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Abstract

We consider the problem of constructing a vector-valued linear Markov process
in continuous time, such that its first coordinate is in good agreement with given
samples of the scalar autocorrelation function of an otherwise unknown stationary
Gaussian process. This problem has intimate connections to the computation of a
passive reduced model of a deterministic time-invariant linear system from given
output data in the time domain. We construct the stochastic model in two steps.
First we employ the AAA algorithm to determine a rational function which inter-
polates the z-transform of the discrete data on the unit circle and use this function
to assign the poles of the transfer function of the reduced model. Second we
choose the associated residues as the minimizers of a linear inequality constrained
least squares problem which ensures positivity of the transfer function’s real part
for large frequencies. We apply this method to compute extended Markov models
for stochastic processes obtained from generalized Langevin dynamics in statis-
tical physics. Numerical examples demonstrate that the algorithm succeeds in
determining passive reduced models, and that the associated Markov processes
provide an excellent match of the given data.
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1 Introduction

The stochastic realization problem concerns the question whether a given stationary
Gaussian process in continuous time has a realization in terms of a Markov process of
higher dimension, cf. Lindquist and Picci [21]. In this paper we refer to stochastic mod-
eling, when an approximating Markov process is determined numerically from given
time samples of the autocorrelation function of the stationary process in question,
independent of whether or not a stochastic realization exists. This is also known as the
inverse problem of stationary covariance generation, cf. Kalman [20] and Anderson [2].

Our interest in stochastic modeling is driven by applications from statistical
physics. Consider, e.g., the classical example of the equilibrium dynamics of a particle
in a heat bath (Zwanzig [29]). Assume that the velocity of the particle is being mea-
sured, and an effective stochastic model for its dynamics is sought. The full Langevin
dynamics of the particle together with the constituents of the heat bath provides a
stochastic realization of this process, but this is not tractable analytically and much
too large and costly to simulate, anyway. Rather, one is interested in a small extended
Markov system with a few handful of auxiliary variables, the simulation of which
reproduces the main features of the particle’s dynamics.

The stochastic realization problem has strong connections to the theory of
deterministic time-invariant linear dynamical systems, and the stochastic modelling
problem is related to the corresponding model reduction aspect – without any given
information about the underlying system, be it finite dimensional or not. The major
difference to the common deterministic problem setting is the quality and amount of
data: for applications like the one described above the number of time samples may
be less than a hundred, and they are noisy.

As will be explained in Section 2 the stochastic problem comes with the additional
catch that it is indispensable that the reduced models be passive in the systems theory
terminology. Passivity is a constraint that is easiest to formulate in the frequency
domain; it is difficult to achieve this property in the time domain when the use of the
Laplace transform is prohibited by the quality of the data. Of course, the need for
passive models is also relevant in many deterministic applications, but so far there is
no available off-the-shelf algorithm which applies to our setting; see Section 2 for a
brief review of the pertinent literature.

In this paper we restrict ourselves to scalar problems and present a method which
accounts for passivity, but nevertheless operates in the time domain; this way we are
able to control the quality of our approximation of the original process. The method
is fairly simple to implement and requires only a small number of linear systems to
be solved. It employs in a first step the AAA algorithm for rational interpolation
by Nakatsukasa, Sète, and Trefethen [22] to determine the eigenvalues of a reduced
system matrix, followed by a constrained linear approximation to settle the remaining
free parameters in a second step. The (in)equality constraints make sure that passivity
is achieved for high frequencies, which is the troublesome frequency regime in our
applications. As we demonstrate by numerical examples with data from a statistical
physics application, our algorithm is feasible for the treatment of significantly larger
data sets than could have been handled previously.
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The outline of the paper is as follows. In Section 2 we specify the stochastic mod-
eling problem that we consider and draw the connections to linear systems theory.
In Section 3 we review the AAA algorithm and its potential use for model reduc-
tion purposes. Subsequently, in Section 4, we develop the algorithm that we propose
to compute approximations of the given autocorrelation function, which have all the
requirements that are needed to construct a corresponding Markov model. Numeri-
cal examples are presented in Section 5. To be self contained we show in Sections 6
and 7 how to set up the extended Markov system: Although the material in these two
sections is mostly general folklore, some of the details are difficult to extract from the
literature and the presentation is adapted to our needs. Finally, in an appendix, we
discuss the consistency of the constrained approximation problem which is considered
in Section 4.

2 The stochastic modeling problem

For t ∈ R and s ≥ max{0,−t} let

y(t) = E
[
Y (s+ t)Y (s)

]
, t ∈ R ,

be the autocorrelation function of a real-valued centered stationary Gaussian process
Y = Y (t), t ≥ 0, with positive variance, and assume that we are given 2n (possibly
noisy) samples

yν ≈ y(ντ) , ν = 0, 1, . . . , 2n− 1 ,

of y on some equidistant time grid with spacing τ > 0. The stochastic model of Y that
we want to construct is formulated in terms of an Ornstein-Uhlenbeck equation

d

[
X
Z

]
= A

[
X
Z

]
dt + g dW (2.1)

with a stable matrix A ∈ Rm×m and a scalar Brownian motion W acting in the
direction g ∈ Rm. The goal is to choose A and g in such a way that the scalar
component X of the stationary solution of (2.1) approximates the original process Y
in the sense that

E
[
X(s+ ντ)X(s)

]
≈ yν , ν = 0, . . . , 2n− 1 . (2.2)

The m− 1 components of Z ∈ Rm−1 are auxiliary (dummy) variables for this purpose
and of little interest in practice. We remark that there is no loss of generality in
restricting the attention to a scalar Brownian motion in (2.1). This is a consequence
of the Positive Real Lemma (see Section 7), as the process Y is itself a scalar one.

We refer to Pavliotis [23] for a general reference concerning the stochastic differen-
tial equation (2.1), its stationary solution, and stationary processes in general. We will
make use of the fact that the covariance matrix Σ ∈ Rm×m of the stationary solution
of (2.1) is determined by the Lyapunov equation

AΣ +ΣAT = −ggT , (2.3)
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and that the autocorrelation function of X is given by

E
[
X(s+ t)X(s)

]
= eT1 e

|t|AΣe1 , t ∈ R , (2.4)

cf. [23, Section 3.7]. Here and throughout we denote by e1 the first Cartesian basis
vector in the (real or complex) Euclidean space, the dimension of which is determined
by the context. Likewise we write I for the associated identity matrix.

In view of our goal (2.2) we exclude systems (2.1), for which the autocorrelation
function of X is identically zero. We may further assume without loss of generality
that X and Z are stochastically independent, for this can always be achieved by a
coordinate transformation, i.e., by representing the auxiliary variables in a different
basis. Then

Σ = σ2

[
1 0
0 Σ0

]
(2.5)

for some σ2 > 0 and some Hermitian positive semidefinite matrix Σ0 ∈ R(m−1)×(m−1),
and (2.4) simplifies to

E
[
X(s+ t)X(s)

]
= σ2 eT1 e

|t|Ae1 =: φ(t) , t ∈ R . (2.6)

The autocorrelation function of any second order stationary stochastic process is a
function of positive type, cf., e.g., [23, Section 1.2], and hence, the Fourier transform

φ̂(ξ) =

∫ ∞

−∞
e−iξtφ(t) dt = 2σ2 Re eT1 (iξI −A)−1e1 (2.7)

of φ is nonnegative for every ξ ∈ R by Bochner’s theorem. Vice versa, if φ̂ is a
nonnegative function then there is a vector g ∈ Rm, such that the stochastic differential
equation (2.1) has a stationary solution which satisfies (2.6); see Section 7 for details.

