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1 Introduction
The MCFEM is a procedure, wich consists out of two processes. The finite element method discretizes
a continous problem. The Monte Carlo simulation observes the sample-means of the outputs of observed
experiments with diffrent inputs. The law of large numbers assures, that those sample-means converge to
the value of desire.

We want to use these methods to approximate the expected value and the variance of the solution of the
predetermined boundary value problem (BVP):

−∇(a(x)∇u(x)) = −
2∑

j=1

∂

∂xj

(
a(x)

∂u(x)
∂xj

)
= f(x), x ∈ D (1.1)

u(x) = g(x), x ∈ ∂D. (1.2)

Expressed informally, E is the true value of the arithmetic mean and therefore fixes the location of the
distribution of our solution. The variance than gives us the quadratic deviation, so that we have an
idea about how far the solution can differ from its expected value. That is the reason for our interest in
approximating E[u] and V ar[u].

The PDE (1.1) provides a model for diffusion in a steady state. Therefore the problem we look at is time
independent and imposes the following additional conditions. D needs to be a bounded subset in R2 with
a piecewise smooth boundary ∂D. The diffucion coefficient a only takes positive values, g : ∂D → R
provides the the boundary data and for simplicity we assume, that the source-term satisfies f = 1.

The initial problem assumes, that a, f and u are deterministic functions wich assigne values in D to values
in R. To give meaning to our intention, approximating values that are originally defined for random vari-
ables, we have to make some adjustments first. a, f and u now become real valued second order random
fields.

Definition 1.1. (second-order random field)
A real valued second-order random field, where D ⊂ Rd, is a set of real valued random variables {u(x),x ∈
D} on a probability space (Ω,Σ,P) with the additional condition, that u(x) : Ω → R ∈ L2(Ω) for every
x ∈ D (notice u : D × Ω → R).

The notion of the realisation denotes one possible outcome of such a random field.

Definition 1.2. (realisation)
For a fixed ω ∈ Ω, the realisation of a random field is a function ζ : D → R, ζ(x) := u(x, ω).

Demanding that the random fields lie in L2(Ω) is necessary, so that the first two moments of u are finite
and therefore E and V ar are well-defined. With these adjustements done, the initial problem transforms
into

−∇(a(x, ω)∇u(x, ω)) = f(x, ω), x ∈ D (1.3)

u(x, ω) = g(x), x ∈ ∂D. (1.4)
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We know that under certain conditions the associated deterministic variational problem is well-posed
(see [1], p.372) for realisations a(·, ω) and f(·, ω). Therefore we know, that u(·, ω) ∈ H1

g (D) := {w ∈
H1(D) : γw = g} is well-defined with the trace operator γ : H1(D) → L2(∂D) wich maps functions from
the sobolev space H1(D) themself with the restriction on ∂D. The FEM now helps us to approximate
individual realisations of the solution.

2 The finite element method in R2

For the discretization we subdivide the domain into ne triangles, wich we set to D = (0, 1)× (0, 1). Tri-
angles are ideal, because there is a variety of arrangement-options if the whole domain should be covered.
Th := {∆1, . . . ,∆ne

} is the set of all these triangles, where hk is the longest edge of ∆k, D̄ =
⋃ne

k=1 ∆̄k

and h as the longest edge of all triangles h := maxk hk determines the meshsize. J is the number of inner
nodes and Jb the number of boundary nodes.

To observe if the mistake of our method is getting smaller while the meshsize h converges to zero, we need
a sequence of increasingly smaller grids. Also we want to avoid difficulties while computing, which arise
by having triangles with very sharp angles. Therefore the term of shape-regularity is introduced.

Definition 2.1. (shape-regularity)
A sequence of grids stays regular in shape, if for every element Th there is a constant η > 0, which is
independent of h and satisfies

ρk
hk

≥ η , ∀∆k ∈ Th

where ρk is the radius of the circle inside of ∆k with maximum surface.

