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We revisit the issue of deriving a local expression for the stress tensor to be used in computer
simulations of inhomogeneous systems. We present a novel and transparent geometric derivation
in real-space based on volume integrals. This approach allows to make use of Cavalieri’s principle
in order to explicitly show that one can deform the contour joining two particles while keeping the
volume of a body defined by this contour invariant. For inhomogeneous systems along one spatial
direction with planar interfaces we recover two previous results for the stress tensor, one associated
with cross sections and one due to averaging over a local volume. We illustrate the difference between
both expressions in molecular dynamics simulations of a phase-separated Lennard-Jones fluid. The
interfacial tension calculated in a finite system is in excellent agreement with previous numerical
estimates.

I. INTRODUCTION

Multiscale modeling approaches are concerned with
connecting physical processes on different scales and,
crucially, different resolutions of the system’s degrees
of freedom [1–3]. The importance of systematic multi-
scale approaches for computational sciences is immense
since many processes of interest (say, cloud formation)
occur over length and time scales that are many orders
of magnitude apart from that of their constituents (the
water molecules). A paradigmatic example in material
science is the connection between the macroscopic stress
throughout a piece of material and the microscopic mo-
tion of its constituent atoms or molecules (particles in the
following). Considering a fixed number of particles in a
fixed volume, several routes (via the virial, via the parti-
tion function, and via mechanical forces) yield the same
expression for the global stress tensor [Eq. (10)], which,
inter alia, allows to calculate bulk elastic moduli of ho-
mogeneous model materials in computer simulations.

In continuum mechanics, the Cauchy stress tensor σ
determines the force F acting on an imaginary surface S
within, or an actual surface of, a body,

F = σ · (|S|n), (1)

where n is the surface normal and |S| the area of S. Con-
servation of angular momentum implies that σ is sym-
metric in the absence of bulk torques. In an isotropic
fluid, the stress tensor reduces to σ = −p1 with scalar
pressure p. For solids, the number of independent com-
ponents of the stress tensor is determined by the symme-
tries of the crystal lattice [4]. In inhomogeneous systems
and systems under external load, the stress tensor varies
spatially with mechanical equilibrium imposing the force-
balance condition ∇ ·σ = 0. Generalizing the expression
of the global stress tensor to local volumes that exchange
particles with the rest of the system is surprisingly chal-
lenging, and a multitude of expressions can be found in
the literature which still incites controversy [5, 6]. It
is thus desirable to better understand whether and un-
der which conditions unambiguous expressions for a lo-

cal stress are possible. Such local expressions are re-
quired for a number of applications [7], e.g., calculations
of the mechanical stress in polymeric thin films [8] and
carbon nanopores [9], the line tension of three-phase con-
tact lines [10] and osmotic slip [11], and to study crystal
nucleation under shear [12].

Already in 1950, Irving and Kirkwood discussed a lo-
cal stress tensor [13] (see appendix therein and Sec. II)
closely following Eq. (1).1 They associate an imaginary
surface with those particle pairs whose straight connect-
ing line intersects the surface. This result has been gen-
eralized by Schofield and Henderson [15]. The expression
for the local stress involves a contour integral over the
pair distribution function, and the non-uniqueness of this
contour–and thus the stress tensor–has been noted early.
In particular, Harasima has proposed a non-straight con-
tour in his theory of surface tension [16]. While force
balance is obeyed, it has been reported that employing
Harasima’s contour in spherical coordinates leads to a
non-uniform stress tensor in a homogeneous fluid [17, 18],
which is of course inconsistent with thermodynamics. For
a planar interface, the stress profile of both contours has
been compared in Refs. 8, 19.