If the approximation X ≈ Y were exact, i.e., if φ = y, then y is the output of the
deterministic dynamical system

ẋ(t) = Ax + σ2e1u ,

y(t) = eT1 x ,
(2.8)

with homogeneous initial data, where u = u(t) is a delta distribution at t = 0. In
control theory, u represents the control (or the input) of the system. Associated with
(2.8) is the so-called transfer function

κ(ζ) = σ2 eT1 (ζI −A)−1e1 , ζ ∈ C . (2.9)

In view of (2.7) and Bochner’s theorem we observe that κ has a nonnegative real
part on the imaginary axis, and since A is stable, κ is analytic in C+, the open right
complex half plane. Such functions are termed positive real, and when κ is positive
real, then the system (2.8) is called passive. We can thus rephrase our stochastic
modelling problem as the task to construct a passive deterministic system such that
the output is in good agreement with the given samples yν .
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In contrast to control theory, however, we have no control on u; the input is nec-
essarily given by a delta distribution. Since this particular input is not localized in
frequency space, it prohibits, for example, the use of an algorithm suggested by Cher-
ifi, Goyal, and Benner [10] for finding a passive model that is compatible with given
time-domain data. Other works which deal with the construction of passive reduced
models, e.g., [9, 16, 25], have proposed fixes of preliminary non-passive models by
modifying their coefficients to shift negative values of φ̂ which are present in finite fre-
quency bands; these algorithms, however, are neither guaranteed to succeed, nor can
they treat negative values of φ̂ in unbounded frequency bands. Unfortunately, the lat-
ter is the main cause of difficulties in our application, because the Fourier transforms
of autocorrelation functions which are of interest to us, vanish at infinity. This also
rules out a method by Fazzi, Gugliemi, and Lubich [13], which requires such a fix in
a preliminary step.

Other papers, e.g., [11, 14, 15], have suggested nonlinear optimization to modify
the system coefficients in order to find nearby systems which satisfy the so-called Lur’e
equations (see (7.3) below) that can be used to characterize passivity. Those methods
have subtle convergence issues, are quite complicated to formulate, and their impact
on the data fit in the time domain is not transparent. The algorithm which we propose
here is much easier to implement, and a mean square approximation (2.2) of the given
data is its primary objective.

3 The exponential approximation problem

We will stipulate the assumption that the matrix A in (2.1) is diagonalizable (we will
briefly elaborate on this assumption in Remark 3.1). Then the right-hand side of (2.6)
is a so-called Prony series, i.e., a real-valued linear combination∗

φ(t) =

m∑
j=1

αje
tλj for t ≥ 0 (3.1)

of complex exponentials with some appropriate weights αj ∈ C, j = 1, . . . ,m. This
function decays exponentially because the λj are the eigenvalues of A, and since A is
stable, those belong to C−, the open left complex half plane.

To achieve the goal (2.2) we want to determine a Prony series φ which satisfies

φ(ντ) ≈ yν , ν = 0, . . . , 2n− 1 , (3.2)

in a mean square sense. To this end we need to select an appropriate number m of
terms in (3.1) and choose corresponding exponents λj and weights αj , j = 1, . . . ,m.
This is a long-standing delicate numerical problem, cf., e.g., Varah [27], because (i) it is
nonlinear in the parameters λj , and (ii) the outcome is very sensitive to perturbations
in the data. In particular, as the exponents have negative real parts, the given data yν
carry less and less additional information, the higher the value of ν. One can therefore

∗Here we adopt the terminology “Prony series”, which is commonly used in applications, despite the fact
that the sum (3.1) consists of only finitely many terms.
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expect the necessary number m of terms in (3.1) to drive the error in (3.2) below a
given tolerance to be considerably smaller than n; note, however, that for m ≥ n it is
generically possible to realize (3.2) with equality, as there are 2n equations to satisfy
and 2m parameters to choose.

We emphasize that we do not claim or attempt to resolve a presumably valid
Prony series representation of the true autocorrelation function, which is a highly ill-
conditioned problem. For our purposes it is sufficient to approximate the data by some
Prony series representation, which is less ambitious and much better conditioned.

A common way to approach the exponential approximation problem (3.2) is via
the generating function (or z-transform)

f(z) =

∞∑
ν=0

yνz
−ν−1 (3.3)

of the data. Stipulating the very mild restriction that the samples (yν)ν∈N are abso-
lutely summable, this function f is analytic in the exterior of the unit disk and extends
continuously to the unit circle. Imagine that (3.2) holds with equality. Then the series
can be rewritten as

f(z) =

∞∑
ν=0

m∑
j=1

αje
ντλjz−ν−1 =

m∑
j=1

αj

z

∞∑
ν=0

(eτλj/z)ν =

m∑
j=1

αj

z − zj

with
zj = eτλj , j = 1, . . . ,m .

These zj lie inside the unit disk (and are nonzero), and hence the domain of conver-
gence of the generating function extends to the exterior of some disk of radius ρ < 1
around the origin. It coincides with a rational function in the complex plane with a
zero at infinity and m poles in the points zj . And vice versa: If f is a rational function
with m distinct first order poles zj ̸= 0 in the unit disk and corresponding residues
αj , and if f is vanishing at infinity then the associated Prony series φ of (3.1) with

λj =
1

τ
log zj (3.4)

interpolates the coefficients yν of the Laurent series (3.3) at all grid points tν = ντ ,
ν ∈ N0.

We mention that the choice of the complex logarithm in (3.4) has no impact on
the values of the Prony series at the grid points, as is obvious from (3.1). However,
depending on which branch of the logarithm has been selected, the function φ may
oscillate in between the grid points. Assuming that the sampling rate τ has been
chosen small enough to capture all relevant frequencies of the target function y, the
appropriate branch to choose in (3.4) is the one with imaginary parts in (−π, π).
Further, if some pole zj happens to be negative, then this pole should be mapped
onto two complex conjugate exponents λ±j = (log |zj | ± iπ)/τ , with α±

j = αj/2 as
corresponding weights, to obtain a real-valued approximation (3.1); we emphasize that
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the special case of negative poles within the unit disk calls for further attention at a
later stage of the algorithm; see Remark 4.2 below.

The task (3.2) can therefore be recast as a problem of approximating the generating
function f by a rational one, which vanishes at infinity, and then choosing φ to be
the Prony series associated with this rational approximation. For example, one can
compute the Padé approximation of f of order (m − 1,m) at infinity; the associated
Prony series then interpolates the given data yν , ν = 0, . . . , 2n − 1. The resulting
algorithm is the classical Prony method for exponential interpolation, cf., e.g., Weiss
and McDonough [28], or Plonka et al [24]. This is the route that we have followed in
[8]. The resulting algorithm works reasonably well for twenty or so data points, but
for larger or noisy data sets the resulting Prony series often fails to be of positive
type.† Then there is no associated Markov system (2.1) which satisfies (2.6). We briefly
mention that Bai and Freund [5] have suggested an ad hoc modification of their Padé
approximation scheme to obtain a Prony series of positive type, but they apply the
Padé scheme in the frequency domain and not in the domain of the z-transform.

