the solid material displacement us

y as an observable (the lower left-hand panel in Figure
6). To generally test this approach, we first assume that the measurement is taken in the entire numerical domain. This
simulation reports the sensitivity of the Stokes velocity to the porosity. The results of the inversion are summarised
in Figure 9. The inversion creates one large area with slightly increased porosity in the centre of the domain. This235

decreases the cost function by two orders of magnitude within 150 GD iterations. The recovery is correlated with the
actual anomaly, which is located in the centre and depicts a highly non-local sensitivity. The pattern reminds more of
the pattern of a Rayleigh-Taylor instability density inversion. A Rayleigh-Taylor instability occurs if a lower-density
fluid penetrates a higher-density fluid [e.g. 46]. A possible explanation for this observation is the fact that the Stokes
velocity is mostly sensitive to the de-facto density difference rather than the local porosity.240

4.4. Sparse observation of vertical fluid flux
To highlight the locality of the vertical fluid flux’s sensitivity (the lower right-hand panel in Figure 6) to the

porosity, we test the recovery pattern with a randomly initialised correlated Gaussian noise measurement distribution,
shown in the small embedded figure in the left panel of Figure 10. This scenario will most likely never be available in
geological settings, but could potentially be relevant in material science applications. In the latter case, it may stand to245

a measure of the density of sensors around the block of porous material. The results of the inversion are summarised
in Figure 10. The correct porosity field can only be recovered in areas where observations are available, confirming
the highly local sensitivity in the previous results. The cost function is reduced by two orders of magnitude after 60
GD iterations.

4.5. Sensitivity kernels250

Instead of calculating the gradient of the cost function with respect to the parameter, one can also calculate the
derivative of the forward problem solution with respect to the parameter. We will refer to this quantity as a sensitivity
kernel, inspired from seismology [23] or glacial isostatic adjustment modelling [47, 48]. The resulting field indicates
in which regions of the domain and by how much a change of the parameter influences the simulation solution. For
the specific problem we target, the kernels unveil areas where a change in porosity affects the fluid flux and solid
velocity in the entire domain. The kernels can be computed following the same workflow as described in Section 2.3,
with the only change that the cost function is defined as

Ĵ(Φ) =

∫
Ω̃

z dx, (41)

where z is one component of the solution of the forward problem corresponding to Φ, defined on a subset Ω̃ ⊂ Ω of
the domain. The derivative ∂Ĵ(Φ)/∂Φ for an arbitrary porosity field Φ can be calculated using the adjoint framework

16

Figure 10: Inversion for the pointwise porosity using the vertical fluid flux at randomised measurement locations as data, emulating sparse obser-
vations. The left-hand panel shows the reconstructed porosity field after the inversion is converged, using a homogeneous initial guess. The small
embedded figure depicts the measurement points in red. The centre panel shows the ‘true’ porosity field that was used to create the observations.
The right-hand panel shows the convergence history of the gradient descent algorithm. The value of the cost function could be reduced by two
orders of magnitude within 60 GD iterations. These results highlights the very local sensitivity of the fluid flux to the porosity.

and represents the sensitivity kernel. These kernels inform about the physical response of the current configuration to
a change in the porosity. Figure 11 depicts the sensitivity kernels evaluated at the porosity field Φ used as the synthetic
parameter in the inversion. We calculate the sensitivity of the fluid flux and the solid velocity along the observation255

line also used in Section 4.2 (Figure 6) with respect to the pointwise porosity in the entire domain.
The sensitivities of the vertical and horizontal fluid flux to the porosity are very localised in the chimneys. Mea-

surements along the line do not ‘feel’ the large scale porosity structure but are only influenced in the vicinity of their
position. The sensitivity of the vertical solid velocity is localised toward the tip of the chimneys, further away from the
measurement line. The horizontal solid velocity suggests a very diffusive sensitivity in the entire domain. This reveals260

that the solid velocity is not driving the particular channel propagation but only ‘feels’ a broader density-driven uplift
of parts of the domain. A possible interpretation is that a deviation in the solid velocities from data may be caused by
a broader porosity field, while a deviation in the fluid fluxes could be retrieved by very local changes in the porosity
field. These results suggest that the hydrological part of the coupled system of equations triggers the highly localised
chimneys observed in nature.265