Figure 1: rectangular triangles always do the trick

Of course a greater mesh-density goes along with more computing effort but also with a higher accuracy.
Hence comparing different subdivisions of the domain and their influence of the computing time while h
approaches zero is an interesting field that surely is worth delving into.
Now we choose our grid-refinement-sequence, for the subdivision of the domain D. One step of refinement
is shown underneath in Figure 2.
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Figure 2: two elements from the meshsequence of our choice

In the implementation, all elements and their nodes have to be numbered, from left to right and from
bottom to top. For the triangles we first number those of type A and after that, those of type B (see
Figure 2). In the figure above the tenth triangle is highlighted with the global nodes 12, 13 and 17.
Locally the nodes are numbered as well, starting with the one that is sitting on the right angle and then
anticlockwise. Of course all the real coordinates have to be stored as well.

After subdividing the domain, we now contruct an approximation of u over our gridpattern with a set
V h ⊂ H1

0 (D) of polynomials which are piecewise defined on the elements ∆k, while {x 1, . . . ,xJ} are the
inner nodes, wich should guarantee that V h ⊂ C(D̄), so that v|∂D is well-defined for every v ∈ V h.

V h :=

{
v ∈ C(D̄) : v|∂D = 0 and v|∆k

∈ P(∆k) ,∀∆k ∈ Th
}

= span
{
phi1(x ), . . . , ϕJ(x )big}

.
The variable r determindes the maximum degree of the basisfunctions, wich have to satisfy ϕj(xi) = δij ,
where δij is the Kronecker-Delta function. The number of nodes on a Element and therefore J depends
on r and ne. J gets bigger, when when r gets bigger and h gets smaller. That means, that possibly the
number of nodes have to be adjusted so that there are r + 1 nodes on every edge to ensure getting a
globally continuous approximation.

As said before, in the case of inhomogeneous boundary conditions an adjustement has to be made in regard
to the room V . Because we just have to handle homogenous boundary data in the following examples, we
refer to [1] p. 70 ff. here for the curious reader. The FE-approximation for the solution then has the form

uh(x ) =
J∑

i=1

uiϕi(x )

and it has to satisfy the following equations

J∑
i=1

uiB(ϕi, ϕj) = ℓ(ϕj) , j = 1, . . . , J.

which can be written as a matrix vector equation:

Mu = b

where
mij := B(ϕi, ϕj) =

∫
D

ãr(x )∇ϕi(x ) · ∇ϕj(x )dx ∈ R , i, j = 1, . . . , J
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and
bi := ℓ(ϕi) =

∫
D

f(x )ϕi(x )dx , i = 1, . . . , J.

The entiries of the so called Galerkin matrix M differ from zero, if the supports of ϕi and ϕj intersect. Is
r = 1, this happens only if x i and x j are on the same edge of a triangle. Therefor M is thinly occupied
or sparse. The integrals of mij and bi correspond to the sum of the integrals above the individual triangles.

Before we come to the fun part, there is one thing, that has to be considered. Often in practice the diffusion
coefficient a is not known, and we have to content with samples of an approximation of it. Therefore it is
mportant for the whole procedure, that we know at least some exact samples at the gridpoints of Th, so
that we can take means on every element

ã(x , ω)|∆k
:=

1

3

3∑
j=1

a(vkj , ω) ,∀ ∆k ∈ Th

.
With the knowledge of a procedure that enables us to approximate u we can go on and make a Monte
Carlo Simulation by generating multiple solutions for different diffusion coefficients which can be seen as
the inputs of our experiments. As a result the mean of those solutions then provides an approximation
for the expected value. Analogously one obtains the variance afterwards.

Let ãr := ã(·, ωr), r = 1, . . . , Q be iid samples of an approximation of the diffusion coefficient. The
associated iid samples ũr

h := ũr
h(x , ωr) of the FE-solution are obtained then by solving the associated

variational problem∫
D

ã(x , ωr) · ∇ũh(x , ωr) · ∇v(x )dx =

∫
D

f(x )v(x )dx ,∀ v ∈ V h.