An alternative way of computing rational approximations of the generating func-
tion can be based on the AAA algorithm‡. To this end one can adapt a suggestion by
Derevianko, Plonka, and Petz [12] and first evaluate the available 2n leading terms of
(3.3) on an equidistant angular grid on the unit circle, e.g., by using a fast Fourier
transform of order 2n of the samples {yν}. This gives data

fν ≈ f(ων) , ν = 0, . . . , 2n− 1 , where ω = eiπ/n . (3.5)

The AAA algorithm now proceeds by choosing an appropriate index set Nk ⊂
{0, . . . , 2n − 1} associated with mk of these grid points on the unit circle, defines
a corresponding parameterized rational interpolant rk of order (mk − 1,mk − 1) in
barycentric form,

rk(z) =
∑
ν∈Nk

wνfν
z − ων

/ ∑
ν∈Nk

wν

z − ων
, (3.6)

and optimizes the mk free complex parameters wν to approximate the remaining data
pairs (3.5) by solving the linear least squares problem

minimize
∑
µ/∈Nk

∣∣∣∣∣ ∑
ν∈Nk

wν(fµ − fν)

ωµ − ων

∣∣∣∣∣
2

(3.7)

among all coefficients wν with
∑

ν∈Nk
|wν |2 = 1. It follows from (3.7) that any vector

w ∈ Cmk with minimizing weights is a singular vector associated with the smallest
singular value of the so-called (rectangular) Loewner matrix

L =

[
fµ − fν
ωµ − ων

]
µ,ν

∈ C2n−mk,mk .

†By some abuse of denomination we refer to a Prony series of positive type, if the Fourier transform of
its even extension to all of R is of positive type.

‡Spoken “triple-A-algorithm”; the acronym stands for adaptive Antoulas–Anderson (algorithm).
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We like to mention in passing that Claus Schneider has contributed in an early
paper [26] to the use of the barycentric representation for rational interpolation, and
refer to [22] for a detailed historical account of the ideas behind the AAA algorithm.

The AAA algorithm is a greedy iterative scheme, i.e., in each iteration k = 1, 2, . . . ,
the set of interpolation points is extended until the overall match (3.7) is below a given
tolerance. Presuming that the final rational function has only first order poles zj ̸= 0
within the unit disk, these poles and their residues yield as before an associated Prony
series φ which satisfies (3.2).

In order to ensure the rational approximation to be real, i.e., that rk(z) ∈ R
for z ∈ R, we initialize N1 = {0, n} with the indices ν in (3.5) corresponding to
z = ±1, and in each iteration we extend the index set Nk by the two indices ν
and 2n − ν of one complex conjugate pair of grid points, hence mk = 2k. Then
it can be shown that in each iteration we obtain a real rational interpolant (3.6)
which minimizes (3.7), provided we choose the weight vector w ∈ Cmk appropriately.
To be specific, assume that {ων}ν∈Nk

is any set of minimizing parameters for (3.7)
computed by a singular value decomposition of the corresponding Loewner matrix.
Assume further that ν, ν′ ∈ Nk correspond to two complex conjugate grid points of
the grid (3.5). Then it is not too difficult to see by reordering the summation in (3.7)
that the minimal value of (3.7) is also attained if the weight wν is replaced by wν′ , and
wν′ by wν , respectively. Accordingly, the vector w′, which contains all these exchanged
weights for all complex conjugate pairs of grid points in Nk, must also be a singular
vector of the same Loewner matrix associated with the same singular value, and this
implies that (w + w′)/∥w + w′∥2 is yet another vector in this singular subspace; the
entries of this latter vector, however, are complex conjugate, when the corresponding
data points are, and hence the associated rational function (3.6) is real.
Remark 3.1. We have made the assumption that the system matrix A of (2.1)
be a diagonalizable matrix. If this fails to be true, then some of the coefficients of
the associated autocorrelation function φ may be polynomials αj(t) instead of being
constant. This in turn implies that the corresponding generating function f has poles
of higher order. And vice versa: If the rational approximation (computed by whatever
means) has poles of degree two or more, then this calls for a system matrix A with
nontrivial Jordan blocks. ⋄

Although the AAA algorithm performs well in approximating the generating func-
tion, there is no clear interpretation of the sense in which the associated Prony series
will approximate the data in (3.2), nor is there any guarantee that this Prony series will
be a function of positive type. As we have emphasized before, the latter is mandatory
to obtain the desired Markov model (2.1).

4 The new algorithm for the stochastic modeling
problem

Recall that it is our objective to approximate the given data by a Prony series in a mean
square sense, subject to the constraint that this function be of positive type. The major
difficulty in achieving this goal stems from the fact that there is no characterization
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(nor understanding) of the nonlinear manifold of data which correspond to Prony
series of positive type. We therefore relax our aim in two ways:

(i) we preassign the number m and the exponents λj , j = 1, . . . ,m, of the exponentials
to be used in (3.1);

(ii) we optimize the remaining free coefficients αj , j = 1, . . . ,m, so as to minimize the
mean square fit (3.2), subject to the weaker constraint that the Fourier transform
of the Prony series is positive near infinity.

These goals are realized in two independent steps of our algorithm. Concerning
item (i) we apply in a first step the variant of the AAA method described in the
previous section. We take the poles zj of the resulting rational approximation (which
are symmetric with respect to the real axis), ignore the associated residuals – because
the final weights of the Prony series φ are subject to item (ii) – and choose the
exponents λj of φ via (3.4). As has been mentioned in Remark 3.1 higher order poles zj
lead to non-diagonalizable coefficient matrices A in (2.1); although it is very unlikely
that this case will ever show up in numerical computations, we simply ignore the
order of the poles for item (i). We further remark that some poles may fail to lie in
the open unit disk. Those are called spurious poles, because they typically come with
very tiny residuals and have small impact on the quality of the approximation; so we
can simply eliminate them. The same is true for a possible pole at z = 0. In fact,
in our numerical implementation we eliminate all poles whose residues are negligible
relative to y0 = f(∞). For the moment we also make the assumption that none of the
remaining poles is negative (see Remark 4.2 below).

Item (ii) is motivated by the fact that in the applications that we have in mind the
true autocorrelation function y belongs to L1(R), and hence, ŷ(ξ) converges to zero
for |ξ| → ∞. Accordingly, violations of the positivity of φ̂ are most likely to happen
near infinity, in particular, as tiny spurious oscillations in the data due to noise will
mostly affect high frequency components of φ. Further, the positivity of φ̂ near infinity
can be checked with a finite number of linear constraints on the coefficients αj , which
simplifies their optimization. In fact, a straightforward computation shows that

φ̂(ξ) = −2

m∑
j=1

αjλj
λ2j + ξ2

, (4.1)

and expanding the right-hand side for large frequencies ξ we obtain

φ̂(ξ) = 2

∞∑
k=0

βkξ
−2k−2 (4.2)

for |ξ| > max |λj |, with

βk = (−1)k+1
m∑
j=1

αjλ
2k+1
j , k ∈ N0 . (4.3)
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It follows that φ̂(ξ) ≥ 0 for all sufficiently large frequencies ξ, if and only if the leading
term of (4.2) is positive near infinity, i.e., if condition

βk∗ > 0 and βk = 0 for all 0 ≤ k < k∗ (4.4)

holds true for some k∗ ∈ N0. As mentioned before, these are finitely many linear
constraints on the searched for coefficients αj .