These sensitivity kernels are not required in the inverse framework, but can be employed – even if only forward
models are performed – as resolution proxy. With the adjoint method the calculation of the kernels is very cheap
(there is only one additional linear solve) and one could calculate them after every forward solve (time-step) to trace
the sensitivity of the desired observable through time. This opens interesting possibilities to support interpretations in
geodynamic modelling, as the kernels highlight whether the interpretation area is in fact sensitive to a given parameter270

or structure. However, it is very important to note that, compared to for instance the linear wave equation, where the
kernels remain the same during a forward simulation, the kernels for the non-linear problem are a function of both the
input and the evolution of the forward solution. In the Appendix, we provide a very explicit and simplified example
of how the kernels can support interpretations on the 1-D non-linear diffusion equation.

Notably, in the case of the relatively high-resolution 2-D simulations presented, the sharp gradients in the viscosity275

at the tip of the channels affect the convergence rate of the adjoint solver. To overcome this limitation we apply minor
smoothing on the effective adjoint bulk viscosity field in every inverse iteration. We could not recognise any significant
effect of this smoothing on the solution while significantly improving the convergence rate. Further investigation of
an enhanced physical solution to overcome this limitation is left for future works. We suppose that the effective bulk
viscosity function used in the adjoint solve must be sufficiently smooth, because it acts like a source term in the280

mass-balance equation of the two-phase system.

4.6. The scaling of the iterative method
We evaluate the scalability of the inversion framework based on the iterative PT approach. We vary the number of

grid points from 64×64 to 1024×1024 in the x-direction and y-direction. We run the non-linear forward PT-FD solver
until the channels’ tips reach 85% of the y domain extent and employ a value of R = 200. We report the iteration count285

evolution for various numerical grid resolutions both for the adjoint and the forward solvers repeatedly called in the

17

Figure 11: Sensitivity kernels of the fluid and solid velocities with respect to the porosity taking observations in the interior of the domain
(excluding boundary nodes). We show the absolute value of the kernel normalised for each kernel separately. The first row depicts the sensitivity of
the vertical and horizontal fluid flux to the porosity respectively. The second row depicts the sensitivity of the vertical and horizontal solid velocity
to the porosity, respectively.

Figure 12: Iteration count evolution plot for the adjoint (left) and the forward (right) solvers for various numerical grid resolutions ranging from
642 to 10242. The x-axis represents the number of inversion steps within the gradient descent algorithm (here, fixed to 200). The y-axis informs
about the numerical grid resolution. The vertical axis reports the number of transient iterations required to solve the problem until the precision
threshold of 2 × 10−5 in double precision is reached.

18

Grid resolution solver time [sec] / 1000 iterations
nx × ny Adjoint Forward

64 × 64 0.0675 0.1226
96 × 96 0.0679 0.1117
128 × 128 0.0649 0.1121
160 × 160 0.0676 0.1123
256 × 256 0.0912 0.1374
320 × 320 0.1231 0.1722
512 × 512 0.2550 0.3198
1024 × 1024 0.8550 0.9817

Table 2: Time to perform 1000 PT iterations for both the GPU-based adjoint and the forward solver called within the inversion procedure.

gradient descent routine. The adjoint solver necessitates an increased number of iterations during the first inversion
steps. The iteration count further stabilises toward a lower count, continuously decreasing along with the inversion
step count (Figure 12). The forward solver iteration count evolution remains fairly stable after the initial increase in
the required number of iterations to evaluate the forward solution using the current guess (Figure 12). At the highest290

tested resolution (1024× 1024 grid points), the iteration count of the adjoint solver peaks at 6× 104 while the forward
solver requires about 5 × 104 iterations.

We further analyse how the average global iteration count
(
Navg

ops

)
for the entire inversion steps evolves with an

increase in the numerical grid resolution for both the adjoint and the forward solver (Figure 13). We extract the
average iteration count by summing up the number of iterations at each inversion step, dividing it by the total number295

of inversion steps (here 200), and multiplying it by the total number of grid points N. We do this for each targeted
numerical resolution and report it as symbols of the iteration count in a log-log plot; red circles and blue diamonds
for the adjoint and forward solver, respectively (Figure 13). We perform the data fit using a line to inform about the
scaling order of the method. The average number of operations includes the total number of grid points N as each data
point is accessed at least once per iteration in our algorithm. The 2-D PT-FD adjoint and forward solvers scale O(N1.6)300

and O(N1.5), respectively, over the entire inversion procedure. Classical references such as multi-grid methods and
FFT algorithms characteristically scale O(N) and O(N log(N)), respectively. Lately, [25, 35] showed that the PT-FD
solver applied to the hydro-mechanical equations in 3-D scales O(N1.3).