Another line of studies has followed the idea of an
atomic-level stress tensor assigned to each particle, which
after coarse-graining enters the evolution equation of the
corresponding density [20–22]. Omitting the average of
the global stress tensor yields a candidate expression, but
one has to decide how to split the force contribution be-
tween atoms [23]. Equally distributing one half to each
involved atom, however, leads to inconsistencies [24]. In
particular, the average normal stress component through
a planar interface is non-uniform, violating the mechan-
ical equilibrium condition [8]. Considering momentum
flux in Fourier space, Lutsko has derived an expression for
an instantaneous stress tensor [25], which after averaging
over a local volume takes on a particularly transparent

1 We point the interested reader to the mathematical work by
Walter Noll putting the ideas of Irving and Kirkwood on firmer
ground [14].
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form involving the fraction of a particle pair’s displace-
ment vector inside the volume [26]. More recently, Lion
and Allen have obtained a similar result (for the scalar
pressure) through a real-space derivation accounting for
the particles that enter and leave a small volume [27].
However, all these approaches rely on a straight contour
joining two particles.

Here we revisit the problem of deriving a local stress
tensor from a purely geometric perspective without ap-
pealing to the pair distribution function. Using volume
integration of a characteristic function relating particle
pairs with a surface, we obtain results for the stress ten-
sor that are manifestly independent of the actual contour
connecting the two particles. We recover the standard ex-
pression for the global stress and the expression of Wal-
ton et al. [19] when restricting to a planar cross section of
the system. Averaging over a “bin” (an integral of cross
sections), our approach confirms the result by Cormier
et al. [26] specialized to this geometry. It demonstrates
that unambiguous expressions for the local stress tensor
are possible at least for certain geometries.

II. FROM PAIR FORCES TO STRESS

We consider a system composed of N (point) particles
interacting through pairwise forces stemming from the
pair potential u(r). Two particles i and j are at positions
ri and rj with displacement vector rij = ri− rj pointing
from particle j to particle i [Fig. 1(a)]. The force exerted
by particle j onto particle i then is fij = −∇iu(rij) =
−u′(rij)rij/rij with rij = |rij | implying Newton’s third
law fji = −fij .

The stress tensor σ = σkin + σint can be split into a
kinetic contribution σkin and a contribution σint due to
the interparticle forces. Let Λ be the space of accessible
points Λ ⊂ R3 with fixed volume |Λ|, andB ⊆ Λ a (small)
region within Λ. The local kinetic part

σkin(B) = − 1

|B|

〈
N∑
i=1

miviviχi(B)

〉
(2)

is unambiguous, with function χi(B) = 1 if particle i
resides inside B (ri ∈ B) and zero otherwise. Here, vi is
the velocity and mi the mass of particle i. The brackets
〈·〉 denote the ensemble average over all particle positions
and velocities.

How can we associate a stress tensor σint with the re-
gion B? Obviously, the problem is to find a microscopic
prescription how to treat forces that cross the boundary.
We start by briefly reviewing the original idea of Irving
and Kirkwood [13], which is explored in more detail by
Schofield and Henderson [15]. The force on any region B

N∑
i=1

〈Fiχi(B)〉 =

∫
∂B

d2r n · σint =

∫
B

d3r ∇ · σint (3)

is due to the forces exerted by the surrounding material
acting onto the surface ∂B with outer normal vector n,

cf. Eq. (1). In the second step, we have exploited the
divergence theorem to convert the surface integral to a
volume integral. Writing χi(B) =

∫
B

d3r δ(r − ri) with
the Dirac δ-distribution, one finds

∑
i〈Fiδ(r − ri)〉 =

∇ · σint. Using that the total force on each particle is
Fi =

∑
j fij leads to∑

i

∑
j 6=i

fijδ(r− ri) =
∑
i<j

fij [δ(r− ri)− δ(r− rj)]

=
∑
i<j

fij

∫ 1

0

dlt · ∇δ(r− lt). (4)

In the second line we formally exploit the gradient the-
orem with arbitrary contour lt connecting l0 = ri to
l1 = rj , and we exploit translational invariance of the
argument to switch to the gradient ∇ with respect to r.
Exchanging ∇ with the contour integration then yields
the expression

σint(r) =

〈∑
i<j

fij

∫ 1

0

dltδ(r− lt)

〉
. (5)

We have thus associated a local stress tensor to a point
r through the contributions of contours passing through
an infinitesimal vicinity of r. The choice of the contour
joining ri with rj does not affect the force on the region
B, but it allows multiple expressions for pointwise local
stress tensors. In their seminal work [13], Irving and
Kirkwood have employed a straight contour lt = ri− trij
leading to