Thus, to realize item (ii) we specify the weights αj via the linear least squares
problem

minimize

2n−1∑
ν=0

∣∣∣yν −
m∑
j=1

αje
ντλj

∣∣∣2
subject to the (in)equality constraints (4.4) .

 (4.5)

The solution of this problem constitutes the second step of our algorithm. Note that
the quadratic objective function

ψ(a) =

2n−1∑
ν=0

∣∣∣yν −
m∑
j=1

αje
ντλj

∣∣∣2 , a = [α1, . . . , αm]T ∈ Cm , (4.6)

of (4.5) is strictly convex as long as we restrict ourselves to m ≤ 2n; compare, for
example, [24]. Since the constraints also define a convex setQ of admissible parameters,
problem (4.5) has a unique minimizer, provided that the constraints are consistent.
The same argument as in the previous section can be used to show that the minimizing
weights come in complex conjugate pairs, so that the corresponding Prony series is
real-valued.

The solution of (4.5) can be found by implementing a loop over the number k∗ =
0, 1, 2, . . . of active constraints in (4.4). We initialize k∗ = 0 and consider first the
unconstrained least squares problem

minimize ψ(a) (4.7)

for the given exponents λj ∈ C−, j = 1, . . . ,m. If the solution a† ∈ Cm of (4.7) satisfies
β0 = β0(a

†) > 0 then we have found the unique solution of problem (4.5). Otherwise
the solution vector a of (4.5) must satisfy the additional equality constraint

β0(a) = −
m∑
j=1

αjλj = 0 . (4.8)

We thus let k∗ = 1 in this case and minimize ψ(a) subject to the equality con-
straint (4.8). This problem has a unique solution, which we denote again by a† ∈ Cm

for simplicity; it can be determined by using the constraint to eliminate one of the
free variables and then solving a single linear system of (normal) equations for the
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remaining ones; compare, e.g., Björck [7, Section 5.1] for stable numerical implemen-
tations. If the corresponding value of β1 = β1(a

†) > 0 then the parameter vector a†

is the unique solution of (4.5); if not, we again increase k∗ by one, i.e., add another
active constraint via (4.4), repeat the optimization process anew, and so on.

This loop over k∗ terminates whenever the solution of (4.5) has been found, or
when the set of constraints becomes inconsistent, i.e., when β0 = β1 = · · · = βk∗−1 = 0
implies that βk = 0 for all k ≥ k∗. Due to the Vandermonde type structure of the
constraints this happens exactly when k∗ = m, i.e., when the number of active con-
straints has reached the number of free parameters. If this happens then the algorithm
has failed.

Such a failure indicates that the Prony series approximation (3.1) does not have
enough degrees of freedom or that the data are too noisy. To account for the former,
one can enforce a smaller tolerance for (3.7) in the AAA algorithm in view of item (i)
above, because this will typically give more poles, i.e., more terms for the Ansatz (3.1).
To cope with too much noise in the data, one option is to use a larger grid spacing
τ , or to come up with some individual sophisticated treatment to reduce the noise in
the data.

We also emphasize that even when (4.5) has a solution, then this is no guarantee
that the resulting Prony series is of positive type, for the Fourier transform may still
be negative in some bounded frequency band. It remains open how to best proceed in
such a situation.
Remark 4.1. Depending on the application it may be appropriate to append addi-
tional constraints to (4.5). For example, in many situations the variance y(0) of the
underlying stationary process Y can be measured more accurately than the other auto-
correlations, or may be known beforehand from theoretical considerations. In this case
it may be reasonable to enforce the approximation φ ≈ y to be exact at the origin,
i.e., by adding the constraint

φ(0) =

m∑
j=1

αj = y0 . (4.9)

In other applications, for example the one in Section 5, it may be known a priori
that the true autocorrelation function is differentiable, in which case y′(0) must vanish
due to the symmetry of y. In this case one may wish to add the constraint

φ′(0) =

m∑
j=1

αjλj = 0 , (4.10)

which means that β0 = 0, compare (4.3). Accordingly, (4.4) can only hold for some
k∗ ≥ 1, and in this case we initialize k∗ = 1 when executing the loop of our algorithm
for the constrained least squares problem for the first time.

We will show in the appendix that the inhomogeneous constraint (4.9) and the
equality constraints in (4.5) are consistent as long as k∗ < m. ⋄
Remark 4.2. So far we have excluded the case that the rational approximation
determined by the AAA algorithm has negative poles. Now let us assume that some
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pole zj happens to be negative. Then the corresponding two exponents

λ±j = µj ± i
π

τ
, µj =

1

τ
log |zj | ,

differ by 2iπ/τ , and the exponentials eντλ
±
j in (4.5) are indistinguishable. Accordingly,

the objective function ψ of (4.6) is convex, but not strictly convex. If (4.9) is the only
equality constraint in (4.5) then there is an infinite family of Prony series which solves
(4.5): If φ is one of them, then

φ(t) + γ eµjt sin(πt/τ) , t ≥ 0 ,

with γ ∈ R, |γ| small, are further ones. By tuning γ, one can change φ′(0) to any value
one might like – provided the positivity of φ̂ is not being violated. Which of them is
“best” (and in what sense), however, is not clear.

In our implementation we enforce this derivative to be zero in this case, i.e., we
add the constraint (4.10). If the rational function has only one negative pole then
this heals the problem: the objective ψ is strictly convex over the set Q of admissible
parameters defined by (4.4) with k∗ ≥ 1. If the rational function has ℓ ∈ N negative
poles, then a similar fix is possibly by constraining k∗ ≥ ℓ in (4.4); see Theorem A.4
in the appendix. ⋄

5 Numerical example: Motion of a colloid within a
fluid

For our numerical results we focus on applications where the underlying stationary
process Y : R → R satisfies a generalized Langevin equation

mẎ (t) = −m
∫ t

−∞
γ(t− τ)Y (τ) dτ + F (t) , (5.1)

with an even integral kernel γ ∈ L1(R) of positive type. This sort of equation is used,
for example, in statistical physics as a coarse-grained model for the velocity Y of a
macroparticle, a colloid say, dispersed in a fluid, where the so-called memory friction
γ represents the interactions of the macroparticle with the constituents of the fluid.
In (5.1) m is the mass of the macroparticle and the external forcing F is a random
process, whose autocorrelation function is given by

E
[
F (s+ t)F (s)

]
=

m

β
γ(t) , t ∈ R ,

for a system in thermodynamical equilibrium, where β > 0 is the inverse temperature,
cf., e.g., Jung and Schmid [19]. Moreover, Y is a Gaussian process whenever the random
forcing is.
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Fig. 1 Autocorrelation function (acf) of Examples 5.1 and 5.2 and its Prony series approximations
(left panel) with five and seven terms for 2n = 50 (τ = 0.05) and 2n = 20 (τ = 0.06) data points,
respectively. The panel on the right shows the corresponding errors, i.e., the graphs of y − φ.