Recent studies [25, 38, 37] reported the hardware utilisation efficiency as effective memory throughput (MTPeff)
metric due to the memory-bounded nature of the algorithms. We decided not to follow this path here, since the 2-D305

nature of the current calculations do not saturate the GPUs’ memory bandwidth and are thus not as optimal as the
3-D results reported in for instance [25]. Instead, we report the wall-time in seconds needed for the solver to perform
1000 PT iterations at all tested grid resolutions (Table 2). We obtained these results on a Nvidia Tesla V100 Nvlink
accelerator featuring 32 GB of internal memory and close to 1 TB/s on-chip memory bandwidth.

5. Conclusions and outlook310

We have investigated the general performance and characteristics of an inversion for porosity from hydro-mechanical
principles. We derived the adjoint equation system for the two-phase flow equations to perform a gradient-based in-
version for porosity. We minimised the misfit between the observed and the calculated vertical fluid fluxes or solid
velocities. Technically, we discretised the forward, adjoint, and gradient solvers using a pseudo-transient finite dif-
ference scheme that was verified against a finite element framework. Our results unveiled a highly local sensitivity315

of the vertical fluid fluxes to the porosity. We achieved an almost perfect reconstruction of the porosity field in case
the fluid flux was given in the entire domain. However, we only accurately recovered the local porosity if the vertical
fluid flux information was sparse. When we used the vertical solid velocity as data, the recovered porosity showed
a more ‘diffuse’ distribution, making it impossible to image the individual channels. This suggests that the hydro-
logical part of the two-phase system mainly explains the localised porosity distribution. Further, we showed that the320

19

Figure 13: Scaling of the iterative hydro-mechanical (H-M) adjoint inversion procedure as function of total number of grid points N for the adjoint
(H-M Adjoint 2-D) and the forward (H-M Forward 2-D) solvers. The y-axis represents the average number of operations

(
Navg

ops

)
defined as the

sum of the overall iteration count over the entire inversion steps for every grid resolution
(∑

itot
g

)
divided by the number of iteration steps (ninv) and

multiplied by the total number of grid points N.

PT solvers provide a very efficient framework to solve the system of coupled partial differential equations making
perfect use of the latest hardware accelerators, such as GPUs. One complete inverse iteration for the 1024× 1024 2-D
resolution requires one non-linear forward solve, one linear adjoint solve and one gradient evaluation. The wall-time
for this inverse iteration is about 10 minutes on one Nvidia Tesla V100 Nvlink GPU using a (non-optimal) MAT-
LAB implementation of the inversion framework calling CUDA-C sub-routines for the forward, adjoint, and gradient325

solvers.
The local sensitivity of the vertical fluid flux to the porosity may be promising as an imaging tool in case the

time-dependant porosity evolution is solved together with considering the full time history in the inversion. This will
require a non-linear forward-in-time and a linear backward-in-time adjoint solution at each time-step. We plan to
address these steps in future studies and may expect more informative kernels similar to the full waveform kernels330

derived from the transient wave equation. The proposed framework adds a missing piece to reservoir-scale inverse
problems, since the wave equation is able to image wave-speed anomalies but the interpretation of such anomalies is
up to parametrisations. The approach we presented shows how to perform hydro-mechanically consistent inversions
for porosity based on flux or velocity constraints. An interesting future step will be to combine both inversions.
We may then for instance be able to retrieve the initial conditions of the porosity that led to the observed chimney335

formation via the inversion procedure.
On the computing side, we ported our 2-D inversion framework to 3-D on multi-GPUs [49] using the extremely

scalable Julia ImplicitGlobalGrid framework [50], allowing for both prototyping and deploying large-scale production
runs on supercomputers [51, 52]. This work will soon be available as an open source Julia package.