σIK
int(r) = −

〈∑
i<j

fijrij

∫ 1

0

dt δ(r− lt)

〉
. (6)

III. GEOMETRIC DERIVATION

A. Basic idea

At this stage one might wonder if it is possible to derive
an expression for a local stress tensor that is manifestly
independent of the contour joining two particles. Here
we show that this is indeed possible exploiting Cavalieri’s
principle. To this end, let us choose an imaginary planar
oriented surface S ⊂ Λ with normal vector n centered at
r within the system. Our central tool will be the charac-
teristic function χij(S) which is unity if the interactions
due to particles i and j contributes to the surface force
and zero otherwise (with χji = χij and χii = 0). Al-
though the arguably simplest choice is to include pairs
if the displacement vector rij intersects the surface S,
χij(S) is not restricted to a straight line and we will not
have to further specify an explicit expression.

With every such surface we associate the force

F(S) = −

〈∑
(i,j)

fijχij(S)

〉
(7)
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FIG. 1. (a) Sketch of a particle pair (i, j), the bond of which
(dashed line) intersects an imaginary surface S (shaded) with
normal vector n. Here repulsive forces fij and fji = −fij act-
ing on the particles are shown. (b) Side view onto an oblique
prism (shaded) with base area |S| and height h = |rij · n|.
Rotating base surfaces so that the normal is e (the normal
of the cross section A) yields another prism (dashed outline)
with the same volume but height h′ = |rij · e|. (c) Cavalieri’s
principle: Deforming the path connecting i and j does not
change the volume of the body formed by the intersected sur-
faces St with equal area.

summing over all ordered pairs (i, j) of particle indices.
The order is such that rij · n ≥ 0. Suppose we cut the
material along the imaginary surface S and thus cut all
bonds connecting two particles contributing to the sur-
face force, pulling the cut open or pressing it together
depending on the sign of the force. The crucial step in
the following is to identify the force Eq. (7) with the
force appearing in Eq. (1), which yields a local expres-
sion for the stress tensor σ. It is not yet useful since it
still involves the area of S, which is undetermined. We
now show how integrating over the position of S leads to
unambiguous expressions for the local stress tensor.

B. Homogeneous systems

We first assume that the material is homogeneous and
thus σ is constant throughout. Integrating Eq. (1) with
the force Eq. (7) over all possible positions r ∈ Λ of the
surface (with fixed normal vector n and area |S|) yields

−

〈∑
(i,j)

fij

∫
Λ

d3r χij(S)

〉
= σint · n|S||Λ|. (8)

The integral∫
Λ

d3r χij(S) =

∫ h

0

dt |St| = |S|h = |S|rij · n (9)

calculates the volume of an oblique prism comprising
all parallel surfaces St that are intersected by the con-
tour connecting i and j, see Fig. 1(b), with equal area
|St| = |S|. In the last step we exploit the order of the in-
dices, which guarantees that the scalar product h = rij ·n

is non-negative. Note that in Fig. 1(b) a straight line
is shown connecting i and j, but Cavalieri’s principle
[Fig. 1(c)] ensures that a continuous deformation of this
line does not change the volume of the body formed by
the intersected St (under mild conditions, in particular
the projected distance h between the base surfaces has
to remain the same). Inserting Eq. (9) into Eq. (8) then
yields the expression

σint = − 1

|Λ|

〈∑
i<j

fijrij

〉
=

1

|Λ|

〈∑
i<j

u′(rij)
rijrij
rij

〉
(10)

for the stress in a homogeneous system. It is manifestly
symmetric and independent of the area |S|. This is the
well-known expression for the stress that can be found in
textbooks [28].

C. Inhomogeneous systems

We now assume that the system is inhomogeneous in
one spatial direction, e.g., because two phases with dif-
ferent densities coexist. We orient the coordinate system
so that σ = σ(x). We consider a cross section Ax ⊂ Λ
of the entire system with normal vector e = ex. Again
integrating over all positions of the surface S but now re-
stricted to the cross section, r ∈ Ax, we have to consider
the integral∫

Ax

d2r χij(S) = |S′|χij(Ax) =
|S||rij · n|

h′
χij(Ax).