The numerical implementation of (5.1) is involved and expensive, and therefore
approximate Markov models (2.1) are often sought for simulations of the coarse-
grained system. Typically autocorrelation data of Y are used to find such Markov
approximations. Different techniques have been proposed for this in the literature, cf.,
e.g., [8], and the references given there. Most of these work well for a handful of aux-
iliary variables only and a corresponding limited number of data points. As will be
demonstrated below, the new algorithm of Section 4 can handle much larger data sets,
while the size of the resulting Markov models remains manageable.

For the generalized Langevin equation (5.1) it is not difficult to see that the
autocorrelation function y of the stationary process Y satisfies the delay differential
equation

ẏ(t) = −
∫ t

0

γ(t− τ)y(τ) dτ , y(0) =
1

βm
, (5.2)

cf., e.g., [17]. Note that the variance 1/(βm) of the process corresponds to the average
kinetic energy of a particle of massm in thermodynamical equilibrium, and for physical
consistency it suggests itself to prescribe φ(0) to be exactly this value. Further, it
follows readily from (5.2) that ẏ(t) → 0 as t→ 0, and hence, the even autocorrelation
function y is differentiable with ẏ(0) = 0. We therefore include the two additional
constraints (4.9) and (4.10) of Remark 4.1 in our algorithm for the determination of
the weights αj of the Prony series (3.1).

The data for the numerical examples have been borrowed from our previous
work [8, 18], where more details about the physical setting and the particular applica-
tion can be found, as well as the technical details concerning the generation of these
data. For the detection of spurious poles of the rational approximations in the first
step of our algorithm we have used a tolerance of 10−3 for the absolute values of the
residues of the poles, relative to the value of y0.
Example 5.1. As a first test case we consider the autocorrelation function from [18]
shown as black solid line in the left panel of Figure 1. We assume that we are given
2n = 50 samples of this autocorrelation function with grid spacing τ = 0.05. These
data points correspond to the black circles in the plot on the left hand side.
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For this example the Padé approximation which is computed in the Prony method
mentioned in Section 3 would have 25 poles, and if the associated Prony series is of
positive type then the corresponding Markov system would have 24 auxiliary variables.
Of course, some of these poles may have negligible residues. With a relative tolerance
of 10−3 for the data fit (3.7) the AAA algorithm determines a rational approximation
of the generating function with only five poles. The optimization of the correspond-
ing weights αj of the Prony series succeeds in the very first execution of the loop
(with counter k∗ = 1) to find the global solution of (4.5). One can check that the
Fourier transform of the associated Prony series has no real zeros, so this Prony series
approximation of the autocorrelation function is of positive type.

With the smaller tolerance 0.5 · 10−3 for (3.7) the resulting AAA approximation
has seven poles. This time the optimization of the corresponding weights requires more
than one execution of the loop, because β1 turns out to be negative initially. The loop
terminates for k∗ = 2 with the global solution of (4.5). Again the resulting Prony
series is of positive type.

The graphs of the two approximations are displayed as dashed lines in Figure 1. In
the panel on the left they can hardly be distinguished from the given autocorrelation
function. Note that they correspond to autocorrelation functions of the first compo-
nent X of a Markov system (2.1) with four, respectively six, auxiliary variables only.
The panel on the right of Figure 1 reveals that the autocorrelation function of the
approximation with four auxiliary variables is somewhat less accurate for small times.

We mention that with even smaller tolerances for (3.7) the AAA approximations
develop spurious poles and the final mean square fit does not improve any further. ⋄
Example 5.2. To compare the outcome of the new method with the numerical results
in [8, Section 3.2], we also consider the corresponding smaller data set with 2n = 20
samples and slightly larger grid spacing τ = 0.06 of the same autocorrelation function.
Again, for a relative tolerance of 10−3 the rational function computed with the AAA
algorithm has m = 5 poles, but this time one of these poles is negative and leads to
two associated terms of the Prony series, see Remark 4.2. Since we restrict ourselves
to k∗ ≥ 1 anyway, the constrained least squares problem (4.5) has a unique solution,
which is, indeed, obtained for k∗ = 1 as in Example 5.1. When the tolerance for (3.7)
is 10−4 then the associated rational function has seven poles. Again, one of these poles
is negative and the optimal weights are obtained for k∗ = 1.

As in Example 5.1 both Prony series can be checked to be of positive type; their
graphs are included in Figure 1 as dotted lines. Note that they use other interpolation
data than the approximations in Example 5.1, with samples restricted to t ≤ 1.2.
As can be seen from the plot on the right the quality of the approximations of the
corresponding Prony series deteriorate for larger times.

Due to the fact that one of the poles of the rational function has been negative,
the corresponding two Markov systems have one auxiliary variable more than the ones
of Example 5.1, namely five and seven, respectively. To compare the results with the
ones of [8] we point out that the autocorrelation function constructed in [8] with the
Prony type algorithm is of similar quality, but requires nine auxiliary variables. ⋄
Example 5.3. For a third example we consider an autocorrelation function from a
different generalized Langevin equation for a similar physical problem. This example
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Fig. 2 Autocorrelation function (acf) of Example 5.3 and corresponding Prony series; right-hand
panel shows a detail.

is taken from [8, Section 3.3], where it is termed “medium noise setting”; as the name
suggests the corresponding data are somewhat noisy. With the same grid spacing
τ = 0.06 as in Example 5.2 the method of [8] failed to produce an approximation of
positive type when the first 2n = 50 data points were used, and also for 2n = 48 data
points. It was successful for 2n = 46 data points, though, but despite the m = 13
terms of the approximating Prony series, the fit of the autocorrelation function wasn’t
too good in that case, either; compare the middle panel of Figure 6 in [8].

With our new method and each of the three data sets the default tolerance of
10−3 for the fit (3.7) of the AAA algorithm is sufficient to obtain Markov models for
which the autocorrelation functions in question are in good agreement with the given
data. The graphs of two of them, namely the ones for 2n = 46 and 2n = 50 data
points are displayed in Figure 2, together with the underlying autocorrelation function
(black line) and the data samples (black circles). The associated Prony series have five
terms (2n = 46) and nine terms (2n = 50), respectively; in both cases the rational
approximations had two further poles, which were decided to be spurious. The two
Prony series approximate the data equally well, both in terms of the mean square and
absolute error. The fact that more poles are necessary for 50 data points may reflect
the aforementioned difficulties of the Prony method for that situation.

The approximation shown in Figure 2 for 2n = 48 grid points has been obtained
for the slightly smaller tolerance 0.5 ·10−3 for (3.7). Its data fit is about a factor of two
better than for the other two models. In this case the AAA rational approximation
had 13 poles, four of which were considered spurious, while two poles in the exterior of
the unit disk just barely failed the criterion of being spurious poles. One may suspect
that poles outside the unit circle may be more common when the data are noisy. Of
course these two poles had to be eliminated to make the algorithm work, much to the
success of the corresponding approximation, which thus had seven terms, eventually.