Acknowledgments340

The authors thank Martin Hanke, Georg Stadler and Alexander Minakov for fruitful discussions. GSR acknowl-
edges support from the DFG grant KA3367/4. LR acknowledges support from the Swiss National Science Founda-
tion’s Early Postdoc.Mobility Fellowship 178075 and computational resources from the Swiss Geocomputing Centre.
We thank two anonymous reviewers for their constructive comments.

Author contributions345

GSR: Conceptualization, Methodology, Software, Writing - Original Draft, Visualization, Investigation, Formal
analysis, Project administration. LH: Conceptualization, Methodology, Formal analysis, Writing - Original Draft.

20

LR: Conceptualization, Methodology, Software, Visualization, Writing - Original Draft, Supervision.

References

[1] D. McKenzie, The generation and compaction of partially molten rock, Journal of Petrology 25 (3) (1984) 713–765.350

[2] D. R. Scott, D. J. Stevenson, Magma solitons, Geophysical Research Letters 11 (11) (1984) 1161–1164. doi:10.1029/GL011i011p01161.
[3] J. Connolly, Y. Podladchikov, Decompaction weakening and channeling instability in ductile porous media: Implications for asthenospheric

melt segregation, Journal of Geophysical Research: Solid Earth 112 (B10) (2007).
[4] J. F. Rudge, D. Bercovici, M. Spiegelman, Disequilibrium melting of a two phase multicomponent mantle, Geophysical Journal International

184 (2) (2011) 699–718. doi:10.1111/j.1365-246X.2010.04870.x.355

[5] Z. Cai, D. Bercovici, Two-phase damage models of magma-fracturing, Earth and Planetary Science Letters 368 (2013) 1–8. doi:10.1016/
j.epsl.2013.02.023.

[6] R. F. Katz, S. M. Weatherley, Consequences of mantle heterogeneity for melt extraction at mid-ocean ridges, Earth and Planetary Science
Letters 335-336 (2012) 226–237. doi:10.1016/j.epsl.2012.04.042.

[7] T. Keller, D. A. May, B. J. P. Kaus, Numerical modelling of magma dynamics coupled to tectonic deformation of lithosphere and crust,360

Geophysical Journal International 195 (3) (2013) 1406–1442. doi:10.1093/gji/ggt306.
[8] A. Judd, M. Hovland, Seabed Fluid Flow, Cambridge University Press, Cambridge, 2007. doi:10.1017/CBO9780511535918.
[9] L. Cathles, Z. Su, D. Chen, The physics of gas chimney and pockmark formation, with implications for assessment of seafloor hazards and

gas sequestration, Marine and Petroleum Geology 27 (1) (2010) 82–91. doi:10.1016/j.marpetgeo.2009.09.010.
[10] J. Cartwright, C. Santamarina, Seismic characteristics of fluid escape pipes in sedimentary basins: implications for pipe genesis, Marine and365

Petroleum Geology 65 (2015) 126–140.
[11] A. Plaza-Faverola, S. Bünz, J. Mienert, Repeated fluid expulsion through sub-seabed chimneys offshore Norway in response to glacial cycles,

Earth and Planetary Science Letters 305 (3) (2011) 297–308.
[12] H. Løseth, L. Wensaas, B. Arntsen, N.-M. Hanken, C. Basire, K. Graue, 1000 m long gas blow-out pipes, Marine and Petroleum Geology

28 (5) (2011) 1047–1060.370

[13] H. Løseth, M. Gading, L. Wensaas, Hydrocarbon leakage interpreted on seismic data, Marine and Petroleum Geology 26 (7) (2009) 1304–
1319.

[14] L. Räss, N. S. Simon, Y. Y. Podladchikov, Spontaneous formation of fluid escape pipes from subsurface reservoirs, Scientific reports 8 (1)
(2018) 11116.

[15] V. M. Yarushina, Y. Y. Podladchikov, (De) compaction of porous viscoelastoplastic media: Model formulation, Journal of Geophysical375

Research: Solid Earth 120 (6) (2015) 4146–4170.
[16] R. Y. Makhnenko, Y. Y. Podladchikov, Experimental Poroviscoelasticity of Common Sedimentary Rocks, Journal of Geophysical Research:

Solid Earth (2018) 1–18doi:10.1029/2018JB015685.
[17] A. A. Popov, S. V. Sobolev, M. D. Zoback, Modeling evolution of the san andreas fault system in northern and central california, Geochem-

istry, Geophysics, Geosystems 13 (8) (2012).380

[18] T. V. Gerya, F. Meilick, Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts,
Journal of Metamorphic Geology 29 (1) (2011) 7–31.