Particularly important is, that

µQ,h(x ) :=
1

Q

Q∑
r=1

ũr
h(x )

and

σQ,h(x ) :=
1

Q− 1

( Q∑
r=1

ũr
h(x )

2 −Q · µQ,h(x )2
)

converge P − a.s. to E[ũ(x )] respectively V ar(ũ(x )). Now we are ready to take a look at two different
esamples:
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3 Example for a onedimensional application
Let D = (0, 1), g = 0 and f = 1. Therefore the PDE is given by

d

dx

(
a(x)

d

dx
u(x)

)
= 1 , x ∈ D

with the diffusion coefficient

a(x, ω) = µ+

P∑
k=1

σ

k2π2
cos(πkx)ξk(ω) , ξk ∼ U(−1, 1)iid .

µ = 1 and σ = 4 are the expected value and the variance of the diffusion coefficient, which is a random
variable for a fixed x ∈ D. For a mesh with 512 elements and P = 10 one gets the following results with
the code in the appendix:

Figure 3: Q = 10 (solid & blue), Q = 102 (dotted & orange), Q = 103 (dashed & yellow), and Q = 104

(dash-dotted & purple).
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4 Error analysis
After just applying the method, one might ask whether it is very accurate at all and therefor take a look
at the arising error. The resulting error, consists of the statistical error EMC which depends on Q and
the discretization error Eh,a and for both of them, the asymptotic behavior can be determined (see [1],
p.385-386).

||E[u]− µQ,h||H1
0 (D) ≤ Eh,a + EMC = ||E[u]− E[ũh]||H1

0 (D) + ||E[ũh]− µQ,h||H1
0 (D) = O(h) +O(Q−1/2)

We now know, that technically the error can be kept small but in practice this is expensive. Getting
a sample of the solution means solving a PDE and so the rate of convergence concerning Q is already
not very attractive. More so, to implement the MCFEM for the twodimensional case costs O(ϵ−4) if we
presuppose that we want to approximate E[u] in the H1

0 (D) norm to an accuracy of ϵ.

5 The variational formulation on D × Ω

Finally we derive another variational formulation of (1.3)-(1.4) on D × Ω and seek for weak solutions
u : D × Ω → R. In general we do not search for a solution in the classical sense, because such a function
only exists, if the diffusion coefficient is continuously differentiable over D̄, wich is often not the case.
Therefore we want to convice ourselfs, that there is at least a well-defined so called "weak" solution for
the adjusted initial BVP. In other words we want to find a function u : D̄ × Ω → R in L2(Ω, H1

0 (D)) of
lesser smoothness that satisfies (1.3)-(1.4) P − a.s., so that the individual realisations lie in the solution
space of the determenistic BVP.
That is why we define the weak solution by formulating a variational problem by multiplying the PDE
with a testfunction v ∈ V := L2(Ω,F , H1

0 (D)), integrating both sides over D and taking the expected
value. Notice that

||v||V := E
[
|v|2H1(D)

]1/2
= E

[ ∑
|α|=1

||Dαv||2L2(D)

]1/2
= E

[ ∑
|α|=1

∫
D

|Dαv(x )|2dx
]1/2

Definition 5.1. (weak solution)
A weak solution of the BVP (1.3)-(1.4) is a function u ∈ V that satisfies

B(u, v) = ℓ(v) ,∀v ∈ V (5.1)

where
B(u, v) := E

[ ∫
D

a(x, ·)∇u(x, ·) · ∇v(x, ·)dx
]

is a bilinear form and

ℓ(v) := E
[〈
f, v

〉
L2(D)

]
:= E

[ ∫
D

f(x, ·)v(x, ·)dx
]

If we have homogenous boundary conditions, g=0 and we do not have to distiguish between the solution-
space for u and the testspace for v. Now we can prove the well-posedness of the variational problem.
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Theorem 5.2. If f ∈ L2(Ω, L2(D)), g = 0 and

0 < amin ≤ a(x, ω) ≤ amin < ∞ , a.e. in D × Ω

with a ∈ L∞(Ω, L∞(D)) and amin, amax ∈ R, then (5.1) possesses a unique solution u ∈ V whose
behavior changes continuously with the initial conditions. Furthermore, u(x, ·) is G-measurable for some
sub σ-algebra G ⊂ F , if a(x, ·) and f(x, ·) are G-measurable.