The plot on the right-hand side of Figure 2 zooms into a detail of the left-hand
plot, in which the noise in the autocorrelation data is striking. Take note that the
given data samples correspond to times t < 3. As can be seen from this plot the Prony
series approximations provide a smoother and more reliable extrapolation of these
data to times t > 3 as the measured values of the autocorrelation function do. This
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is probably due to the fact that the corresponding functions are of positive type, i.e.,
are “more physical”. ⋄

These examples show very well that the new method has a great potential to
provide excellent Prony series approximations of positive type. It is also fascinating
to see the approximation power of the parameterized Prony series, despite the fact
that there is only a handful of free parameters to optimize. In other words, the AAA
algorithm does a very good job in selecting appropriate sets of exponents for their
parameterizations.

6 Computation of the system matrix

Once the Prony series φ of (3.1) has been computed, the next step is to set up an
associated system matrix A which satisfies the second equation in (2.6).

We want this matrix to be real because the simulation of the Markov system (2.1)
should give real paths. To this end we define the real Jordan canonical matrix

J =



λ1
. . .

λr
Reλr+1 Imλr+1

−Imλr+1 Reλr+1

. . .


(6.1)

associated with the exponents λj ∈ C− of (3.1). In (6.1) the negative exponents
λ1, . . . , λr make up the leading part of the diagonal, and two-by-two rotation matrices
follow on the remaining part of this block diagonal matrix, one for each pair of complex
conjugate exponents, like λr+1 and λr+2 = λr+1, and so on. Next we introduce the
two (real) m-dimensional vectors

v =

 v1...
vm

 and w =

w1

...
wm


with entries

vj = 1 and wj = αj

for the indices j = 1, . . . , r corresponding to the real exponents, and

vr+1 = 1 , vr+2 = 0 and wr+1 = 2Reαr+1 , wr+2 = −2 Imαr+1 ,

and so on, for the complex conjugate ones. Then one readily checks that

vT e|t|Jw = φ(t) , t ∈ R . (6.2)
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In particular, for t = 0 this gives

vTw = φ(0) = σ2

by virtue of (2.6).
Now one can construct a nonsingular matrix V ∈ Rm×m which satisfies

V w = σ2e1 and V −T v = e1 . (6.3)

(See, for example, Bai and Freund [4, Lemma 1] for an explicit construction.) With
the help of (6.2) and (6.3) we thus arrive at the representation (2.6), namely

φ(t) = σ2 vTV −1V e|t|JV −1e1 = σ2(V −T v)T e|t|V JV −1

e1 = σ2 eT1 e
|t|Ae1

with the stable matrix

A = V JV −1 .

7 Determination of the driving noise direction

The final step of our construction of the Markov system (2.1) consists in finding the
direction g ∈ Rm of the driving Brownian motion, so that the autocorrelation function
of the stationary solution of (2.1) satisfies (2.6). For the ease of presentation we will
make the stronger assumption that the computed Prony series φ is of strict positive
type, i.e., that

φ̂(ξ) > 0 for all ξ ∈ R ; (7.1)

we refer to Anderson and Vongpanitlerd [3] for a treatment of the general case. We
further assume that the coefficients αj of (3.1) are all different from zero, and that φ
can be written in the form (2.6) for some (stable) matrix A ∈ Rm×m, e.g., by choosing
A as in Section 6. Then, in the systems theory terminology, the representation (2.9)
of κ is a minimal realization of this transfer function. From (7.1) and (2.7) it follows
that κ is analytic in a neighborhood of the closed right half complex plane with

Reκ(iξ) > 0 for all ξ ∈ R . (7.2)

Given these properties the Positive Real Lemma states that the singular Lur’e
equations

AΣ +ΣAT = −ggT , Σe1 = σ2e1 , (7.3)

have a solution – consisting of a symmetric positive definite matrix Σ ∈ Rm×m and
a vector g ∈ Rm; cf. [3]. If the driving force of the Ornstein-Uhlenbeck equation (2.1)
operates in the direction g then Σ is the covariance matrix of its stationary solution,
compare (2.3); the second equation in (7.3) implies that Σ can be written in the
form (2.5), and hence, the autocorrelation function of the stationary solution satisfies
(2.6) as desired.
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Note that we not only need g if we want to simulate the process X, but also Σ for
the initial value [

X(0)
Z(0)

]
∼ N (0, Σ) (7.4)

of the stationary solution of (2.1). To compute Σ and g, i.e., to solve the singular Lur’e
equations numerically, we reduce them to a set of Lur’e equations of lower dimension,
cf. Anderson [1]. Since this is an essential step of our algorithm we provide some more
details, as those are rarely found in the pertinent literature. We represent A in the
block form

A =

[
−a0 cT0
−b0 A0

]
(7.5)

with appropriate A0 ∈ R(m−1)×(m−1), b0, c0 ∈ Rm−1, and a0 ∈ R. It follows from (2.6)
that

a0 = −eT1 Ae1 = − 1

σ2
lim

t→0+

φ(t)− φ(0)

t
≥ 0 ,

because functions of positive type attain their maximum at the origin.
Inserting (7.5) and (2.5) into (7.3), we see that the driving force vector g has to

have the form

g = σ

[√
2a0
g0

]
, (7.6)

where g0 ∈ Rm−1 and Σ0 ∈ R(m−1)×(m−1) satisfy the system of equations

A0Σ0 +Σ0A
T
0 = −g0gT0 , b0 −Σ0c0 =

√
2a0 g0 . (7.7)

This is the general form of the Lur’e equations, with the singular case corresponding
to a0 = 0. Again, the Positive Real Lemma states that there is a vector g0 and
a symmetric positive definite matrix Σ0, which solve (7.7), if A0 is stable and the
associated transfer function

κ0(ζ) = a0 + cT0 (ζI −A0)
−1b0 , ζ ∈ C , (7.8)

is positive real.
Note that ζ+κ0(ζ) is the Schur complement of ζI−A0 in ζI−A, i.e., the reciprocal

of ζ + κ0(ζ) is the (1, 1)-element of the inverse of ζI −A,

κ0(ζ) =
1

eT1 (ζI −A)−1e1
− ζ =

σ2

κ(ζ)
− ζ , (7.9)

where we have used (2.9) for the final step. Since κ is analytic in C \C−, its real part
is harmonic, and it follows from (7.2) and the maximum principle that it is positive
in the closed right half plane. This implies, that (i) κ0 is analytic in C \ C−, and (ii)
its real part also satisfies (7.2). Accordingly, κ0 is, indeed, positive real.

To see that the lower right block A0 of A in (7.5) is stable, we assume to the
contrary that µ is an eigenvalue of A0, which does not belong to C−. Let xr and
xl be associated right and left eigenvectors of A0, respectively. Then it follows from
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(7.5) that neither cT0 xr nor x∗l b0 may vanish, for otherwise [0;xr] or [0;xl] would be
right/left eigenvectors of A for the same eigenvalue; but this is not possible because A
is stable. Therefore, since neither cT0 xr nor x∗l b0 vanish, it follows from (7.8) that κ0
has a pole at ζ = µ, but this is not possible as we have discussed above. Accordingly,
all eigenvalues of A0 belong to C−. We thus have verified that (7.7) has a solution.