(11)
Only pairs of particles on both sides of the cross section
contribute. The cross section S′ ⊂ Ax of the prism can
be calculated as follows [Fig. (1)(b)]: We rotate the base
surfaces of the prism to align with the normal vector
e. This preserves the volume but changes the height to
h′ = |rij · e| = |xij |, and the area |S′| is obtained as the
previously calculated volume |S|h divided by the height
h′. As before, this result is independent of the actual
shape of the line connecting i and j thanks to Cavalieri’s
principle.

Integrating Eq. (7) over all positions r ∈ Ax, we now
obtain

− |S|

〈∑
(i,j)

fijrij
χij(Ax)

|xij |

〉
·n = σint(x) ·n|S||Ax|, (12)

which yields the symmetric stress tensor

σint(x) =
1

|Ax|

〈∑
i<j

u′(rij)
rijrij
rij

χij(Ax)

|xij |

〉
(13)

associated with the cross section. This is the same ex-
pression as derived by Walton et al. [19] following Irving
and Kirkwood [13], and later reintroduced as “method of
planes” [29]. While χij(Ax) still appears explicitly, it is a
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FIG. 2. Sketch of a particle pair (i, j) with particle i residing
outside and particle j inside the bin region B (shaded area).
Their straight connecting line intersects the cross section at
the point P . Top and bottom panel show two projections with
i′ and j′ shifted along z so that i′j′ ⊥ ∂B is perpendicular to
the boundary.

simple indicator function selecting all particle pairs that
are separated by the cross section but is independent of
the actual contour through the cross section.

For practical reasons one is often rather interested in
slices B ⊂ Λ with a finite width ` (“bins”) and volume
|B| = |Ax|`. We first introduce the spatial average

σ̄int(B) =
1

|B|

∫
B

d3r σint(x). (14)

We now require the integral∫
B

d3r χij(Ax) = |Ax|ξij(B) (15)

with 0 6 ξij(B) 6 ` the length of the projected separa-
tion |xij | within the bin leading to the average stress

σ̄int(B) =
1

|B|

〈∑
i<j

u′(rij)
rijrij
rij

lij(B)

〉
(16)

within region B. This expression generalizes Eq. (10)
to include the ratio lij(B) = ξij(B)/|xij |, which is inde-
pendent of the contour joining i and j and symmetric,
lji = lij . Eq. (10) is recovered upon extending B to the
full system Λ with lij(Λ) = 1.

Making use of the intercept theorem, the ratio lij of the
projected distances (onto the normal e) can be expressed
also by the particle separation. To this end, note the
relations

ξij
|Pj′|

=
|xij |
|i′j′|

,
|i′j′|
|ij|

=
|Pj′|
|Pj|

, (17)

where i′ and j′ are the particle positions shifted parallel
to the surface so that their displacement vector is perpen-
dicular to the surface with intersection point P (Fig. 2).

Rearranging both relations,

lij =
ξij
|xij |

=
|Pj′|
|i′j′|

=
|Pj|
|ij|

(18)

is given by the fraction of the separation |ij| = rij within
the volume B. The result Eq. (16) is thus equivalent
to the local stress tensor derived by Cormier et al. [26]
adopted to the present bin geometry.

The same result can already be found from Eq. (5).
For particle rj ∈ B inside and ri 6∈ B outside the volume
B, ∫ 1

0

dlt χB(r− lt) = rP − rj (19)

with rP the intersection point with the surface. For a
straight contour we have rP = rj + lijrij , which imme-
diately leads from Eq. (5) to Eq. (16). The advantage
of our derivation is that it avoids specifying a contour
and makes transparent that the stress tensor Eq. (16) is
in fact independent of the contour as long as Cavalieri’s
principle applies.