[19] G. S. Reuber, A. A. Popov, B. J. Kaus, Deriving scaling laws in geodynamics using adjoint gradients, Tectonophysics 746 (2018) 352–363.
[20] G. Stadler, M. Gurnis, C. Burstedde, L. C. Wilcox, L. Alisic, O. Ghattas, The dynamics of plate tectonics and mantle flow: From local to

global scales, Science 329 (5995) (2010) 1033–1038.385

[21] G. S. Reuber, B. J. P. Kaus, A. A. Popov, T. S. Baumann, Unraveling the physics of the Yellowstone magmatic system using geodynamic
simulations, Frontiers in Earth Science 6 (2018) 117.

[22] S. Ghelichkhan, H.-P. Bunge, The compressible adjoint equations in geodynamics: derivation and numerical assessment, GEM-International
Journal on Geomathematics 7 (1) (2016) 1–30.

[23] J. Tromp, C. Tape, Q. Liu, Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels, Geophysical Journal Interna-390

tional 160 (1) (2005) 195–216.
[24] A. Fichtner, H.-P. Bunge, H. Igel, The adjoint method in seismology: I. theory, Physics of the Earth and Planetary Interiors 157 (1-2) (2006)

86–104.
[25] L. Räss, T. Duretz, Y. Podladchikov, Resolving hydromechanical coupling in two and three dimensions: spontaneous channelling of porous

fluids owing to decompaction weakening, Geophysical Journal International 218 (3) (2019) 1591–1616.395

[26] S. P. Frankel, Convergence rates of iterative treatments of partial differential equations, Mathematical Tables and Other Aids to Computation
4 (30) (1950) 65–75.

[27] A. Logg, K.-A. Mardal, G. Wells, Automated solution of differential equations by the finite element method: The FEniCS book, Vol. 84,
Springer Science & Business Media, 2012.

[28] L. Armijo, Minimization of functions having Lipschitz continuous first partial derivatives, Pacific Journal of mathematics 16 (1) (1966) 1–3.400

[29] M. B. Giles, N. A. Pierce, An introduction to the adjoint approach to design, Flow, turbulence and combustion 65 (3-4) (2000) 393–415.
[30] F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications, Vol. 112, American Mathematical Society

Graduate Studies in Mathematics, 2010.
[31] M. Hinze, R. Pinnau, M. Ulbrich, S. Ulbrich, Optimization with PDE Constraints, Springer Science + Business Media B.V., 2009.
[32] A. Fichtner, S. Simutė, Hamiltonian Monte Carlo inversion of seismic sources in complex media, Journal of Geophysical Research: Solid405

Earth 123 (4) (2018) 2984–2999.
[33] T. Bui-Thanh, O. Ghattas, J. Martin, G. Stadler, A computational framework for infinite-dimensional Bayesian inverse problems Part I: The

linearized case, with application to global seismic inversion, SIAM Journal on Scientific Computing 35 (6) (2013) A2494–A2523.

21

https://doi.org/10.1029/GL011i011p01161
https://doi.org/10.1111/j.1365-246X.2010.04870.x
https://doi.org/10.1016/j.epsl.2013.02.023
https://doi.org/10.1016/j.epsl.2013.02.023
https://doi.org/10.1016/j.epsl.2013.02.023
https://doi.org/10.1016/j.epsl.2012.04.042
https://doi.org/10.1093/gji/ggt306
https://doi.org/10.1017/CBO9780511535918
https://doi.org/10.1016/j.marpetgeo.2009.09.010
https://doi.org/10.1029/2018JB015685

[34] J. Martin, L. C. Wilcox, C. Burstedde, O. Ghattas, A stochastic Newton MCMC method for large-scale statistical inverse problems with
application to seismic inversion, SIAM Journal on Scientific Computing 34 (3) (2012) A1460–A1487.410