If a0 > 0 then a solution of the Lur’e system (7.7) can be obtained numerically by
first solving the Riccati matrix equation

B0Σ0 +Σ0B
T
0 +Σ0c0c

T
0Σ0 + b0b

T
0 = 0

with
B0 = 2a0A0 − b0c

T
0

for Σ0, and then computing g0 from the second equation in (7.7), cf. [3]. This is a
well-studied numerical problem; compare, e.g., Bini, Iannazzo, and Meini [6].

On the other hand, when a0 = 0, i.e., in the case of a singular Lur’e equation (7.7),
then we first note that

σ2
0 = cT0 b0 > 0 . (7.10)

In fact, it follows from (7.7) that in the singular case

cT0 b0 = cT0Σ0c0 ≥ 0 ,

and equality can only occur when Σ0c0 = 0. But this means that b0 = 0, and then
A is singular according to (7.5), which would contradict the stability of A. Therefore,
(7.10) is valid, and we can choose (as in Section 6) a similarity transformation V ∈
R(m−1)×(m−1) with

V b0 = σ2
0e1 and V −T c0 = e1 ,

so that we can rewrite

κ0(ζ) = σ2
0 e

T
1 (ζI − V A0V

−1)−1e1 .

Replacing A by (the stable matrix) V A0V
−1, we can then proceed as above to reduce

the solution of the singular Lur’e system (7.7) of dimension m− 1 to a Lur’e system
of dimension m− 2, and so forth.

Take note that
Reκ(iξ) = −σ2 eT1 A(A+ ξ2I)−1e1

is an even function of ξ ∈ R, and it has an asymptotic expansion of the form

Reκ(iξ) = σ2
(
γk + o(1)

)
ξ−2k , |ξ| → ∞ , (7.11)

for some k ∈ N and some γk ̸= 0; as usual, we denote by o(1) a term which converges
to zero in the respective limiting process. It thus follows from (7.9) and (2.9) that

Reκ0(iξ) = σ2 Reκ(iξ)

|κ(iξ)|2
=

σ4
(
γk + o(1)

)
ξ−2k

σ4
(
1 + o(1)

)
ξ−2

=
(
γk + o(1)

)
ξ−2(k−1) .
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Therefore, if k > 1 in (7.11) then we necessarily have a0 = 0, compare (7.8), which
means that the reduced Lur’e system (7.7) is also singular and another reduction step
is necessary for its solution.

More precisely, (2.7), (2.9), and (4.2) imply that

Reκ(iξ) =
1

2
φ̂(ξ) =

(
βk∗ + o(1)

)
ξ−2(k∗+1)

with βk∗ > 0, where k∗ is the parameter occurring in the inequality constraint (4.4).
In view of (7.11) we thus conclude that k∗ + 1 reduction steps are necessary to turn
the singular Lur’e equations (7.3) into a regular Lur’e system.

Appendix. Zeros of polynomials, consistency of
constraints, and the issue of negative poles

This appendix deals with the consistency of the constrained least squares problems
proposed in Section 4 in the two special situations encountered in Remarks 4.1 and 4.2.

As in Section 4 let a = [α1, . . . , αm]T ∈ Cm be the vector with the free weight
parameters, let βk = βk(a) be defined by (4.3), and let k∗ ∈ N. We will first turn to
Remark 4.1 and prove that the linear equality constraints

βk(a) = 0 , k = 0, 1, . . . , k∗ − 1 , (A.1)

are consistent with the optional inhomogeneous constraint (4.9), as long asm ≥ k∗+1,
i.e., as long a there are at least as many variables as there are equality constraints.

To this end we need the following auxiliary result on the zeros of certain real
polynomials.
Theorem A.1. Let k ∈ N and

p(z) = π0 + π1z + π3z
3 + . . . + π2k−1z

2k−1 (A.2)

be a real polynomial with π0 ̸= 0. Then p has at least k−1 zeros (counting multiplicities)
in C− and in C+, respectively.

Proof. Without loss of generality we may assume that π0 > 0. We define the family
of polynomials

p(z; γ) = γ + iq(z/i) , (A.3)

where γ ∈ R, and q is a fixed real and odd polynomial of degree 2k − 1. Obviously,
one can rewrite p of (A.2) in this form with γ = π0 and

q(ξ) = π1ξ − π3ξ
3 + . . . + (−1)k+1π2k−1ξ

2k−1 .

Note that for γ ̸= 0 the polynomial p( · ; γ) cannot have any zeros on the imaginary
axis, because

Re p(iξ; γ) = Re
(
γ + iq(ξ)

)
= γ for every ξ ∈ R .
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Consider first the case that q has only simple zeros on the real axis. One of these
zeros is ξ0 = 0; then there may be further positive zeros ξ1 < ξ2 < · · · < ξr for some
0 ≤ r < k, and the corresponding negative ones, −ξ1, . . . ,−ξr. Accordingly, the odd
polynomial p( · ; 0) has 2r+1 zeros on the imaginary axis, and k− r− 1 zeros in each
of the two half planes C− and C+, respectively. Since the real zeros of q are assumed
to be simple, the graph of ξ 7→ q(ξ), ξ ∈ R, changes sign at each of them, i.e., the local
Taylor expansion of q near ξj has the form

q(ξ) =
(
ηj + o(1)

)
(ξ − ξj) , ξ → ξj , (A.4)

with
(−1)jηjη0 > 0 , j = −r, . . . , r . (A.5)

Now we consider the homotopy that turns p( · ; 0) into p( · ;π0) by increasing the
parameter γ from zero to π0. Since the zeros of p( · ; γ) depend continuously on γ, we
conclude that for small enough γ the k − r− 1 zeros of p( · ; 0) in C− stay in C−, and
the k − r − 1 zeros in C+ stay in C+. Further, for γ sufficiently small, the remaining
zeros zj = zj(γ), j = −r, . . . , r, of p( · ; γ) can be found near the purely imaginary
zeros iξj of p( · ; 0): by virtue of (A.3) and (A.4) they satisfy

0 = γ +
(
iηj + o(1)

)(zj
i
− ξj

)
= γ +

(
ηj + o(1)

)
(zj − iξj) ,

which gives

zj(γ) = iξj − γ

ηj + o(1)
= iξj − γ

ηj

(
1 + o(1)

)
, γ → 0 . (A.6)

From (A.6) and (A.5) we conclude that the sign of

Re zj(γ) = − γ

ηj

(
1 + o(1)

)
depends only on the parity of j (and the sign of η0, of course), i.e., z±1(γ), z±3(γ), . . .
and z0(γ), z±2(γ), z±4(γ), . . . move into opposite half planes as γ becomes positive.
Accordingly, for small positive values of γ at least k − 1 zeros of p( · ; γ) belong to
C+ and to C−, respectively. Since p( · ; γ) is nonzero on the imaginary axis for γ ̸= 0,
these zeros stay in C+, resp. C−, for all positive values of γ. We thus have proved the
assertion for any polynomial p of the form (A.3), when the real zeros of q are all simple.