Proof:
If all requirements of the Lax-Milgram Lemma (see [1], p.16) are valid, we know, that u in (5.1) is well-
defined, so we check those. B : V ×V → R needs to be bounded and therefore we use the Cauchy Schwarz
inequality three times. First we use it for the normal scalar product, after a substitution for the product
of integrals and last for the product of expected values:

|B(u, v)| = E
[ ∫

D

a(x , ·)∇u(x , ·) · ∇v(x , ·)dx
]
≤ amaxE

[ ∫
D

||∇u(x , ·)||2 · ||∇v(x , ·)||2dx
]

= amaxE
[ ∫

D

γ(x )δ(x )dx
]
≤ amaxE

[ ∫
D

γ(x )dx
∫
D

δ(x )dx
]

= amaxE
[
|u|H1(D)|v|H1(D)

]
≤ amaxE

[
|u|2H1(D)

]1/2E[|v|2H1(D)

]1/2
= amax||u||V ||v||V

for all u, v ∈ V .

With the same arguments but now for amin we get the coercivity of B, i.e. B(v, v) ≥ amin||v||2V and we
just need the boundedness of ℓ to close the proof. Again we use Cauchy Schwarz:

|ℓ(v)| = E
[ ∫

D

f(x , ·)v(x , ·)dx
]
≤ E

[ ∫
D

v(x , ·)dx
]
E
[ ∫

D

f(x , ·)dx
]

= ||f ||L2(Ω,L2(D))||v||L2(Ω,L2(D))

Additionally the Poincaré inequality (see [1], p.14) provides an upper bound for every realisation

||v(·, ω)||L2(D) ≤ C|v(·, ω)|H1(D) , ∀ ω ∈ Ω

Taking second moments gives us the boundedness of the linear functional ℓ

|ℓ(v)| ≤ C||f ||L2(Ω,L2(D))||v||V =: β||v||V

with β > 0.

q.e.d.

Remark 5.3. (inhomogeneous boundary conditions)
If g ̸= 0, the testspace V differs from the solutionspace W := L2(Ω, H1

g (D)) with |v|W := E
[
|v|2H1(D)

]1/2
that fits to the adjustment. The variational problem can be modified to an equivalent problem with
homogeneous boundary conditions and so it is also well-posed under the same conditions when B :
W × V → R and g ∈ H1/2(∂D) := γ(H1(D)) = {γw : w ∈ H1(D)} with the norm ||g||H1/2(∂D) :=

inf
{
||w||H1(D) : γw = g, w ∈ H1(D)

}
.
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Appendix

%the parameters :

%number o f samples
Q=[10 10^2 10^3 10^4 ] ;
%expected value and var iance o f the d i f f u s i o n c o e f f i c i e n t
mu=1;
sigma=4;
% number o f summands to compute samples o f a ( x )
P=10;
%number o f the f i n i t e e lements r e s p e c t i v e l y t r i a n g l e s
ne=512;
%source term
f =1;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%vec to r s that s t o r e the va lue s o f mu_Q, h(x ) und sigma_Q , h^2(x ) at the nodes
%of the g r id

[mean_u , var_u]=oned_MC_FEM(512 , sigma ,mu,P,Q( 1 ) ) ;
[mean_u1 , var_u1]=oned_MC_FEM(512 , sigma ,mu,P,Q( 2 ) ) ;
[mean_u2 , var_u2]=oned_MC_FEM(512 , sigma ,mu,P,Q( 3 ) ) ;
[mean_u3 , var_u3]=oned_MC_FEM(512 , sigma ,mu,P,Q( 4 ) ) ;

D=0:1/512 :1 ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%implementation o f the f i n i t e element method
func t i on [ uh ,A, b ,K,M] = oned_linear_FEM(ne , p , q , f )

% cons t ruc t i ng the onedimens ional g r id T_h
h=(1/ne ) ; D=0:h : 1 ; nvtx=length (D) ;
J=ne−1; e l t 2 v e r t =[1 : J +1 ;2 : ( J +2) ] ’ ;