[35] L. Räss, S. Omlin, Y. Y. Podladchikov, Resolving Spontaneous Nonlinear Multi-Physics Flow Localization in 3-D: Tackling Hardware Limit,
GTC Silicon Valley - 2019 (2019).
URL https://developer.nvidia.com/gtc/2019/video/S9368

[36] MATLAB, version 8.4.0 (R2014B), The MathWorks Inc., Natick, Massachusetts, 2014.
[37] T. Duretz, L. Räss, Y. Podladchikov, S. Schmalholz, Resolving thermomechanical coupling in two and three dimensions: spontaneous strain415

localization owing to shear heating, Geophysical Journal International 216 (1) (2019) 365–379. doi:10.1093/gji/ggy434.
[38] L. Räss, A. Licul, F. Herman, Y. Y. Podladchikov, J. Suckale, Modelling thermomechanical ice deformation using a GPU-based implicit

pseudo-transient method (FastICE v1.0), Geoscientific Model Development Discussions 2019 (2019) 1–34. doi:10.5194/gmd-2019-249.
[39] R. Courant, et al., Variational methods for the solution of problems of equilibrium and vibrations, Verlag nicht ermittelbar, 1943.
[40] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W. Gropp, et al., PETSc users420

manual (2019).
[41] C. Taylor, P. Hood, A numerical solution of the Navier-Stokes equations using the finite element technique, Computers & Fluids 1 (1) (1973)

73–100.
[42] P.-A. Raviart, J. Thomas, Primal hybrid finite element methods for 2nd order elliptic equations, Mathematics of computation 31 (138) (1977)

391–413.425

[43] J. A. D. Connolly, Y. Y. Podladchikov, An analytical solution for solitary porosity waves: dynamic permeability and fluidization of nonlinear
viscous and viscoplastic rock, Geofluids 15 (1-2) (2014) 269–292. doi:10.1111/gfl.12110.

[44] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier, J. Frederic, K. Kelley, J. B. Hamrick, J. Grout, S. Corlay, et al., Jupyter
Notebooks-a publishing format for reproducible computational workflows., in: ELPUB, 2016, pp. 87–90.

[45] D. Merkel, Docker: lightweight linux containers for consistent development and deployment, Linux Journal 2014 (239) (2014) 2.430

[46] G. I. Taylor, The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. i, Proceedings of the Royal Society
of London. Series A. Mathematical and Physical Sciences 201 (1065) (1950) 192–196.

[47] O. Crawford, D. Al-Attar, J. Tromp, J. X. Mitrovica, J. Austermann, H. C. Lau, Quantifying the sensitivity of post-glacial sea level change to
laterally varying viscosity, Geophysical journal international 214 (2) (2018) 1324–1363.

[48] D. Al-Attar, J. Tromp, Sensitivity kernels for viscoelastic loading based on adjoint methods, Geophysical Journal International 196 (1) (2014)435

34–77.
[49] L. Räss, G. S. Reuber, S. Omlin, Nonlinear Multi-Physics 3-D Solver: from CUDA C + MPI to Julia, JuliaCon 2020, online everywhere on

Earth (2019).
URL https://www.youtube.com/watch?v=1t1AKnnGRqA

[50] S. Omlin, L. Räss, Y. Y. Podladchikov, Implicitglobalgrid.jl, https://github.com/eth-cscs/ImplicitGlobalGrid.jl (2019).440

[51] L. Räss, S. Omlin, Y. Y. Podladchikov, Nonlinear Multi-Physics 3-D Solver: from CUDA C + MPI to Julia, JuliaCon 2019, Baltimore MD,
USA (2019).
URL https://www.youtube.com/watch?v=b90qqbYJ58Q

[52] S. Omlin, L. Räss, G. Kwasniewski, B. Malvoisin, Y. Y. Podladchikov, Nonlinear Multi-Physics 3-D Solver: from CUDA C + MPI to Julia,
JuliaCon 2020, online everywhere on Earth (2019).445

URL https://www.youtube.com/watch?v=vPsfZUqI4_0

6. Appendix

6.1. Non-linear diffusion
We will now outline the workflow of deriving the adjoint equation with the formal Lagrangian approach for a

simple 1-D non-linear diffusion example on the interval [a, b] ⊂ R and will then discretise the resulting equations
in various ways. In particular, we will consider a non-linear steady-state diffusion equation with Dirichlet boundary
conditions:

−
d
dx

(
−D(u) u′

)
= 0 on (a, b), (42)

u(a) = ua, (43)
u(b) = ub, (44)

where ua, ub > 0. The diffusion coefficient D is non-linear in u:

D(u) = un, (45)

where n is some spatially varying power-law exponent. Multiplying equation (42) by the negative of a test function
v ∈ H1

0(a, b) and integrating by parts yields the weak form of the non-linear diffusion equation:
Find u ∈ U := {u ∈ H1(a, b) | u(a) = ua, u(b) = ub} such that∫ b

a
unu′v′ dx = 0 (46)

22

https://developer.nvidia.com/gtc/2019/video/S9368
https://developer.nvidia.com/gtc/2019/video/S9368
https://doi.org/10.1093/gji/ggy434
https://doi.org/10.5194/gmd-2019-249
https://doi.org/10.1111/gfl.12110
https://www.youtube.com/watch?v=1t1AKnnGRqA
https://www.youtube.com/watch?v=1t1AKnnGRqA
https://github.com/eth-cscs/ImplicitGlobalGrid.jl
https://www.youtube.com/watch?v=b90qqbYJ58Q
https://www.youtube.com/watch?v=b90qqbYJ58Q
https://www.youtube.com/watch?v=vPsfZUqI4_0
https://www.youtube.com/watch?v=vPsfZUqI4_0

for all test functions v ∈ H1
0(a, b).

We seek to reconstruct the power-law exponent function n from observations uobs, which we assume to be available
in the entire interval (a, b) for simplicity. We formulate this inverse problem as an infinite-dimensional constrained
non-linear least-squares optimisation problem, i.e. we seek to minimise the cost function

J(n) =
1
2

∫ b

a
(u − uobs)2 dx, (47)

where u = u(n) denotes the solution of the forward problem (46) corresponding to the parameter field n.450

To obtain the gradient dJ/dn in the formal Lagrangian approach, the first step is to define the so-called Lagrangian
functional, which is the sum of the cost function and the weak form of the forward problem:

L(u, v, n) =
1
2

∫ b

a
(u − uobs)2 dx +

∫ b

a
unu′v′ dx. (48)

In this approach, the variables u, v, and n are assumed to be independent of one another. By taking variations with
respect to v and requiring them to vanish for all directions v̂ ∈ H1

0(a, b), one simply recovers the weak form of the
forward problem. On the other hand, differentiating L with respect to u in a direction û ∈ H1

0(a, b) and setting it to
zero yields the weak form of the adjoint equation:
Find v ∈ H1

0(a, b) such that

Lu(u, v, n)û =

∫ b

a
(u − uobs)û dx +

∫ b

a
v′

(
unû′ + nun−1u′û

)
dx = 0 (49)

for all test functions û ∈ H1
0(a, b), where u is the solution of the forward problem corresponding to the power-law

exponent n. Note that the adjoint equation (49) is linear in contrast to the forward problem.
The remaining variation yields the weak form of the gradient dJ/dn:

Ln(u, v, n)n̂ =

∫ b

a
n̂ log(u)unu′v′ dx, (50)

where u is the solution of the forward problem corresponding to n and v is the corresponding solution of the adjoint
equation. This set of weak form equations (46), (49), and (50) can be readily discretised using a finite element method.
The finite difference discretisation requires the strong form of the adjoint and gradient equation, which can be derived
by isolating the test functions and, if necessary, integrating by parts:

nun−1u′v′ −
d
dx

(
unv′

)
= uobs − u on (a, b), (51)

v(a) = v(b) = 0, (52)
dJ
dn

= log(u)unu′v′, (53)

where u is the solution of the forward problem corresponding to n and v is the corresponding solution of the adjoint
equation.