In the case that some real zeros of q happen to have higher multiplicities, we can
construct a sequence (qν) of real and odd polynomials of degree 2k − 1, which have
only simple real zeros, and whose coefficients converge to those of q as ν → ∞. As we
have shown in the first part of this proof every polynomial

pν(z;π0) = π0 + iqν(z/i)

has at least k− 1 zeros in C+ and those converge to zeros of p( · ;π0) as ν → ∞. Since
none of them can come to lie on the imaginary axis, they all stay in C+. This shows
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that p( · ;π0) has at least k − 1 zeros (counting multiplicities) in C+, and the same
argument applies to C−. This concludes the proof.

Corollary A.2. Let m > k∗ ≥ 1 and λ1, . . . , λm ∈ C−. Then the constraints (A.1)
and (4.9) are consistent.

Proof. We rewrite the constraints in matrix form

Ba = y0 e1 , (A.7)

where a = [α1, . . . , αm]T ∈ Cm as before and

B =


1 1 . . . 1
λ1 λ2 . . . λm
λ31 λ32 . . . λ3m
...

...

λ2k∗−1
1 λ2k∗−1

2 . . . λ2k∗−1
m

 (A.8)

is a complex matrix with k∗+1 ≤ m rows andm columns. Accordingly, the constraints
are consistent, if B has full row rank, i.e., if the null space of B∗ is trivial.

Note that we can add and subtract complex conjugate columns of B to transform
B into a real matrix of the same rank. This means that if B should fail to have full
row rank then there is a nontrivial real vector π = [π0, π1, π3, . . . , π2k∗−1]

T ∈ Rk∗+1,
such that BTπ = 0. The latter is the case, if and only if the associated real polynomial
p of degree 2k∗− 1 of (A.2) is vanishing for z = λ1, . . . , λm. This means that p has (at
least) m roots in C−.

Now we distinguish two cases. If π0 = 0 then p is odd, and for each zero in C−

there is a corresponding one in C+. This would imply that p has 2m ≥ 2k∗ + 2 zeros
(at least). On the other hand, if π0 ̸= 0 then Theorem A.1 states that p has k∗ − 1
zeros (at least) in C+; accordingly, p has at least k∗ − 1 +m ≥ 2k∗ zeros in this case.
Since p has degree 2k∗ − 1 this shows that p must be the zero polynomial in either
case, and hence, all its coefficients are zero, i.e., π = 0. This is a contradiction, which
shows that the null space of B∗ is trivial, and hence, B has full row rank.

Remark A.3. Note that we have made the assumption that y0 = E
[
Y 2

]
> 0. In this

case the system (A.1) and (4.9) of constraints becomes inconsistent, whenever k∗ ≥ m.
To see this it remains to establish the inconsistency of the first m+1 constraints. We
use the arguments and the notation from the proof of Corollary A.2. For the system
of the first m+ 1 constraints the matrix B of (A.8) has one more row than columns,
and its first m rows have full rank according to Corollary A.2. It follows that the null
space of BT is one-dimensional. Let π ∈ Rm+1 be a nontrivial vector from this null
space and p of (A.2) be the corresponding polynomial of degree 2m − 1. Then p has
m zeros λ1, . . . , λm ∈ C−. Assume now that π0 = 0. Then p is odd, and hence, it has
m further zeros in C+. This makes 2m zeros, which exceed the degree of p. Hence, if
π0 = 0 then p must be the zero polynomial which gives a contradiction.

Accordingly, B∗π = BTπ = 0, i.e., the null space of B∗ contains a vector π, whose
first entry is nonzero. But then the right-hand side of (A.7) cannot belong to the range
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space of B, because e1 is not orthogonal to the null space of B∗. This shows that the
system (A.7) is inconsistent, whenever the number of constraints exceeds the number
of free variables. ⋄

The final result of this appendix deals with Remark 4.2 and considers the case that
the rational function determined by the AAA algorithm has ℓ ∈ N (distinct) negative
poles.
Theorem A.4. Let Q be the set of parameter vectors a = [α1, . . . , αm]T ∈ Cm which
satisfy (4.4) with the additional constraint that k∗ ≥ ℓ. Then ψ of (4.6) is strictly
convex over Q.

Proof. Without loss of generality let us assume that

λ2l−1 = µl + i
π

τ
and λ2l = µl − i

π

τ
, (A.9)

l = 1, . . . , ℓ, are the exponents of the Prony series associated with the negative poles.
Since all poles are assumed to be simple the (negative) µl are pairwise different.

We rewrite

ψ(a) = ∥b−Ga∥22 with G = [eντλj ]ν,j ∈ R2n×m and b = [yν ]ν ∈ R2n .

Then G has a nontrivial null space, spanned by the vectors e2l − e2l−1, l = 1, . . . , ℓ,
where ej , j = 1, . . . ,m, are the Cartesian basis vectors in Cm. So, if a, a′ ∈ Q are two
solutions of (4.5), then

a− a′ =

ℓ∑
l=1

γl(e2l − e2l−1) (A.10)

for certain γl ∈ C. By assumption, a and a′ both satisfy the equality constraints (A.1)
for k = 0, . . . , ℓ− 1, and hence, [γ1, . . . , γℓ]

T belongs to the null space of


λ1 − λ1 · · · λ2l−1 − λ2l−1

λ31 − λ31 · · · λ32l−1 − λ32l−1
...

...

λ2ℓ−1
1 − λ2ℓ−1

1 · · · λ2ℓ−1
2ℓ−1 − λ2ℓ−1

2ℓ−1

 = 2i


Imλ1 · · · Imλ2ℓ−1

Imλ31 · · · Imλ32ℓ−1
...

...

Im (λ2ℓ−1
1 ) · · · Im (λ2ℓ−1

2ℓ−1)

 .

Using (A.9) we obtain

Im (λ2k+1
2l−1 ) =

(
µ2
l −

π2

τ2

)
Im (λ2k−1

2l−1 ) + 2µ
π

τ
Re (λ2k−1

2l−1 ) ,

Re (λ2k+1
2l−1 ) =

(
µ2
l −

π2

τ2

)
Re (λ2k−1

2l−1 ) − 2µ
π

τ
Im (λ2k−1

2l−1 ) ,
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for every l = 1, . . . , ℓ and every k ≥ 1. It thus follows by induction that there exists a
lower triangular matrix L with nonzero entries on the diagonal such that


Imλ1 · · · Imλ2ℓ−1

Imλ31 · · · Imλ32ℓ−1
...

...

Im (λ2ℓ−1
1 ) · · · Im (λ2ℓ−1

2ℓ−1)

 = L


1 · · · 1
µ2
1 · · · µ2

ℓ
...

...

µ
2(ℓ−1)
1 · · · µ2(ℓ−1)

ℓ

 .

The matrix on the right-hand side is the square Vandermonde matrix of µ2
1, . . . , µ

2
ℓ ,

which is nonsingular because the µ2
l are pairwise different, since all µl are negative.

Therefore the null space of the matrix on the left-hand side is trivial, and hence, the
coefficients γ1, . . . , γℓ are all equal to zero, showing that a = a′ in (A.10). Therefore,
ψ is strictly convex over Q.
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