IV. NUMERICAL ILLUSTRATION

For an illustration, we perform molecular dynamics
simulations of a single-component Lennard-Jones fluid at
constant volume V and temperature T with N = 1105
particles. The pair potential reads u(r) = 4ε(r−12−r−6),
which is cut off and shifted at the distance rc = 2.5. The
two parameters are the reduced temperature T̃ = kBT/ε
and the global density ρ̄ = N/V . The integration time
step is ∆t = 0.005 in reduced units. We consider equi-
librated state points inside the two-phase region, where
the homogeneous fluid is unstable and separates into a
dense (liquid) and dilute (gas) phase. We employ peri-
odic boundary conditions and a simulation box 2L×L×L
with volume V = 2L3 that is elongated along the x-
direction. Due to the periodic boundaries, we obtain two
interfaces separating the gas from the liquid phase. Min-
imizing their area in the elongated box, the interfaces
orient so that on average the normal points along the x-
axis and the average density profile becomes ρ(x). In the
following, the center-of-mass of the system corresponds
to x = 0.

In Fig. 3, we plot the diagonal components of the stress
tensor as a function of x for T̃ = 0.6 and ρ̄ = 0.4. We
calculate the two expressions Eq. (16) and Eq. (13) us-
ing the same configurations sampled with the molecu-
lar dynamics simulations. The system is split into 100
bins with width ` = 2L/100 and area |Ax| = L2. For
Eq. (13), the cross section is placed at the center of the
bin and we consider all particle pairs that intersect this
cross section. As required by mechanical equilibrium,
σxx = σ⊥ is approximately constant in both cases. More-
over, σyy = σzz = σ‖(x) as dictated by the symmetry.
We observe that the uncertainties in the dense phase are
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FIG. 3. Diagonal components of the stress tensor σ(x) as

a function of x for T̃ = 0.6 and ρ̄ = 0.4, whereby x = 0
corresponds to the center-of-mass. The same data has been
evaluated using for (a) Eq. (16) and for (b) Eq. (13). In (c) we
set lij according to Eq. (20) leading to an unphysical normal
stress component σxx.

much bigger using Eq. (13), while the bin-average method
Eq. (16) yields a much smoother profile.

The ad-hoc idea to assign the force evenly to both par-
ticles of each pair can be expressed through setting

l′ij(B) =
1

2
[χi(B) + χj(B)] (20)

in Eq. (16). The cartesian components of the resulting
local stress tensor (again using the same configurations)
is plotted in Fig. 3(c). In agreement with previous stud-
ies [8, 29], we note that the normal component σ⊥(x)
depends on x and is not constant as required by the van-
ishing divergence of the stress tensor. Such a splitting
thus yields unphysical results and is not suitable for cal-
culating the local stress.

While both normal and tangential stress are equal
within the two bulk phases, the tangential stress σ‖(x)
is non-uniform and becomes large within the interfacial
region between the two phases. It captures the forces
stabilizing the interface, ultimately leading to a macro-
scopic interfacial tension [32]. This interfacial tension
can be calculated from the stress difference [33],

γ =

∫ L/2

0

dx [σ‖(x)− σ⊥]. (21)

In Fig. 4, we plot γ as a function of the reduced temper-
ature T̃ employing both methods to calculate the local
stress tensor. We also plot results from a previous molec-
ular dynamics study [30] and a Monte Carlo study [31].

Despite the fact that the interfacial tension depends on
system size [34], our results are already in excellent agree-
ment although they are obtained in a finite system and
not extrapolated to infinite system size. See also Ref. 35
for a more comprehensive discussion of various methods
to calculate the interfacial tension.

V. CONCLUSIONS

We have presented a simple derivation for local stress
tensors based on the volume integral of a characteristic
function. Our result generalizes and supports previous
derivations [25–27] for spatially inhomogeneous systems
with planar interfaces, yielding an unambiguous local
stress tensor for this geometry. Our approach is based on
geometric arguments and particularly transparent since
it does not require to define a contour joining interacting
particles. It will be interesting to study how this geo-
metric approach can be generalized to curved interfaces
as relevant for droplets and nucleation phenomena [36].
Moreover, it might shed new insights on the stress in
active fluids [37–39].
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