% de c l a r a t i on o f the g l oba l matrix
K = spar s e ( nvtx , nvtx ) ; M = spar s e ( nvtx , nvtx ) ; b=ze ro s ( nvtx , 1 ) ;
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% Computation o f the element matr i ce s
[ Kks ,Mks , bks ]= get_elt_arrays (h , p , q , f , ne ) ;

% arrange elemente ar rays in to g l oba l a r rays
f o r row_no=1:2

nrow=e l t 2 v e r t ( : , row_no ) ;
f o r col_no=1:2

nco l=e l t 2 v e r t ( : , col_no ) ;
K=K+spar s e (nrow , ncol , Kks ( : , row_no , col_no ) , nvtx , nvtx ) ;
M=M+spar s e (nrow , ncol ,Mks ( : , row_no , col_no ) , nvtx , nvtx ) ;

end
b = b+spar s e (nrow , 1 , bks ( : , row_no ) , nvtx , 1 ) ;

end

% homogeneous boundary cond i t i on s
K( [ 1 , end ] , : ) = [ ] ; K( : , [ 1 , end ] ) = [ ] ; M( [ 1 , end ] , : ) = [ ] ; M( : , [ 1 , end ] ) = [ ] ;
A=K+M; b ( 1 )= [ ] ; b ( end ) = [ ] ;
%so l v i n g the l i n e a r system f o r the inner nodes
u_int=A\b ; uh=[0; u_int ; 0 ] ;
p l o t (D, uh , ’ − ’ ) ; t i t l e ( ’FE N he rungen von u(x ) ’ ) ;
x l ab e l ( ’ x ’ ) ; y l ab e l ( ’u_h(x ) ’ )
end
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%l o c a l computation o f the i n t e g r a l s o f the e n t r i e s o f A and b above the e lements .
f unc t i on [ Kks ,Mks , bks ] = get_elt_arrays (h , p , q , f , ne )
Kks = ze ro s ( ne , 2 , 2 ) ; Mks=ze ro s ( ne , 2 , 2 ) ;
Kks ( : , 1 , 1 )=( p . / h ) ; Kks(: ,1 ,2)= −(p . / h ) ;
Kks(: ,2 ,1)= −(p . / h ) ; Kks ( : , 2 , 2 )=( p . / h ) ;
Mks( : , 1 , 1 )=( q .∗h . / 3 ) ; Mks( : , 1 , 2 )=( q .∗h . / 6 ) ;
Mks( : , 2 , 1 )=( q .∗h . / 6 ) ; Mks( : , 2 , 2 )=( q .∗h . / 3 ) ;
bks=ze ro s ( ne , 2 ) ; bks ( : , 1 )= f . ∗ ( h . / 2 ) ; bks ( : , 2 ) = f . ∗ ( h . / 2 ) ;
end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%pi e c ew i s e constant approximation o f the r e a l i s a t i o n s o f a (x ) by P i i d samplesxi_k
func t i on [mean_u , var_u ] = oned_MC_FEM(ne , sigma ,mu,P,Q)
h=1/ne ; x=[(h /2 ) : h:(1−h / 2 ) ] ’ ;
sum_us=ze ro s ( ne +1 ,1) ; sum_sq=ze ro s ( ne +1 ,1) ;
f o r j =1:Q

x i=−1+2.∗rand (P , 1 ) ; a=mu.∗ ones ( ne , 1 ) ;
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f o r i =1:P
a=a+sigma . ∗ ( ( i .∗ pi ) .^( −2) ) .∗ cos ( p i .∗ i .∗ x ) . ∗ x i ( i ) ;

end
[ u ,A, b]=oned_linear_FEM(ne , a , z e r o s ( ne , 1 ) , ones ( ne , 1 ) ) ; hold on ;
sum_us=sum_us+u ; sum_sq=sum_sq+(u . ^ 2 ) ;

end
mean_u=sum_us . /Q;
var_u=(1/(Q−1)) .∗ ( sum_sq−(sum_us .^2 . /Q) ) ;
end
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