For our test simulations, we choose [a, b] = [−10, 10] and the Dirichlet boundary values ua = 1, ub = 0.5.455

Synthetic data for the inversion is created with the constant power-law exponent n ≡ 3.
We discretise the equations both with a finite element method using FEniCS and with a MATLAB implementation

of the PT-FD scheme. For the FEM implementation we use 64 linear Lagrange elements both for the forward and the
adjoint equations. In the PT-FD case, the domain is discretised by 64 cells and the quantity u is initialised as constant
and equal to 1.0 in the entire domain. The initial guess for the inversion using the method of steepest descent is chosen460

to be constant n ≡ 1. Since the gradient approximation is similar with both discretisations, we only show numerical
results obtained with the inversion using the PT-FD approach (Figure 14).

Following the previously reported approach (Section 4.5), we present the sensitivity kernels for the 1-D non-linear
diffusion equation. The new function that we seek the sensitivity of reads

Ĵ(n) =

∫ b

a
u dx. (54)

23

Figure 14: Inversion for the power-law exponent n function in the 1-D non-linear diffusion problem solved with the PT-FD method. The left-
hand panel shows the synthetic, initial and inferred power-law exponent n. The middle panel depicts the quantity u in its initial, synthetic and
converged state. The right-hand panel shows the comparison of the gradients for three different discretisations: an adjoint-based PT-FD, a direct
FD approximation to verify the results, and an adjoint-based FEM. All three methods are in good agreement.

Figure 15: Sensitivity kernels for the 1-D non-linear diffusion equation. The left-hand panel shows four initial guesses for n, including a step
function located in the centre of the domain and a homogeneous guess for n. The right panel depicts the resulting sensitivity kernels, considering u
at every node.

Following the derivation described earlier, the only difference is the right-hand-side of equation (51):

nun−1u′v′ −
d
dx

(
unv′

)
= −1 on (a, b). (55)

Evaluating the gradient equation (53) subject to Ĵ portrays how significantly sensitive the solution quantity u is to
the power-law exponent n. This implies that any interpretation made on the value of n where the kernel is zero is not
significant since u does not depend on n in that particular location.465

We report an explicit example calculating the kernel of n for u given in the entire domain (Figure 15). For all four
guesses of n, the quantity u only weakly depends on the value of n in the left half of the domain, but is significantly
influenced by the choice of n in the right half of the domain. For an inversion, we now expect the reconstruction of n
in the right half of the domain to be more reliable than for the quantities n in the left half. The inversions for the four
initial guesses (kernel 1-4 in Figure 15) do in fact converge to the synthetic value n = 3 in the right half of the domain,470

but only slightly modify the initial value of n in the left half (left column in Figure 14). The sensitivity kernels yield
an explanation for this behaviour; in the right half of the domain, the parameter n significantly influenced the outcome
of forward simulation results. In the left part, however, the ‘resolution’ of the equation is fairly limited, since the
behaviour of u is mainly controlled by the Dirichlet boundary condition and not by the value of n. This is why the
kernel for n is close to zero on the left half, i.e. a change in n may not affect u.475

However, the discussed underlying equation is non-linear, and the kernel is neither invariant to the evolution of
the forward solution nor to the boundary conditions. In fact, a change in the Dirichlet boundary conditions may result
in a qualitatively different kernel structure that needs to be interpreted for this particular setup. Nonetheless, since the
computation of the kernel is very cheap (there is only one additional linear solve), one could still evaluate the kernel

24

for each forward solve (time-step). Doing so may support the interpretation of the modelling unveiling which area of480

interest the equation is in fact sensitive to.
The code used for the simulations in the Appendix can be accessed from the Bitbucket repository: https://

bitbucket.org/hydromechanics_adjoint_pt/hm_adj_pt/src/master/

25

https://bitbucket.org/hydromechanics_adjoint_pt/hm_adj_pt/src/master/
https://bitbucket.org/hydromechanics_adjoint_pt/hm_adj_pt/src/master/
https://bitbucket.org/hydromechanics_adjoint_pt/hm_adj_pt/src/master/

	Introduction
	The governing equations and the numerical methods
	The two-phase flow equations
	The inverse problem
	The adjoint equations
	The numerical implementation
	The pseudo-transient finite difference approach
	The finite element method

	GPU acceleration

	Verification
	Results and discussion
	Vertical fluid flux in the entire domain
	Vertical fluid flux along a line
	Vertical solid velocity in the entire domain
	Sparse observation of vertical fluid flux
	Sensitivity kernels
	The scaling of the iterative method

	Conclusions and outlook
	Appendix
	Non-linear diffusion

